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ABSTRACT 

In this paper we present an algorithm for the approximate calculation of finite 
time survival probabilities for the classical risk model. We also show how this 
algorithm can be applied to the calculation of infinite time survival probabili- 
ties. Numerical examples are given and the stability of the algorithms is 
discussed. 

KEYWORDS 

Survival probability; finite time; infinite time; recursive calculations; numerical 
stability. 

I. INTRODUCTION 

The primary aim of this paper is the approximate calculation of the probablity 
of survival in continuous and finite time for a general classical risk process. We 
assume, without loss of generality, that the expected number of claims per unit 
time for this process is 1 and that the expected amount of a single claim is also 
1. This process can be characterized as follows: 

- -  the number of claims occurring up to time t, denoted oN,, has a 
Poisson distribution with parameter t, 

_ _  y oo the amount of the i-th claim is 0Yi, where {0 i}i=l is a sequence of 
(1.1) i.i.d, non-negative random variables which are also independent of 

the claim number process, and whose first two moments exist, 

- -  the premium income per unit time is I + 0, where 0 is the premium 
loading factor. (We shall assume 0_> 0, but some of our later 
results require only that (1 + 0) > 0.) 

(We use the subscript " 0 "  where appropriate to indicate that we are dealing 
with our initial process.) For a given initial reserve u(>_ 0) we denote by 
06(u, t) the probability of survival in continuous time up to time t, so that 

oNe 1 
o6(U, t) = Pr FLU+( 1 +0)z  - i=iE 0 Y/ >- 0 for all r, 0 < r _< t 
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Our approach to the calculation of  0,~(u, t) is to show that 0fi(u, t) can be 
approximated by the probabili ty of  survival in discrete and finite time for a 
particular risk process, and then to discuss the calculation of  this latter 
probability. The particular risk process we use is a classical risk process 
characterized as follows: 

(1.2) 

: - -  the number  of  claims occurring up to time t, denoted N,, has a 
Poisson distribution with parameter  2t, 

- -  the amount  of  the i-th claim is Y~ where { Y~}~°~ L is a sequence of  
i.i.d, random variables which are independent of  the claim number 
process, 

- -  the Y:s are distributed on the non-negative integers, 

• - -  the premium income per unit time is 1. 

We introduce the following notation for this particular risk process: 

bk = Pr[Y/ = k] for k = 0, 1, 2 , . . .  

~(u, t )  = Pr u + r -  Yi -> 0 for r = 1 , 2 , . . . , t  
i=l  

so that ~(u, t) denotes the probabili ty of  survival in discrete time up to time t 
for this particular risk process, given initial reserve u, which we always assume 
to be non-negative. With suitable choices for 2 and the bfls we can then argue 
that 

(1.3) o6(u, t) -~ 6(up, (1 +o)l~t) 

for some positive constant  ft. 
Formula  (1.3) can be justified by using a discretizing and re-scaling argument 

as follows : 

STEP 1 

Let 

Let 

Let 

Discretize the initial process: 

{i Yi}i°~l be a sequence of i.i.d, random variables distributed on the 
discrete points 0, 1/fl, 2/fl, . . . ,  for some fl > 0, in such a way that the 
distribution of  ~ Y/approximates  to that of  0Yi. 

bk = Pr [iYi = k/fl] for k = 0, 1, 2 . . . .  

1 6 ( u , t ) = P r  u + ( l + O ) z -  iI'~- _> O f o r a l l r ,  O < r _ < t  
i ~ l  

so that 16(u, t) is the probabili ty of  survival in continuous time 
before time t, given initial reserve u(_> 0), for the initial process but 
with 01q- replaced by the discrete random variable tiC. 
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Then, if ~Y~ is a " g o o d "  approximation to 0Yi, 

~,~(u, t) -~ 0,~(u, t ) .  

STEP 2 Change the monetary unit: 

Define 2Y/to be equal to fl Y/, so that 

P r [2Yi=  k] = bk for k = 0 , 1 , 2  . . . .  

Denoting by 2~5(w, t) the probability 

Pr w + ( l + O ) f l r  - 2Yi -> 0 for all r , O < ~ _ < t  

it can be seen that 

,~5(u, t) = 2~5(ufl, t) 
and hence 

oO(U, t) '~ 26(ufl, t). 

201 

STEP 3 Change the time unit: 

Let 3N, be a Poisson process with parameter 2 = 1/[(1 +0),6]. 

Let 36(w,t)= Prlw+z-  i~12Yi >_ Oforallz, O<r_<t 1 . . =  

Then it can be seen that 

26(w, t) = 36(w, (1 +O)l~t) 

and hence that 

o6(u, t) -~ 36(ufl, (1 + o ) p t ) .  

Finally in our argument to justify (1.3), note that the risk process emerging 
from STEP 3 is the risk process characterized by (1.2) and that 6(u, t) is the 
discrete time probability of  survival corresponding to 3d~(u, t). Intuitively, ~(u, t) 
should be a good approximation to 36(u, t) if, for a given t, the number of  
re-scaled time units, (1 +O)flt, is large, so that there are frequent checks for 
survival in the discrete case. 

For  the remainder of  this paper our theoretical work will be based on the 
risk process characterized by (1.2). We introduce the following notation for this 
process : 

X, denotes the aggregate claims from time n - 1  to time n, so that 
N. 

X, = 2 Yi for n = 1,2 . . . .  (=  0 i f N , _ l  = N,) 
i=N._l+l 
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gk is the probability that X, takes the value k, for k = 0, l, 2... 

mk is the k-th moment about zero of  an individual claim amount  

Z ,  is the accumulated surplus up to time n, given initial surplus u > 0, so 
that 

Z,  = u + n - ~ Xi for n = 1 ,2 , . . .  
i=1 

Note that since Yi is distributed on the non-negative integers we can evaluate 
the gk's using the recursive method of  PANJER (1981). We shall assume for the 
remainder of  this paper that the gk's are known and that u is a non-negative 
integer. Note also that Z,+t  can take only the values 

Z , + 1  (if X,+ ~ = O) 

Z,  (if X,+t = 1) 

Z , - I  (if X,+i = 2) etc. 

2. THE METHOD OF D E  V Y L D E R  AND G O O V A E R T S  

DE VYLDER and GOOVAERTS (1988) present a very neat recursive algorithm for 
the approximate calculation of  06(u, t). Their method involves discretizing the 
risk process and then re-scaling it, in almost exactly the same way as we have 
described in our Section I. In terms of  the process characterized by (!.2), their 
algorithm is as follows: 

w+|  

(2.1) 6(w, 1) = Z gJ for w = 0 , 1 , 2 , . . .  
j =0  

w+l 

(2.2) 6(w, m) = ~_, 6(w+ 1 - j ,  m -  1)gj for w = 0, 1 . . . .  
j =0  

and m = 2, 3 . . . .  

