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ABSTRACT 

The aggregate claims process is modelled by a process with independent, 
stationary and nonnegative increments. Such a process is either compound 
Poisson or else a process with an infinite number of claims in each time 
interval, for example a gamma process. It is shown how classical risk theory, 
and in particular ruin theory, can be adapted to this model. A detailed analysis 
is given for the gamma process, for which tabulated values of the probability of 
ruin are provided. 
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| .  INTRODUCTION 

In classical collective risk theory, the aggregate claims process is assumed to be 
compound Poisson (PANJER and WILLMOT, 1984). Here we shall examine a 
more general model for the aggregate claims process: processes with indepen- 
dent, stationary and nonnegative increments. Such a process is either com- 
pound Poisson or else a process with an infinite number of claims in any time 
interval. The most prominent process with this intriguing property is the 
gamma process. 

Since the process under consideration is either a compound Poisson process 
or a limit of compound Poisson processes, its properties can be derived from 
the basic properties of the compound Poisson process. The general results are 
derived in Section 2 (for the aggregate claims process) and Section 6 (for the 
probability of ruin). The gamma process is examined in detail in Sections 3, 4 
and 5 (for the aggregate claims process) and Sections 7 and 8 (for the 
probability of ruin). 
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2. PROCESSES WITH INDEPENDENT, 

STATIONARY AND NONNEGATIVE INCREMENTS 

Let Q ( x )  be a nonnegative and nonincreasing function of x, x > 0, with the 
properties : 

Q ( x )  ~ 0 as  x --. 

and 

i 
oo 

(2.1) Q ( x )  dx < oz. 
o 

Condition (2.1) can also be written as 

i o~ x [ - d Q ( x ) ]  < oo, 

0 

which, if q(x )  = - Q ' ( x )  exists, becomes 

i oo x q ( x ) d x  < oo. 

0 

Such a function Q ( x )  defines an aggregate claims process {S(t)}~0 in the 
following way. For  each x > 0, let N(t;  x)  denote the number  of  claims with 
an amount  greater than x that occur before time t; let S(t;  x )  be the sum of  
these claims. We assume that {N(t; x)}t>_0 is a Poisson process with parameter  
Q ( x )  and that {S(x; t)}tz0 is a compound Poisson process with Poisson 
parameter  Q ( x )  and individual claim amount  distribution 

0 y_<x 

(2.2) P ( y ;  x)  = Q ( x ) - Q ( y )  
y > x .  

Q(x) 

The process {S(t)} is defined as the limit of  the compound Poisson processes 
{S(t; x)} as x tends to 0. 

We write 

Q ( 0 )  = l im Q ( x ) .  
x~0 

We need to distinguish two cases: Q(0) < ~ ,  and Q(0) = oo. In the first case, 
{S(t)} is a compound Poisson process with Poisson parameter  Q(0) and 
individual claim amount  distribution 

Q ( y )  
(2.3) P ( y )  = 1 - - - ,  y>_ o. 

Q (0) 
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This is the classical model for collective risk theory. Conversely, every 
compound Poisson process, given by Poisson parameter 2 and individual claim 
amount  distribution P(y), is of  this type if we set 

(2.4) Q(y) = 2 [ l - P ( y ) ] ,  y >_ 0. 

In the second case, {S(t)} is the limit of compound Poisson processes, but is 
not a compound Poisson process itself, because the expected number of  claims 
per unit time, Q(0), is infinite. Indeed, with probability one, the number of  
claims in any time interval is infinite. Nevertheless, S(t) is finite, as the 
majority of  the claims are very small in some sense. In both cases, Q(y) is the 
expected number of  claims per unit time with an amount  exceeding y. 