The rationale behind this algorithm is as follows: 

- -  6(w, 1) can be calculated directly from (2.1) since the gk's are known, 

- -  for m _> 2, O(w, m) can be calculated by conditioning on the surplus after 
1 unit of  time; with probability gj this surplus is ( w + l - j )  and the 
probability of  survival over a further ( m - l )  units of time is 
6 ( w+  l - j ,  m -  1). 

In terms of  the calculations involved, formula (2.2) can perhaps be most 
easily appreciated by considering Figure 1. We suppose that we wish to 
calculate 6(u, t) for some given u and (positive integer) t ( >  1). We first 
calculate 3(w, 1) for w = 0, 1 . . . . .  u + t - I  using (2.1). We then use (2.2) to 
calculate 6(w, 2) for w = 0, 1, 2 . . . .  , u + t - 2 .  In general, we calculate 6(w,r) 
for w = 0, 1, 2 , . . . ,  u + t - r  having first calculated 6(w, r - l )  for 
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w = u+t-I 

w = u+t-2 

w = u+t-r+l 

w = u+t-~ 

W = u+l 

Q 

FIGURE I. Combinations of  w and r for which values of/~(w, r)  are required to calculate di(u, t) 
using the method of De Vylder and Goovaerts. 

w = 0, 1, 2, . . . ,  u + t - z +  1. It can be seen that to calculate 6(u, t) we have, at 
least in principle, to calculate 6(w, z) for all values of  (w, z) in the trapezoidal 
area given by 1 < r _ < t - I  and 0 _ < w _ < u + t - r .  

There is one respect in which the above description represents a refinement 
of the algorithm presented by DE VYLDER and GOOVAERTS (1988). In their 
Section 7 they state that, " W e  can adopt any unit of money and any unit of  
t ime." However, re-scaling of the time unit results in a premium income per 
unit time which can be greater than 1; our re-scaling of the time unit, as 
described in our Section 1, results in a premium income per unit time which is 
equal to 1. 

There are two respects in which the above description is a simplification of 
De Vylder and Goovaerts 's algorithm. These are: 

1. Truncation: DE VYLDER and GOOVAERTS (1988, Sections 4 and 5) point 
out that the algorithm as described above requires a lot of  calculations to 
be carried out and hence requires a considerable amount  of  computer time. 
They propose, and use, a method for reducing the number of calculations 
required in such a way that the error resulting from this approximation can 
be bounded. 

2. Averaging: DE VYLDER and GOOVAERTS (1988, formula (1)) point out that, 
in the notation of  our Section l, 

6 ( u -  1, t) _< 36(u, t) < 6(u, t) 
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a n d ,  in the i r  n u m e r i c a l  e x a m p l e ,  t hey  p r o p o s e  a p p r o x i m a t i n g  3,~(u, t )  n o t  
b y  J ( u ,  t )  b u t  by  ~(u ,  t )  w h e r e  

(2.3)  ~(u ,  t )  = ½ { d i ( u - 1 ,  t)+6(u, t)} 

w i t h  6 ( u -  1, t )  t a k e n  to  be  ze ro  i f  u is zero .  

A numer i ca l  e x a m p l e :  T a b l e  1 s h o w s  va lues  o f  0fi(u, t )  fo r  v a r i o u s  c o m b i n a -  
t i o n s  o f  u a n d  t fo r  the  r isk  p r o c e s s  wi th  e x p o n e n t i a l l y  d i s t r i b u t e d  i n d i v i d u a l  
c l a i m s  a n d  w i th  t w o  va lues  fo r  the  p r e m i u m  l o a d i n g  f a c t o r  0, viz. 0.1 a n d  0.2. 
T h e  key  to  T a b l e  1 is as  f o l l o w s :  

(1) d e n o t e s  the  exac t  v a l u e  o f  0di(u, t )  as  g iven  b y  WIKSTAD (1971) ;  

(2) d e n o t e s  the  a p p r o x i m a t i o n  to  0c~(u, t )  g iven  by  DE VYLDER a n d  GOO- 
VAERTS 0 9 8 8 ,  T a b l e  l ) ;  

(3) d e n o t e s  the  a p p r o x i m a t i o n  to  06(u ,  t )  g iven  by  (2.1) a n d  (2.2) a b o v e .  

TABLE I (See Section 2 for details) 
(a) Premium loading factor 0 = 0.1 

t = I t = 10 t = 100 

u = 0 (I) 0.5366 0.2146 0.1100 
(2) 0.3401 0.1562 0.0814 
(3) 0.5515 0.2239 0.1150 

u = I (I) 0.7619 0.3874 0.2052 
(2) 0.4159 0.2322 0.1252 
(3) 0.7699 0.3953 0.2098 

u = 10 (1) 0.9997 0.9681 0.7395 
(2) 0.9996 0.9663 0.7366 
(3) 0.9997 0.9687 0.7413 

(b) Premium loading factor 0 = 0.2 

t = 1 t = 10 t = I00 

u = 0 (1) 0.5490 0.2523 0.1717 
(2) 0.3498 0.1829 0.1262 
(3) 0.5636 0.2624 0.1789 

u = l (I) 0.7695 0.4356 0.3040 
(2) 0.4212 0.2602 0.1847 
(3) 0.7772 0.4437 0.3094 

u = 10 (1) 0.9997 0.9759 0.8601 
(2) 0.9996 0.9743 0.8573 
(3) 0.9997 0.9764 0.8615 
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The following points should be noted concerning Table 1 : 

(i) The same discretization has been used to calculate (2) and (3). This is the 
discretization given by DE VYLDER and GOOVAERTS (1988, Section 8); in 
particular the parameter fl has been taken to be 20. 

(ii) Both (2) and (3) have been calculated using the truncation proposed by DE 
VYLDER and GOOVAERTS (1988, Sections 4 and 5) with the same trunca- 
tion parameter in each case. 

(iii) The figures shown for (2) have been calculated using formula (2.3), i.e. by 
"averaging".  The figures for (3) have not been calculated using (2.3). If 
(2.3) had been used to calculate the figures for (3) the effects would have 
been an improvement in the approximation to 0~(u, t) for u > 0 (e.g. the 
approximation to 0~(10, 10) with 8 = 0.1 would have been 0.9684) but a 
much worse approximation to 0c~(0, t) (e.g. for 8 = 0.2 the approximation 
to 0~(0, 10) would have been 0.1312). 