Since {S(t)} is the limit of  {S(t; x)} as x tends to 0, we can use well-known 
results for the compound Poisson process to obtain results for the process 
{S(t)}. For  example, it follows from 

S 
~ 

E[S(t; x)] = tQ(x) [ l - P ( y ;  x)] dy 
0 

= txQ(x)+t Q(y)dy 
X 

that 

(2.5) E[S(t)] = t Q(y) dy = t 
0 0 

To get the Laplace transform, we start with 

{ EI E[e-~S(';x) 1= exp tQ(x) 
x 

= exp 

y[-dQ(y)].  

e - Z Y d P ( y ; x ) - l l }  

[e -~y-  1] [-dO(y)] }. 

Letting x ~ 0 ,  we obtain 

(2.6) E[e -zs(°] = exp t 
0 

[e -~y- 1] [ -  dQ (y)] }.  

The process {S(t)}, defined by the function Q(x) ,  has independent, stationary 
and nonnegative increments, and E[S(t)] < oo. The converse is true in the 
following sense. Every process {X(t)} with these properties is of  the form 

X(t) = S(t)+bt, 

where {S(t)} is a process of  the type presented above and b is a nonnegative 
constant. This is a consequence of the connection between processes with 
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independent and stationary increments and infinitely divisible distributions, 
and the characterization of  infinitely divisible distributions with nonnegative 
support (FELLER, 1971, p. 450, Theorem 2; p. 571, formula (4.7)). 

3. THE GAM M A PROCESS 

Assume that the function Q (x) is differentiable and that - Q ' ( x )  is 

a 
(3.1) q ( x )  = - e -hx, x >  O, 

x 

where a and b are positive constants. Let {S(t)} be the associated aggregate 
claims process. In a time interval of  length t, the expected number of  claims 
with an amount  exceeding x is 

i 
oo e -  by 

t Q ( x )  = at - -  dy .  
x Y 

Since Q (0) = ~ ,  there is an infinite number of claims in each time interval. By 
(2.5) the expected aggregate claims in a time interval of  length t are 

I °° I °° at 
(3.2) E[S( t ) ]  = t y q ( y )  dy = at e -by dy - 

o o b 

To obtain the distribution of  S ( t ) ,  we compute its Laplace transform by 
(2.6): 

(3.3) E[e-zS( ' ) l  = exp t [e - z y -  I1 q ( y )  dy 
0 

= exp at dy 
o Y :(£)o 

To verify the last step, consider the function 

(p(Z) = I °° e - (Z+b)Y- -e -bY  dy; 

o Y 

observe that ~(0) = 0 and ~ ' (z)  = - ( z +  b) - i .  Formula (3.3) shows that the 
distribution of  S ( t )  is gamma, with shape parameter ~, = at and scale 
parameter fl, = b. Hence the process {S(t)} is called a gamma process. 

A gamma process with a = b = 1 is called a standardized gamma process. 
For  an arbitrary gamma process with parameters a and b, we may set t* = at 
and S * ( t * )  = bS ( t ) .  It follows from (3.3) that 
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(3.4) 

Thus  the t r ans formed  process {S* (t*)} is a s tandardized  g a m m a  process.  
The  g a m m a  process,  given by (3.1), can be imbedded  in a larger family o f  

processes given by 

(3.5) q ( x )  = ax  ~ - '  

with - 1  < ~ < oo. We note that  

(3.6) y q ( y )  dy = a 
o o 

is indeed finite. 
Fo r  ~ > 0, 

e - b x ,  x > O ,  

y~ e -by dy - a b ~+l F(0~+ 1) 

I a (3.7) Q(0)  = q ( y )  dy = b ~ F (o0 
o 

is finite. Hence  {S(t)} is a c o m p o u n d  Poisson process, with Poisson p a r a m e t e r  
2 given by (3.7) and claim a m o u n t  density 

(3.8) p ( x )  q ( x )  b ~ = --  X ~ - I  e - b x ,  x > O ,  
2 r ( ~ )  

which is a g a m m a  density. 
F o r  - 1 < ct < 0, Q (0) = oo. When  ct -- 0, we have the g a m m a  process.  To  

determine the probabi l i ty  density f u n c t i o n f ( x ,  t) o f  S ( t )  for  - 1 < ~t < 0, we 
apply  fo rmula  (2.6), 

(3.9) 

with 

(3.1 O) 

E[e-~S(')]  = etOq,(~), 

s 
o o  

~o(z) = (e - :Y- -  l) y ~ - I  e-bY dy .  

o 

F r o m  ~o(0) = 0 and 

(3.11) ~o' (z)  = - i oo yet e-(z+b)y dy = - F(o~-F 1) 

o ( z + b )  ~+1 

we obtain  

(3.12) ~ 0 ( z ) - r ( ~ + l ) [  ! - ~ 1  (~7-b) ~ 

= r(~) [(z + b ) - ' -  b-']. 
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(Note that (3.12) is also valid for ~ > 0; in this case it can derived by first 
expressing (3.10) as the difference of  two convergent integrals.) For simplicity, 
assume a = - I /F(~)  and b = 1. Write ,6' = - ~ .  Then (3.9) becomes 

(3.13) E[e -~s(')] = exp { t [ l - ( 1  +z)P]}. 

Recall the stable distribution of  order fl that is concentrated on the positive axis 
(FELLER, 1971, Sections XIII.6 and XI|I.7). Let gp(x)  denote its probability 
density function. Its Laplace transform is 

i 
O0 

e -  ~" gp (x)  dx = e -  :' 
o 

Hence the Laplace transform of  the function 

t - l / a g B ( t - t / P x  ), x > 0, 

is exp(- - tza) .  Finally, it follows from (3.13) that the probability density 
function of S ( t )  is 

(3.14) f ( x ,  t) = e t -Xt- t l t~g~( t -UBx) ,  x > O. 

For ,8 = 1/2, a closed form expression for the stable density is available, 

' ( ' ) (3.15) gt/2(x) - exp - - -  , x > O, 
2 ~ x 3/2 4x  

and (3.14) becomes 

t [ ( 2 x - - t )  2 
(3.16) f ( x ,  t) - exp - ] x > 0, 

2 x/n x 3/2 4 x _J ' 

which is the probability density of  the inverse Gaussian distribution. A review 
on the inverse Gaussian distribution can be found in FOLKS and CHm- 
KARA (1978); WILLMOT (1987) has applied the inverse Gaussian distribution in 
modelling the claim number distribution, and GENDRON and CR~PEAU (1989) 
and WILLMOT (1990) have modelled the individual claim amount  distribution 
with the inverse Gaussian distribution. 

4. PARAMETER ESTIMATION FOR THE GAMMA PROCESS 

Let {S(t)} be a gamma process with (at time t = 0) unknown parameters a and 
b. We claim that, if we can observe the process for a time interval of 
(arbitrarily short) length h, h > 0, the value of  a can be obtained as a limit: 
For  0 < x < l, we define the random variable 

N(h;  x )  
(4.1) A ( x )  = - ; 

h In (x) 
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then 

(4.2) lim A(x)  = a.  
x~O 

(We remark that a similar situation exists for the diffusion process with a priori 
unknown but constant infinitesmal drift p and variance O "2 ; I f  the sample path 
for an arbitrarily small time interval is known, O "2 c a n  be calculated.) 

To prove (4.2), we write (4.1) as 

i 
oo e - b Y  d y  

x y g ( h  ; x )  
A ( x )  = . a .  

I '  dY ah I°° 

x Y x Y 

Applying L 'H6pi ta l ' s  rule, we see that the first ratio tends to 1 as x tends to 0. 
The second ratio is N(h; x)/[hQ(x)]; by the strong law of  large numbers it 
converges to l (with probabili ty one) as x tends to 0. 