(iv) The important difference in the calculation of the values for (2) and (3) is 
the difference in the re-scaling of the time unit, as explained above. 

(v) For all combinations of 8, u and t shown in Table 1, the approximation 
given by (3) is much closer to the exact value than is the approximatoin 
given by (2). We consider this to be a consequence of point (iv) above. 

3. A NEW APPROACH TO THE CALCULATION OF c~(u, t )  

In this section we present an approach to the calculation of 8(u, t) different to 
that of Section 2. The starting point for this approach is formula (2.2). For 

w 

H 

u-I 

u-2 

t • 

m 

m 

- - ~  t+l . . . . . . . . . . . .  t+u 

FIGURE 2. Combinat ions of  w and r for which values of  di(w, 3) are required to apply 
formula (3.2). 
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u > 1 and t > 0, we can rewrite (2.2) as 

(3.1) 6 ( u - l ,  t + l )  = ~ gi6(u-i, t) 
i = 0  

To apply this approach,  we do not need a formula corresponding to (2.1), but 
we have to consider the situation when u = I. This is considered in detail in 
Section 4. On rearranging (3.1), we see that 

(3.2) ~(u, t) = go-' [6(u- l ,  t+l) - i= ~t g'6(u-i '  t) 1 

Figure 2 illustrates the survival probabilities required in order to calculate 
6(u, t) from (3.2). By repeated application of  this approach,  we see that all 
values of  6 ( w , z )  for w = 0 , 1 , . . . , u - I  and z = t , t + l  . . . .  , t + u - w  are 
required to calculate 6(u, t). Note that all values of  6(0, r), 

= t, t + !  . . . .  , t+u, are required, but these cannot  be calculated from (3.2). 
These values are central to our algorithm and, for the moment ,  we assume that 
these values are known. A method for finding these values is considered in 
Section 4. 

Figure 3 illustrates the combinations of  w and r for which values of  6(w, z) 
are required in order to calculate 6(u, t). The algorithm starts by calculating 
6(1, t + u -  1) from 6(0, t+u) and 6(0, t+u-  1). Survival probabilities at time 
t+u-2  are then calculated, firstly 6 ( I ,  t + u - 2 ) ,  then 6(2, t + u - 2 ) .  We next 
calculate survival probabilities at time t + u - 3  and continue in this manner 
until we finally calculate survival probabilities at time t. 

Calculation of  6(u, t) by this method requires that a total of  0 . 5 u ( u + 3 )  
survival probabilities must first be calculated. What  is remarkable about  this 
number  is that it is independent of  t. This contrasts with the algorithm 
discussed in Section 2, where the number  of 6 values required to calculate 

u 

u-I 

u-2 

W 

m 

m ~ I1.. 

~'~I 1"~"." . . . . . . . .  t + u - ' l  t ; u  

FIGURE 3. Combinations of w and r for which values of ~(w, ~) are required to calculate 6 (u, t) by 
repeated application of formula (3.2). 
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6(u, t) is ( t -  1) (u+0.5  t +  I), which clearly depends on t. However, as we shall 
show in Section 4, the number of  calculations required to produce a value for 
6(0, t) does depend on t. 

A further difference between this algorithm and that of  Section 2 is that, 
using the approach of  De Vylder and Goovaerts,  the survival probabilities 
required to calculate ~(u, t) are all for time periods less than t. The new 
algorithm uses survival probabilities for time periods of  at least t. This 
difference is not important if we are only interested in calculating the survival 
probability for one particular combination of u and t. De Vylder and 
Goovaerts '  approach to calculting 6(u, t) also produces values of 6(u,j), for 
j =  1 , 2 , . . . , t - I .  Our new algorithm produces values of 6(j , t ) ,  for 
j = 0, I, . . . ,  u -  I (and the method of  De Vy[der and Goovaerts  produces all 
the figures required to calculate these survival probabilities). 

4. A FORMULA FOR 6 ( 0 ,  l )  

Let us first consider a survival probability that is slightly different to 6(u, t). 
Define 

6*(u,t) = Pr u + r -  Y~ >_ I for r = 1 , 2 , . . . , t  
i=1 

so that survival occurs only if the reserve level is strictly positive at each 
duration from 1 through to t, but the initial reserve level could be zero. When t 
is infinite, we shall write 6" (u) rather than 6* (u, oo). 

Let us consider 6* (0, t + 1), where t > 0. Since the initial reserve level is zero, 
survival under the definition of 6* can occur only if there are no claims in the 
first unit of  time. Hence 

6*(0, t+  1) = g06*(l ,  t) 
N, 

= g 0 6 ( 0 ,  t)  

We can use results given in GERaER (1980, pp. 19-22) for stochastic processes 
with exchangeable increments to find a formula for 6* (0, t), and hence 6(0, t). 
We have that 

! 

6*(0, t) = ~ P r [ Z n > 0 ,  for n = 1 , 2 , . . . , t - 1  and Z, = j l  
j= l  
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where Z ,  is as in Section 1 (with u = 0). Using the duality principle, 

P r [ Z , > 0 ,  for n = 1,2 . . . . .  t - I  and Zt =j]  

= P r [ Z , < Z t  for n = 1,2 . . . . .  t - I  and 
Zt = j] 

and since the process {Z~} is skipfree upwards, we have that 

P r [ Z n < Z ,  for n = 1,2 . . . .  , t - 1  and Z, =j]  = -  j P r [ Z t  =j]  
t 

t t + l  

Thus, 6*(0, t) = 2 'J-Pr[Zt = j ]  and 6(0, t) = g0-' E j P r [ Z t + , = j ] .  
j=l t j=l t+ 1 

I 

Define St to be aggregate claims up to time t, so that St = Z ~ , '  Let F(j,  
n = l  

= Pr [S, _< j]  and l e t f ( j ,  t) = Pr [St = j ] ,  f o r j  = 0, 1, 2 . . . . .  Since the initial 
surplus is zero, Z~+l = j ~ St+l = t+ l - j ,  so that 

t + l  

(4.1) 6(0, t) = g~-t Z J f ( t + l - j ,  t+ l )  
j = l  l - l -  1 

t 1 
(4.2) = g~l  2 F(j,  t+ 1) 

j=o l+l  

Note that since S, has a compound Poisson distribution with individual claims 
distributed on the non-negative integers, F(j,  t) can be calculated using 
PANJER'S (1981) recursion formula. 