In the following we assume that the value of  a is known, but that b is 
unknown. I f  the aggregate claims process has been observed to time t, S( t )  is a 
sufficient statistic, i.e., any additional information about  the sample path is 
irrelevant for the estimation of  b (DE GROOT, 1975, p. 304, #5). To illustrate 
this, let us treat the unknown b as a random variable O with prior probabili ty 
density function u(O), O > 0. Then the posterior density of  O at time t, given 
the value of S(t) ,  is 

u(O; t)  = 
0 a' e -°s(') u(O) 

i oo r ~' e - 's( ' )  u(r)  dr 

o 

Let us now assume that u(O) is gamma,  say, 

u (0) - 04- l e-P°, 0 > 0, 

with fl > 0 and a > I. Then the posterior density is also gamma,  with 
parameters 

O~ t = o f + a t  

and 

fit = fl+ S ( t ) .  
At time t = O, the expected aggregate claims per unit time are 

E = a  d O = a  
o 0 o t - I  
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Hence, with S ( t )  known, the conditional expectation of the aggregate claims 
per unit time is 

l~, l~+ s(t) 
(4.3) a -  - a 

ot t -  l o r + a t -  I 

fl S (t)  
= ( l - Z , ) a  + Z , - -  

a - I  t 

where Zt = a t / ( a t + c t -  1). Formula  (4.3) corresponds to the well-known result 
for exact credibility in the g a m m a / g a m m a  model. 

5. SIMULATION OF THE GAMMA PROCESS 

We can simulate a compound Poisson process by simulating the times and 
amounts  of  the claims. This straightforward approach is not applicable to the 
gamma  process, since there are infinitely many claims in each time interval. We 
now present a method for simulating the gamma process. 

Let {S(t)} be the gamma process with parameters a and b. To simulate a 
sample path, we use the following result. For  time r > 0, the conditional 
distribution of  the ratio S( r /2 ) /S ( r ) ,  given S(Q,  is symmetric beta with 

s (t) 

12 

G a m m a  process 

11 

10 

9 

8 
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6 

5 

4 

3 / 

:f- 
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FIGURE 1. 
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parameter az/2 (DE GROOT, 1975, p. 244, #5). Thus, if we want to simulate a 
sample path for S(t), 0 <_ t _< T, we can proceed as follows. First we simulate 
a value for S(T) ,  whose distribution is gamma with shape parameter aT and 
scale parameter b. Then we obtain S(T/2) by simulating a value for 
S(T/2)/S(T),  which has a symmetric beta distribution with parameter aT/2. 
Next, we obtain S(T/4) and S(3 T/4) by simulating the values of  S(T/4)/S(T/2) 
and [S(3 T/4)-S(T/2)]  / [S (T) -S(T /2)] ,  respectively, each of  which has a 
symmetric beta distribution with parameter aT/4. Similarly, we can generate 
the values of S(T/8), S(3 T/8), S(5 T/8), S(7 T/8), and so on. 

We have simulated the standardized gamma process for various T. A sample 
path for T = l0 is shown in Figure I. 

6. RUIN THEORY 

Let {S(t)} be the aggregate claims process introduced in Section 2. In this 
section we present some ruin probability results for this process. In the next 
section, we specialize to the case that {S(t)} is a gamma process. 

Let the surplus of  an insurance company at time t, t > 0, be 

(6.1) U(t)  = u + c t - S ( t ) .  

Here u is a nonnegative number denoting the initial surplus and c is the rate at 
which the premiums are received. The relative security loading 0 is defined by 
the equation 

(6.2) c = (I +O) E[S(1)] = (1+0)  Q(x )dx .  
0 

We assume that 0 > 0. Let ~ (u) denote the probability of  ultimate ruin, i.e., 
the probability that the surplus becomes negative at some future time. 

In view of formula (2.4), results for this model can be obtained via those for 
the compound Poisson model with the following recipe. We start with a 
formula for the case of  the compound Poisson process with Poisson parameter 
2 and individual claim amount  distribution P(y).  Then we substitute Q(y)  
for 211 - P ( y ) ]  (or q(y)  for 2p (y )  if the derivatives exist) to obtain the corre- 
sponding formula for the more general model. 