It is interesting to note that the formula for 6" (0, t) can also be expressed in 
terms of F(j,  t) as 

(4.3) 8*(0, t) = -- F(j,  t) 
/ j = 0  

This expression is clearly analogous to the well known formula for 08(0, t) for 
the general risk process specified by (1.1), as given in, e.g., SEAL (1978, 
p. 48). 

5. SOME N U M E R I C A L  E X A M P L E S  A N D  SOME C O M M E N T S  

ON N U M E R I C A L  STABILITY 

5.1. Numerical examples using the algorithm in Sections 3 and 4 

Table 2 shows values of, and approximations to, 08(u, t) for a risk process 
with exponentially distributed individual claims and premium loading factor, 
0, equal to 0.1. The key to Table 2 is as follows: 

(1) denotes the exact value of 08(u, l), as given by SEAL (1978, Table 2.4), 
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(2) denotes  the app rox ima t ion  to 08(u, t)  calculated using the a lgor i thm 
discussed in Sections 3 and 4, i.e. using (4.2) and (3.2), with the p a r a m e t e r  
,o= 20, 

(3) denotes  the rat io of  the value in (2) to the value in (1), 

(4) as in (2) but  with fl = 10, 

(5) denotes  the ratio o f  the value in (4) to the value in (1). 

The  two sets o f  app rox ima t ions  to 0~ (u, t)  shown in Table  2, i.e. (2) and  (4), 
have been calculated using the me thod  for  discretizing the individual  c laim 
a m o u n t  dis tr ibut ion given by DE VVLDER and GOOVAERTS (1988, Section 8). 
In the fo rmer  case it is exactly the same discretization,  in the lat ter  case only 
the pa rame te r  fl is different.  

We make  the following c o m m e n t s  abou t  Table  2: 

(i) The  app rox ima t ions  to 08(u, t) are a lways larger than the correct  values. 
This  is not  surprising since we are using discrete t ime survival probabi l i t ies  
as app rox ima t ions  to cont inuous  time survival probabil i t ies.  This is the 
p rob lem that  DE VYLDER and GOOVAERTS (1988) were trying to alleviate 
by " a v e r a g i n g " .  See Section 2. 

(ii) The  relative error  in the app rox ima t ion  to 0~(u, t) for fl = 10 is consis- 
tently abou t  twice the relative er ror  for  fl = 20. We would  expect  the 
relative error  for  fl = l0 to be larger since it involves a " c o a r s e r "  
discret izat ion o f  the individual claim a m o u n t  dis t r ibut ion and also 
involves " check ing  for  su rv iva l "  less frequently.  

(iii) Where  values o f  (u, t) are given in bo th  Tab le  1 and Table  2, the 
app rox ima t ions  to 0~(u, t) given by formulae  (2.1) and  (2.2) (i.e. values (3) 
in Table  l) can be c o m p a r e d  with the app rox ima t ions  given by fo rmu-  
lae (4.2) and (3.2) with fl = 20, (i.e. values (2) in Table  2). (These values 
can reasonably  be compa red  since they use precisely the same discretiza- 
tion of  the individual claim a m o u n t  distr ibution.)  It  can be seen that  the 

TABLE 2 (See Section 5 for details) 

t = I t = 5 t = 10 t = 20 t = 40 

U = 0  

u = l  

(1) 0.5366 0.2804 0.2146 0.1682 0.1362 
(2) 0.5515 0.2921 0.2239 0.1757 0.1423 
(3) 1.0278 1.0417 1.0433 1.0446 1.0455 
(4) 0.5660 0.3036 0.2332 0.1831 0.1485 
(5) 1.0548 1.0827 1.0867 1.0886 1.0903 

(1) 0.7619 0.4881 0.3874 0.3094 0.2529 
(2) 0.7699 0.4971 0.3953 0.3160 0.2584 
(3) 1.0105 1.0184 1.0204 1.0213 1.0217 
(4) 0.7775 0.5059 0.4030 0.3224 0.2638 
(5) 1.0205 1.0365 1.0403 1.0420 1.0431 
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TABLE 2 (Sec Section 5 for details) 

t = 1 t = 5 t = 10 t = 20 t = 40 

u = 2 (1) 0.8803 0.6456 0.5309 0.4327 0.3574 
(2) 0.8844 0.6522 0.5373 0.4383 0.3623 
(3) 1.0047 1.0102 1.0121 1.0129 1.0137 
(4) 0.8883 0.6587 0.5435 0.4439 0.3670 
(5) 1.0091 1.0203 1.0237 1.0259 1.0269 

u = 3 (1) 0.9409 0.7605 0.6469 0.5388 0.4503 
(2) 0.9429 0.7652 0.6520 0.5436 0.4546 
(3) 1.0021 1.0062 1.0079 1.0089 1.0095 
(4) 0.9449 0.7698 0.6569 0.5483 0.4588 
(5) 1.0043 1.0122 1.0155 1.0176 1.0189 

u = 4 (1) 0.9712 0.8416 0.7386 0.6289 0.5325 
(2) 0.9722 0.8449 0.7425 0.6329 0.5363 
(3) 1.0010 1.0039 1.0053 1.0064 1.0071 
(4) 0.9732 0.8481 0.7464 0.6369 0.5399 
(5) 1.0021 1.0077 1.0106 1.0127 1.0139 

u = 5 (1) 0.9862 0.8973 0.8094 0.7044 0.6046 
(2) 0.9867 0.8996 0.8125 0.7078 0.6079 
(3) 1.0005 1.0026 1.0038 1.0048 1.0055 
(4) 0.9871 0.9017 0.8154 0.7110 0.6111 
(5) 1.0009 1.0049 1.0074 1.0094 1.0108 

u = 6 (1) 0.9934 0.9346 0.8631 0.7668 0.6674 
(2) 0.9937 0.9361 0.8654 0.7696 0.6703 
(3) 1.0003 1.0016 1.0027 1.0037 1.0043 
(4) 0.9939 0.9375 0.8675 0.7722 0.6730 
(5) 1.0005 1.0031 1.0051 1.0070 1.0084 

u = 7 (1) 0.9969 0.9591 0.9031 0.8179 0.7219 
(2) 0.9970 0.9600 0.9047 0.8201 0.7243 
(3) 1.0001 1.0009 1.0018 1.0027 1.0033 
(4) 0.9971 0.9609 0.9063 0.8222 0.7267 
(5) 1.0002 1.0019 1.0035 1.0053 1.0066 

u = 8 (1) 0.9986 0.9747 0.9322 0.8590 0.7687 
(2) 0.9986 0.9753 0.9334 0.8608 0.7708 
(3) 1.0000 1.0006 1.0013 1.0021 1.0027 
(4) 0.9987 0.9759 0.9346 0.8625 0.7728 
(5) 1.0001 1.0012 1.0026 1.0041 1.0053 