For  example, in the compound Poisson model the probability of  ruin 
satisfies the following defective renewal equation [e.g., BOWERS et al. (1986, 
p. 373, #12.11)]: 

cgt(u) = 2 t u ( u - y ) [ l - P ( y ) ] d y + 2  [ l - P ( y ) ] d y ,  u >_ O. 
0 v 

Substituting Q(y)  for 2 1 1 - P ( y ) ] ,  we get 

I ° I (6.3) c~u(u) = ~ ( u - y )  Q(y)  dy + Q(y)  dy, u > O. 
0 u 
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For  u = 0, this gives 

(6.4) ~(0)  = - Q ( y )  dy = ~ .  
c 0 1 + 0  

Let us now consider the maximal loss random variable 

(6.5) L = max { S ( t ) - c t } .  
t~O 

It is of  interest since 1 - ~ ( u )  is its distribution function. In the compound 
Poisson model, it is well known (BOWERS et al., 1986, Section 12.6) that L has 
a compound geometric distribution: 

(6.6) L = L i + L 2  + ... + L  N. 

Here N, L~, L2, ...  are independent random variables, the Li's are identically 
distributed with the probabili ty density 

1 - P ( x )  
(6.7) h(x )  = , x > O, 

i o~ [ l - e ( y ) ]  dy 

0 

and N has a geometric distribution defined by 

(6.8) Pr(N  = n) - 0 ( 1 - ~  ) +O n = 0 , 1 , 2 , . . . .  

I f  we multiply both numerator  and denominator  of  (6.7) by 2, we see that (6.6) 
is valid for the general model, with 

Q(x)  
(6.9) h(x )  - , x > O. 

i oo Q ( Y )  dy 

o 

These formulas can be used to determine numerical lower and upper bounds 
for the ruin probabili ty;  see Method 1 in DUFRESNE and GERBER (1989). 

For  the next result we assume that p ( x )  = P' (x)  and q(x )  = - Q '  (x) exist. 
Let Tdeno te  the time of  ruin. Put X = U ( T - ) ,  the surplus immediately before 
ruin, and Y = IU(T)I,  the deficit at the time of  ruin. We assume that u = 0. 
Given that ruin occurs, the joint probabili ty density of  X and Y in the 
compound  Poisson case is 

p(x+y) 
(6.10) h ( x , y )  = , x > O,y > 0 

I ~ [1 - P ( s ) ]  as 
0 
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(DUFRESNE and GERBER, 1988). Thus, in the general model, the joint density 
of  X and Y is 

q ( x + y )  
(6.11) h ( x , y )  - , x > O , y  > O. 

i oo Q ( s )  ds 

o 

We note that both (6.10) and (6.11) are symmetric in x and y. The probability 
density of  Z = X+  Y (the amount  of the claim that cases ruin) is 

(6.12) g ( z )  = h ( x ,  z - x )  dx  - z q ( z )  , z >  O. 

o I ~ Q(s )  ds 
o 

The conditional probability density of X given Z = z (and u = 0) is 

h ( x ,  z - x )  1 
- -  , 0 < X < Z .  

g(z )  z 

This is the somewhat surprising result that the conditional distribution of  X 
(given Z = z) is uniform between 0 and z. 

We wish to remark that, if Q(0) = oo, the notion of  an individual claim 
amount  distribution of  the process {S(t)} per  se does not make sense. However, 
the conditional claim amount  distribution, given certain information, may still 
exist. For  example, (2.2) is the distribution of an individual claim amount  given 
that it exceeds x. Likewise, g ( z )  is the probability density function of the 
amount  of  the claim that causes ruin. 

We now turn to Lundberg's asymptotic formula. The adjustment coefficient 
R is defined as the positive solution r = R of  the equation 

(6.13) (e ' y -  1) [ - d Q ( y ) ]  = cr.  
0 

(Note that some regularity conditions have to be imposed on Q ( y )  to 
guarantee the existence of R.) It follows from (2.6) that, for all t, 

(6.14) E[e Rts(')-c'l] = 1. 

Lundberg's famous asymptotic formula states that 

(6.15) yJ(u) ~ Ce -gu for u ~ oo. 