u = 9 (I) 0.9993 0.9846 0.9532 0.8919 0.8087 
(2) 0.9994 0.9850 0.9541 0.8933 0.8105 
(3) 1.0001 1.0004 1.0009 1.0016 1.0022 
(4) 0.9994 0.9854 0.9549 0.8947 0.8122 
(5) 1.0001 1.0008 1.0018 1.0031 1.0043 

u = 10 (I) 0.9997 0.9908 0.9681 0.9179 0.8427 
(2) 0.9997 0.9910 0.9687 0.9190 0.8442 
(3) 1.0000 1.0002 1.0006 1.0012 1.0018 
(4) 0.9997 0.9912 0.9693 0.9200 0.8456 
(5) 1.0000 1.0004 1.0012 1.0023 1.0034 
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two sets of values are identical up to the fourth significant figure and 
hence it appears as though the two algorithms are "as  accurate as each 
o ther" .  

5.2. Some comments on numerical stability 

The algorithms specified by formulae (2.1) and (2.2) and by formulae (4.2) and 
(3.2) involve a considerable number of numerical operations. In such situations 
the numerical stability of  an algorithm must be of  concern. (An algorithm is 
numerically unstable if small errors in individual numerical operations, as a 
result of  machine rounding for example, can combine to give uncontrollably 
large errors in the final results. See, for example, CONTE and DE BOOR 
(1980)). 

DE VYLDER and GOOVAERTS (1988, Section 5) demonstrate that the 
algorithm specified by formulae (2.1) and (2.2) is numerically stable. However, 
the algorithm specified by formulae (4.2) and (3.2) does not appear to be 
stable. The authors have experienced difficulties (e.g. calculated f values 
outside the range zero to one) when using formulae (4.2) and (3.2) to 
approximate off(u, t) for values of  u greater than about 30 with individual 
claim amounts having an exponential distribution (with mean 1). These 
difficulties seem to occur: 

(i) independently of the value of  t, and, 

(ii) independently of  the value of ft. 

This last observation may be a little surprising since reducing the value of  fl 
reduces the number of numerical operations required to approximate off(u, t) 
for given values of u and t. 

We can prove the following result concerning the error in the calculation of 
6(u, t) using formulae (4.2) and (3.2). Instead of 6(u, t), let us assume that 
f (u ,  t) has been calculated, due to rounding errors, and that c~(u, t) satisfies 
(3.2). We define e(u, t) to be the error in the calculation of  6(u, t), so that 

c(u, t) = f (u,  t ) - 3 ( u ,  t) 

and, for given u and t, e to be the modulus of the maximum error in the 
calculation of ,5(0, r)  for z = t, t+  1, . . . ,  t+u ,  so that 

Then we can show that 

(5.1) 
le(w, r)l _< e(2g~-I) '' 

max le(0, r)[ 
I ~ r ~ t + U  

for r = t, t+ l, . . . ,  t + u ,  
and w = 0, l, 2 . . . . .  t + u - r .  
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Proof :  The  p r o o f  is by induct ion,  work ing  back f rom t = t + u to r = t. Note  
first that  (5.1) holds for  t = t+u since the only possible value for w in this case 
is 0 and 

le(0, t + u ) l  _< e = e(2g~-t)  ° 

by definit ion o f  e. N o w  assume (5.1) holds for t = t * +  1, for some t*,  so 
tha t  

(5.2) l e ( w , r * + l ) l  _< e(2g0-t )  " for w = 0 , 1 , . . . , t + u - r * - I  

We have to show that  

(5.3) le(w, z*)l _< e(2g0-1) w for w = 0, I, . . . ,  t + u - t *  

to comple te  the induction.  We shall prove  (5.3) by induction on w. Note  that  
(5.3) holds for  w = 0 by definit ion o f  e. Suppose  (5.3) holds for w < w* for  
some w*, where  0 _< w* < t + u - t * .  F r o m  (3.2) the basic equat ion  satisfied by 
e ( w * +  1, t* )  is 

e(w*+ 1, t*)  = g ~ - I / e ( w * ,  v * +  1) - 
t 

f rom which we have  

l e (w*+  1, v*)l ~ g~-i ( l e (w* ,  r * +  !)1 - 

w ° +  I 

2 gie(w*-F I--i, t*)} 
i=l 

w * +  I 

L gi]e(w*+l-i, r*) l}  
i=1 

w * +  1 

_< gd -I {e(2g~-I)~*+e(2gd-I) 'v'} 

= e (2g0- I) w°+l 

using (5.2) and (5.3). Hence,  by induction,  (5.3) holds for w = w * + l  and 
hence, also by induct ion,  (5.1) holds for  r = t*. 

This  result is somewha t  unsat is fac tory  since it gives only an upper  bound for 
le(u, t)l ra ther  than more  detailed in format ion  abou t  how this error  behaves,  
and also because for  large values of  u it may  very well be greater  than I. Note  
that  for values o f  fl used in this paper  go is close to !. For  example,  in Table  2 
with fl = 20 the value o f  go is 0.95663, but the m a x i m u m  value o f  w is 200 so 
that  e will need to be very small indeed for the upper  bound  in (5.1) to be less 
than 1 ! 

However ,  the result does have some interesting features:  

(a) The  upper  bound  for le(u, t)l is explicitly a funct ion o f  u, not  o f  t 
(a l though e itself will be a funct ion o f  t). See r emark  (i) earlier in this 
section. 
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(b) Suppose we wish to approximate 0,~(u, t) for some given u and t using 
formulae (4.2) and (3.2). Suppose further that we do this twice using 
different values for ,8, one twice the value of the other, say ,8 and fl = 2,8. 
Then, in an obvious notation, 

go = e-:/O+°)B; g,o = e-~/20+°)B 

The value of o6(u, t) is approximated by 6(u,8, (1 +0),st)  and 
6(2u,8, 2(I +O),st) in each case and the upper bounds given by (5.1) for 
the errors will be 

le(u/3, ( l+0) ,s t ) l  _< E(2el/(l+O)B) uB 

= e 2UPe "/(t+°) 

[e(2u,8, 2(1+0),801 -< g(2e'/Z('+°)a) z"a 
= ,~ 22u~ eu/(l +o) 

so that one component of the upper bound is independent of ,8. See 
remark (ii) earlier in this section. 