In the compound Poisson case, 
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(6.16) C = 
S 

oo 

02 y d P  ( y ) 
o 

S 
oo  

2 ye  ny d P ( y )  - c 

o 

(SEAL, formula (4.64)), which is translated as 

(6.17) C = 
i 

oo 

- 0  y d Q ( y )  
o 

i 
oo 

- y e R Y d Q ( y ) - - c  

o 

7. RUIN THEORY FOR THE GAMMA PROCESS 

We now consider the special case that { S ( t ) }  is a gamma process. As we 
pointed out in Section 3, any gamma process can be transformed into a 
standardized gamma process. Thus we assume that, for x > 0, 

e - x  

(7.1) q ( x )  - 
x 

o r  

i 
oo e - y  

(7.2) Q ( x )  = - -  d y .  

x Y 

In ABRAMOWlTZ and STEGUN (1964, p. 227), the exponential integral (7.2) is 
denoted as El (x). 

Since 

i i i Q ( x )  dx  = x q  ( x )  dx  = e - "~ dx  = 1, 
o o o 

formula (6.2) becomes 

(7.3) 1 + 0 =  c. 

By (6.9) the common probability density function of  the random variables {Li} 
is 

(7.4) h ( x )  = O ( x )  = El (x ) ,  x > O, 

and their distribution function is 

S 
x 

(7.5) H ( x )  = h ( y )  dy = l - e - ~ + x E l ( x ) ,  x > O. 
o 
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From (6.11) and (6.12) we obtain 

(7.6) h (x, y)  - - -  

and 

e - ( X + y )  

x + y  

(7.7) g(z)  = e -~, 

respectively. Formula (7.7) is especially interesting, as it says that (if u = 0) the 
amount  of  the claim that causes ruin is exponentially distributed. 

Substituting (3.4) and (7.3) in (6.14) yields the equation 

1 (7.8) - e r(l+O) 

l - r  

The adjustment coefficient R is the positive root of  (7.8). It follows from (6.17) 
and (7.3) that the asymptotic constant C in Lundberg's formula is 

(7.9) C = 
0 0 ( 1  - g )  

1 
- -  - ( l + 0 )  
1 - R  

R - O ( l  - R )  

Remark: As pointed out in Section 3, the gamma process is the limit of  a 
certain family of compound Poisson processes, each with a gamma claim 
amount  distribution. For these WILLMOT (1988) has given an elegant method 
to evaluate the probability of  ruin. 

8. THE PROBABILITY OF RUIN FOR THE GAMMA PROCESS 

As in the last section we assume that the aggregate claims process is the 
standardized gamma process. Since (7.5) gives an explicit expression for H(x) ,  
we can apply the method of  lower and upper bounds to calculate the 
probability of  ruin (DUFRESNE and GERBER, 1989). We have calculated lower 
and upper bounds for ~ (u )  for different values of the initial surplus u 
(0, I, 2, . . . ,  20) and the relative security loading 0 (0.1, 0.2, 0.3 . . . . .  1.0), for 
intervals of  discretisation with length 0.01 and 0.001. For  0 = 0.5 these bounds 
are displayed in Table 1. Thus the exact value of  the probability of  ruin is 
known with sufficient accuracy (4 decimals). Table 2 shows these values. 

Illustration: Assume that the annual aggregate claims have an expectation 
/z = 100,000 and a standard deviation a = 20,000. The initial reserve is 48,000 
and the annual premium (net of  expenses) is 120,000. What is the probability of  
ultimate ruin? 
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TABLE 1 

LOWER AND UPPER BOUNDS FOR THE PROBABILITY OF RUIN 

0 =  0.5 

u Lower bounds Upper bounds 

0 0.666667 0.666667 0.666667 0.666667 
1 0.321352 0.322741 0.323055 0.324488 
2 0.175016 0.176268 0.176550 0.177839 
3 0.096653 0.097604 0.097819 0.098798 
4 0.053619 0.054288 0.054439 0.055129 
5 0.029801 0.030250 0.030352 0.030817 

6 0.016577 0.016870 0.016936 0.017240 
7 0.009225 0.009412 0.009454 0.009649 
8 0.005135 0.005252 0.005279 0.005401 
9 0.002858 0.002931 0.002948 0.003024 

10 0.001591 0.001636 0.001646 0.001693 

11 0.000886 0.000913 0.000919 0.000948 
12 0.000493 0.000510 0.000513 0.000531 
13 0.000275 0.000284 0.000287 0.000297 
14 0.000153 0.000159 0.000160 0.000166 
15 0.000085 0.000089 0.000089 0.000093 

16 0.000047 0.000049 0.000050 0.000052 
17 0.000026 0.000028 0.000028 0.000029 
18 0.000015 0.000015 0.000016 0.000016 
19 0.000008 0.000009 0.000009 0.000009 
20 0.000005 0.000005 0.000005 0.000005 

I 0.001 _ _ 1  

0.01 

length of the interval of discretisation 

Solution: We assume that the premiums are received continuously and the 
aggregate claims process can be modelled by a gamma process with parameters 
a and b. Then a/b = / z  = 100,000 and a/b 2 = a 2 = (20,000) 2. It follows that 
b = ~fir 2 = 1/4,000. In order to use Table 2 (which is for the standardized 
gamma process), we have to transform the initial reserve to 
u = 48,000x b = 12. The relative security loading 0 = 0.2 does not change. 
Looking up Table 2, we obtain the probability of  ruin ~(12) = 0.018. 
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TABLE 2 

THE PROBABILITY OF RUIN FOR TIlE STANDARDIZED GAMMA PROCESS 

Relative security loading 0 

u 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 

0 0.9091 0.8333 0.7692 0.7143 0.6667 0.6250 
1 0.7395 0.5736 0.4613 0.3816 0.3229 0.2782 
2 0.6184 0.4165 0.2990 0.2253 0.1764 0.1424 
3 0.5182 0.3038 0.1952 0.1344 0.0977 0.0741 
4 0.4345 0.2219 0.1277 0.0805 0.0544 0.0388 
5 0.3643 0.1621 0.0836 0.0482 0.0303 0.0204 

6 0.3054 0.1185 0.0548 0.0289 0.0169 0.0107 
7 0.2561 0.0866 0.0359 0.0173 0.0094 0.0056 
8 0.2148 0.0632 0.0235 0.0104 0.0053 0.0030 
9 0.1801 0.0462 0.0154 0.0062 0.0029 0.0016 

10 0.1510 0.0338 0.0101 0.0037 0.0016 0.0008 

11 0.1266 0.0247 0.0066 0.0022 0.0009 0.0004 
12 0.1062 0.0180 0.0043 0.0013 0.0005 0.0002 
13 0.0890 0.0132 0.0028 0.0008 0.0003 0.0001 
14 0.0746 0.0096 0.0019 0.0005 0.0002 0.0001 
15 0.0626 0.0070 0.0012 0.0003 0.0001 

16 0.0525 0.0051 0.0008 0.0002 
17 0.0440 0.0038 0.0005 0.0001 
18 0.0369 0.0027 0.0003 0.0001 
19 0.0309 0.0020 0.0002 
20 0.0259 0.0015 0.0001 

0.5882 0.5556 0.5263 0.5000 
0.2434 0.2155 0.1929 0.1743 
0.1178 0.0994 0.0854 0.0743 
0.0582 0.0470 0.0388 0.0327 
0.0289 0.0224 0.0178 0.0145 
0.0144 0.0107 0.0082 0.0065 

0.0072 0.0051' 0.0038 0.0029 
0.0036 0.0025 0.0018 0.0013 
0.0018 0.0012 0.0008 0.0006 
0.0009 0.0006 0.0004 0.0003 
0.0005 0.0003 0.0002 0.0001 

0.0002 0.0001 0.0001 0.0001 
0.0001 0.0001 
0.0001 
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