5.3. A pragmatic solution to the problem of instability 

We can deal with the problem of numerical instability resulting from the use 
of formulae (4.2) and (3.2), at least superficially, by constraining the results to 
behave properly. Consider formula (4.2) first. We know that 

0 < d~(0, t+  I) _< ~(0, t) _< I 

for any t _> 0. Let 3(0, t) be the value calculated using (4.2). Rather than use 
this value in formula (3.2) we can use 6' (0, t) where 

(5.4) 6'(0, t) = min {1, max (0, min (~(0, t), d~'(0, t -  i)))} for t >_ 1 

In our numerical examples, we did not experience stability problems in the 
calculation of 6(0, t). 

We can adjust (3.2) in a similar fashion. For u >_ 1 the constraints on 6(u, t) 
are 

0 < max {~(u, t +  1), di(u-  1, t)}_< ~(u, t) < 1 

Let 6'(,) denote the (constrained) value of 6(,) actually used and, for given u 
and t, let 6(u , t )  be the "va lue"  of 6(u, t) calculated using (3.2) with 
6 ' ( u -  1, t+ 1) and 6 ' ( u -  I, t) appearing on the right hand side. Then 

(5.5) 6'(u, t )  = min {1, max (d](u, t), 6 ' (u , t+ l ) ,  6 ' ( u -  1, t))} 

(At this stage the reader could be forgiven for thinking that we are treating the 
symptoms of instability rather than the disease itself!) 

Table 3 shows values of, and approximations to, 06(u, t) for larger values of  
u and t than those in Table 2. The premium loading factor 0 is 0.1 and, as in 
our previous Tables, individual claim amounts are exponentially distributed. 
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TABLE 3 (See Section 5 for details) 

t = 50 t = 100 t = 150 

u = 0 (I) 0.1284 0.1100 0.1028 
(2) 0.1399 0.1200 0.1121 
(3) 1.0896 1.0909 1.0905 

u = I 1 (I) 0.8467 0.7724 0.7361 
(2) 0.8493 0.7753 0.7390 
(3) 1.0031 1.0038 1.0039 

u = 22 (I) 0.9844 0.9562 0.9352 
(2) 0.9847 0.9568 0.9359 
(3) 1.0003 1.0006 1.0007 

u = 33 (1) 0.9990 0.9937 0.9870 
(2) 0.9993 0.9940 0.9875 
(3) 1.0003 1.0003 1.0005 

u = 44 (I) 1.0000 0.9993 0.9979 
(2) 1.0000 1.0000 1.0000 
(3) 1.0000 1.0007 1.002 I 

u = 55 (I) 1.0000 0.9999 0.9997 
(2) 1.0000 1.0000 1.0000 
(3) 1.0000 1.0001 1.0003 

The key to Table 3 is as follows: 

(1) denotes the exact value of 0J(u, t) given by SEAL (1978, Table 2.4), 

(2) denotes the approximation 0J(u, t) calculated using formulae (4.2) and 
(3.2) together with the adjustments given by (5.4) and (5.5), 

(3) denotes the ratio (2)/(1). 

The values in (2) have been calculated using fl = 10 and the same discreti- 
zation of the individual claim amount distribution as in our previous exam- 
ples. 

We make the following comments about Table 3: 

(i) The relative errors follow the same general pattern as those in Table 2, i.e. 
increasing with t and decreasing with u, although the pattern is somewhat 
less regular than it was in Table 2. 

(ii) The magnitudes of the relative errors are consistent with those for ,8 = 10 
in Table 2; in particular, introducing the constraints given by (5.4) and 
(5.5) has not made our approximations to 0J(u, t) noticeably less accu- 
rate. 

6. A T R UNC AT ION PROCEDURE 

I n  t h e i r  p a p e r  D E  V Y L D E R  a n d  G O O V A E R T S  ( 1 9 8 8 ,  S e c t i o n  5) s h o w  h o w  t h e  

n u m b e r  o f  c a l c u l a t i o n s ,  a n d  h e n c e  t h e  a m o u n t  o f  c o m p u t e r  t i m e ,  i n v o l v e d  in  
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the calculation of 6 (u, t) using formulae (2. I) and (2.2) can be reduced in such 
a way that the resulting error is bounded. This truncation procedure requires 
the specification of a parameter which, in their numerical example, De Vylder 
and Goovaerts  take to be ½ × 10 -6. (We have used this truncation procedure 
with the same parameter value for the calculation of the values of  6(u, t) in 
Table I.) Even with the help of this truncation procedure, we have found that, 
typically for very small values of u, the algorithm specified by formulae (2.1) 
and (2.2) can sometimes take more computer time to calculate J(u, t) than the 
algorithm specified by (4.2) and (3.2). Even so, the calculation of  J(u,  t) using 
(4.2) and (3.2), and in particular the calculation of values of  6 (0, t) using (4.2), 
can require a considerable amount  of computer time. However, it is possible to 
limit the number of calculations involved in the calculation of  6 (0, t) in such a 
way that the resulting error is bounded, as we show below. 

Recall that Y,. denotes the amount of  the i-th individual claim and that bk 
denotes P[Y,. = k] for k = 0, l, 2, . . . .  We introduce the following notation: 

B(k)  = P[Yi_<k] for k = O, 1, ... 

B * " ( k ) = P [ Y t + Y 2 + . . . + Y , _ < k ]  for k = O , l  . . . .  

Suppose e, 0 < e < 1, is given. We define k0 to be the smallest integer such 
that 

B ( k 0 )  > 1 - 

y ~o The random variables { i,~}i=, are defined as follows: 

Y~,~ = Y/ if Yi_<ko 
= oo  i f  Y, > k0 

We define 

be(k) = P[Yi,~ = k] = b~ 

= 0  
oo 

: E bj for 
j = k 0 +  I 

B~.(k) = P[Yi,~ -< k] 

B~*"(k) = P[Y,,~+ Y~,~+ ... + Y,,,~. _< k] 

for 0_<k_<k0 

for k 0 < k <  oo 

k = a z  

It is an elementary exercise to show that 

(6.1) B*"(k ) -ne  < B~*"(k) < B*"(k) for k = 0, 1, 2, ... 

and n = 0, 1, 2 , . . .  

Recall that F(j ,  t) is the probability that the aggregate claims up to time t do 
not exceed j. Define F~(j, t) to be the corresponding distribution function with 
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individual claim sizes given by Y/,~, rather than Yi, and ~(0 ,  t) to be the 
appropriate survival probability for this process. Then 

(6.2) F(j, t ) -2te _< F~(j, t) < F(j, t) 

(6.3) 6(0, t ) - 2 ( t +  l)eg~ -I _< 6~(0, t) ~ 6(0, t) 

for t = 1, 2 . . . . .  a n d j  = 0, 1, 2 . . . . .  Formula (6.2) follows from (6.1) and from 
noting that 

F(j, t) ~ e -~' 
(At)" 

= - -  B * "  ( j )  

n=0 n! 

with a corresponding formula for F , ( j ,  t). Formula (6.3) follows from (6.2) 
and (4.2). 

The calculation of 6(0, t) and 6~(0, t) require the calculation of F(j, t+ I) 
and F,(j, t+ 1) respectively, f o r j  = 0, I, 2 , . . . ,  t, and these latter calculations 
are carried out using PANJER'S (1981) recursion formula. There can be a 
considerable saving of computer time in using 6~.(0, t) as an approximation to 
6(0, t) since F,(j, t+ 1) may be based on a risk process with considerably fewer 
possible values for an individual claim. 

7. CALCULATION OF INFINITE TIME SURVIVAL PROBABILITIES 

7.1. A recursive formula for the infinite time survival probability 

In this section we shall assume that the mean of an individual claim amount, 
denoted ml ,  is equal to fl, i.e. that the discretisation of the initial individual 
claim amount in Section I has been done in such a way as to preserve the value 
of  the mean claim amount. This condition is satisfied by the discretisation used 
in all the numerical examples in this paper. See DE VYLDER and GOOVAERTS 
(1988, Section 7). 

The rationale underlying (2.2) can also be applied to infinite time giving 

(7.1) 6 ( u - l )  = ~ gig(u-i) ,  where 6 ( u ) =  lim ~(u,t) 
i=0 t~o0 

This is simply the infinite time version of (3.1), which can be rearranged to 
give 

(7.2) O ( u ) = g ° ' I 6 ( u - l ) - ~ g i 6 ( u - i )  

We could apply formula (3.2) if we could calculate values of 3(0, t). We can 
apply (7.2) if we can calculate the value of 6(0). To do this, we consider the 
limit as t --* oo of  formula (4.2), using ideas given in GERBER (1979, p. 113). 
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We have that 

go6(0, t) - 

I 

1 E F(j, e+ 1) 
t + l  j=0 

1 

1 E [1 - (1  - F(y, t+ 1))] 
t + l  j=o 

- ~  l m - -  

t 

1 E [ I - F ( j ,  t+ 1)] 
t + l  j=o 

(7.3) = 1 - - -  [ 1 - F ( j , t + l ) ]  + - -  [ 1 - F ( j , t + l ) ]  
l "~"  [ j = 0  l " { -  | j = t + l  

The summation in the second term on the right hand side of  (7.3) is just the 
mean of the distribution of St+ 1 • As St÷ 1 has a compound Poisson distribution 
with Poisson parameter ( t+  1)/[(1 +0 )ml ] ,  this term reduces to 1/(1 +0).  

Hence, 

0 
(7.4) g0d~(0, t) - + -  [ 1 - F ( j ,  t+  1)] 

1 + 0  t + l  j=t+l 

Finally, consider l - F ( j , t + l )  = Pr[St+t  > _ j + l ] .  Now St+l has mean 
( t+  1)/(1+0) and variance ( t+  I)m2/[(l +0)ml ] .  We can apply Chebychev's 
inequality as follows: 

[ - ;+-;l t + l  > j + l -  
Pr (St+, > _ j + l )  = Pr St+ l l~b l"l-OJ 

< Pr II '+'l t+'l $i+ I - - -  > _ j + l  - 
1+0  l;?J 

V(S ,  + t) 

t+  1 )2 
j + l  - - -  

i + 0  

,+,)2 
Then, [ 1 - F ( j ,  t +  l)] < V(St+1) j +  1 - - -  

j f t+l  j=l+t 1 + 0  
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Consider the sum 

I 1 
S -  + 

(t + 2 - 00 z 

1 
< 

( t + 2 - 0 0  ( t+  1 - 0 0  

( l , 
t + l - 0 c  t + 2 - 0 c  

1 I + 0  

1 + 

Hence, - -  

(t + 3 - 0~) 2 (l + 4 -- 002 

I 
+ 

(t + 3-~x) (t + 2 - ~ )  

t + 2 - c ~  t + 3 - ~  

t+ 1 - ~  O(t+ 1) 

[I - F ( j ,  t+ I)] _ < - -  
1 

v ( S , + O  - -  

t + l  t+ 1 j=t+l 

+ ... where0~ = ( t + l ) / ( l + 0 )  

+ ... provided that 0 > 0 

- - ) + . - .  

1 + 0  1 m 2 

O(t+ 1) t +  1 0 m l  

so that god(O, t) <_ - -  
0 l m 2 + 

1 + 0  t +  I Om~ 

Finally, as god(0, t) >_ - -  
0 

l + 0  
by (7.4), we see that by letting t ~ c~ we have 

0 
(7.5) 6(0) - 

go(I +0)  

Again it is interesting to compare  results for our discrete time process with 
those for the general risk process as specified by (I . I ) .  We note that 
6*(0) = 0/(1 +0),  which is the same as the ultimate survival probability in 
continuous time from initial reserve 0 in the general risk process. 

Formulae (7.1) and (7.5) correspond to equations (33) and (37) in a paper by 
DUFRESNE (1988), but he does not consider their numerical application. An 
earlier reference, also given by Dufresne, is GIEZENDANNER, STRAUB and 
WETTENSCHWILER (1972). An alternative method of  finding 6(0) which does 
not require equation (4.2) is given in his paper. 

We can now apply (7.1) in a recursive manner  to calculate survival 
probabilities starting from 

6(1) = g o ~ ( l - g 0  6(0) 

We can use calculated values of  d(flu) to approximate  to 

od(U) = lim od(U, t). 
I ~ O 0  
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7.2. A numerical illustration 

Table 4 shows values of, and approximations to, 0~(u). As in Tables 2 and 3, 
individual claims are exponentially distributed and the loading factor, 0, equals 
0.1. The discretization of the exponential distribution is as before. The key to 
Table 4 is as follows: 

(1) denotes the exact value of 06(u) (see, e.g., SEAL (1978, p. 60)), 

(2) denotes the approximation to o6(U) calculated using formulae (7.2) and 
(7.5), with fl = 20, 

(3) denotes the ratio of the value in (2) to the value in (1), 

(4) is as (2), but with fl = 40, 

(5) denotes the ratio of the value in (4) to the value in (1), 

(6) is as (2), but with fl = 100, 

(7) denotes the ratio of the value in (6) to the value in (I). 

We make the following comments about Table 4: 

(i) The pattern of results is similar to that in Table 2. The approximate values 
are always greater than the exact values, and as the value of,fl increases, 
the relative error in the approximation decreases. 

(ii) The authors experienced problems in calculating values of ~(u, t) for 
values of u greater than about 30. There were no such problems in 
calculating values of 6 (40) and 6 (80). However, for larger values of u, the 
same numerical problems as in Section 5.2 exist. 

7.3. Numerical stability 

As in Section 5.3, we can adopt a pragmatic approach and constrain the 
calculated values of 6(u) to behave properly. The calculation of 3(0) does not 
pose any problems. For u>_ 1, we constrain the function 6(u) to be such 
that 

0 _< ,~(u- l) _< ei(u) < I 

TABLE 4 (See Section 7 for details) 

u (I) (2) (3) (4) (5) (6) (7) 

0 0.0909 0.0950 1.0451 0.0930 1.0231 0.0917 1.0088 
2 0.2420 0.2454 1.0140 0.2438 1.0074 0.2427 1.0029 
4 0.3681 0.3709 1.0076 0.3695 1.0038 0.3686 1.0014 
6 0.4731 0.4754 1.0049 0.4743 1.0025 0.4736 1.0010 
8 0.5607 0.5626 1.0034 0.5617 1.0018 0.5611 1.0007 

10 0.6337 0.6353 1.0025 0.6346 1.0014 0.6341 1.0006 
20 0.8524 0.8531 1.0008 0.8528 1.0005 0.8526 1.0002 
40 0.9760 0.9761 1.0001 0.9761 1.0001 0.9761 1.0001 
80 0.9994 0.9994 1.0000 0.9994 1.0000 0.9994 1.0000 
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Letf l ' (u )  denote the constrained value of 6(u) actually used and, for given u, 
let 6(u) be the " v a l u e "  of 6(u) calculated using (7.2) with 6' appearing on the 
right hand side. Then 

(7.6) 6'(u) -- min {1, max (6 ' (u - l ) ,  6(u))} 

We can calculate approximate values of o6(U) using formulae (7.2) and (7.5), 
together with the adjustment given by (7.6). We have not produced a table of 
results because the exact and approximate values (with fl = 20 and with 
fl = 40) are both l to four decimal places for u >_ II0. 

8. SOME COMMENTS ON THE DEFINITION OF SURVIVAL 

Our aim in this paper has been to show how to approximate the continuous 
time probability of survival 06(u, t) by the discrete time probability of survival 
6(ufl,(l+O)flt). Formulae (4.2) and (3.2) are exact for 6(ufl,(l+O)flt). 
However, if we regard the latter as an approximation to 06(u, t) we find that, 
being a discrete time approximation to a continuous time probability of 
survival, it will tend to overstate 06(u, t), as noted in comment (i) in Section 
5.1. 

If, in addition, the claim amounts have a continuous distribution, as is the 
case in all the numerical examples considered in this paper, there is a further 
reason why 6 (ufl, (1 +O)flt) may overstate the value of 06 (u, t). This is that for 
survival to occur according to the former, the surplus need only stay above the 
value - 1  (but could be zero at any time), whereas for survival to occur 
according to the latter, the surplus must never go below zero, no matter by 
how little. 

For the risk process characterized by (1.2) we defined in Section 4 the 
survival probability 6* (u, t) for u _> 0 and 1 _< t _< oo as follows: 

6*(u, t) = Pr u + z -  Yi >- 1 for z = 1,2 . . . .  , t  
i=l 

This differs from 6(u, t) in that for survival it requires the surplus to be strictly 
greater than zero after time zero. For finite t, 6* (0, t) can be calculated from 
formula (4.3). For t equal to infinity, 6" (0) is equal to 0/(1 +0), as explained in 
Section 7. For u greater than zero it is clear that: 

fi*(u, t) = 6 ( u -  1, t) 

It could be argued, for the reason given in the second paragraph in this section, 
that 6* (ufl, (1 +O)flt) is a more logical approximation than 6(ufl, (1 +O)flt) to 
06 (u, t), although, depending to some extent on the discretization of the claim 
amount distribution, it may tend to understate o6(U, t). 

Table 5 shows the results of approximating 06 (u, t) by 6* (ufl, (I +O)flt) for 
the risk process with exponentially distributed individual claims, premium 
loading factor equal to 0.1 and parameter fl equal to 20. The key to Table 5 is 
as follows : 
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TABLE 5 (See Section 8 for details) 
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t = 10 t = 20 t = 40 t = oo 

u = 0 (1) 0.2146 0.1682 0.1362 0.0909 
(2) 0.2146 0.1682 0.1362 0.0909 
(3) 1.0000 1.0000 . 1.0000 1.0000 

u = 5 (1) 0.8094 0.7044 0.6046 0.4230 
(2) 0.8094 0.7043 0.6045 0.4229 
(3) 1.0000 0.9999 0.9998 0.9998 

u = 10 (1) 0.9681 0.9179 0.8427 0.6337 
(2) 0.9681 0.9178 0.8426 0.6337 
(3) 1.0000 0.9999 0.9999 1.0000 

(1) denotes  the exact  value  o f  0~(u, t)  as given by SEAL (1978); 

(2) deno tes  the value o f  ~*(ufl, ( l + O ) f l t )  ca lcu la ted  using the me thods  o f  
Sect ion 4 (u = 0 and t < ~ ) ,  o f  Sect ions 3 and  4 (u > 0 and t < ~ )  o r  o f  
Sect ion 7 (t -- or)  as a p p r o p r i a t e ;  

(3) denotes  the ra t io  (2)/(1). 

The  a p p r o x i m a t i o n s  to 0 ~ ( u , t )  in Table  5 can be c o m p a r e d  with the 
a p p r o x i m a t i o n s  (for fl = 20) in Tables  2 and 4. It can be seen tha t  the 
a p p r o x i m a t i o n s  in Table  5 are  very much bet ter  than those in Tab les  2 and 4. 
One exp lana t ion  for this m a y  be that  two " e r r o r s "  in the a p p r o x i m a t i o n  o f  

0di(u, t )  by ~*(ufl, (l +O)f l t ) ,  i.e. 

(a) unders ta t ing  0~(u, t )  by redef in ing surv iva l / ru in ,  and  

(b) overs ta t ing  0~(u, t)  by using a discrete  t ime a p p r o x i m a t i o n  to a cont in-  
uous  t ime survival  p robab l i ty ,  

are work ing  in oppos i t e  d i rec t ions  and cancel l ing each o the r  out.  

/ 
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