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A B S T R A C T  

GOOVAERTS and DE VYLDER (1983) provided a stable recurswe algorithm for 
calculating the probablhty of  ultimate rum. Their algorithm yielded bounds for 
this probabdlty It is shown that in practice their method may be inherently 
unstable because it is based on the subtraction of nearly equal numbers. An 
alternative to this type of  subtraction IS provided. It is proved that their 
algorithm converges only at a linear rate to the true value. It is suggested that 
this slow rate of  convergence be improved vm an apphcatlon of  the Richardson 
extrapolatmn technique. 
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1. I N T R O D U C T I O N  

When clmms follow a compound Polsson process with rate 2 and premmms are 
paid continuously at rate c, GERBER (1979, p. 115, equation (3 7)) proved that 
the infimte time probabdlty of  rum for an mmal  risk reserve of  u, ~u(u), 
satisfied the following Volterra integral equation of  the second kind 

(1) ~u(u) = - ( l - F ( y ) )  dy + - ~ ( u - y )  ( 1 - F ( y ) )  dy, 
C u C 0 

where c = 2p~(l +0)  is the premium rate, p. Is the expected claim size, 0 > 0 is 
the loading and F(x) is the cumulative dlsmbut lon function (cdf) of  the claim 
size random variable. F(x)  is assumed to be completely known 

Techniques for numerically solving equation (1) are contained in several 
texts including BAKER (1977), DELVES and MOHAMED (1985), and BRUNNER 
and VAN DER HOUWEN (1986). However  they do not provide methods for 
obtaining tight bounds on the true solution ~ (u )  

GOOVAERTS and DE VYLDER (1983) developed a recurslve algorithm for 
approximating ~ (u) and for providing bounds on their approximations Their 
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method  can be summar ized  as fol lows (with a change  in n o t a t i o n ) '  let 

(2) K ( s )  = f ~  ( - F ( y ) )  dy, ~ >_ O. 
d P l  

Here  K(s)  has been s t anda rd ized  to ensure  that  K(0)  = I F o r  fixed u, the step 
size h and the number  o f  s teps n are  def ined to satisfy nh = u. The  bounds  o f  
qJ(u) are  then ca lcu la ted  recurslvely as fo l lows,  f o r j  = 0, I, 2 . . . .  n 

/// 
h = 

n 

I 
(3)  ~ ( o )  - 

1 + 0  

F ^ I K( jh)  
(4) ~,, ( jh )  (I  + 0) , : ,  

[K(jh)-X/_ I' ~l((J-l)h) zlK(,h)] 
(5) ~ll(Jh ) = 

[1 +O+AK(O)] 

where  ~/,,(x) and ~ / ( x )  are  the upper  and lower b o u n d s  respectively on the 
true value o f  ~u (x) ,  x > 0, and  A is the well known forward  difference o p e r a t o r  
def ined with respect to s tep s i z e  h, l e ,  for any  real valued funct ion g(y ) ,  

~, , ( ( j - t )h )  A K ( O - 1 ) h ) ]  

Ag(y )  = g ( y + h ) - g ( y ) .  

The resul t ing a p p r o x I m a t i o n  to ty (u) is 

1 
(6) ~ ( u )  ~ - [~,, ,(nh)+ ~,(nh)]  

2 

with an upper  b o u n d  on the e r ror  given by 

I ~ ( u ) - ~ , ( u ) l  _< ~,,(n/,)-~,,(,,/,). 

For fixed h and u, Goovaerts and de Vylder proved that there is no 
cumulative effect of the propagation of errors m equations (4) and (5). In 
particular, if e, is the absolute value of the error m ~0h),  t = 1, 2, 3, . , j -  1, 
then the absolute error m ~ ( / h )  is Ej satmfylng 

--< Max {el , e2, ,q -K} 

Since this IS true for j = 2, 3, . . . ,  then 

ej < e I j = 1,2, , n .  

The  classic reference on the analysis  o f  the p r o p a g a t i o n  o f  er rors  in a series o f  
ca lcu la t ions  is WILKINSON (1963). 
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The obJective of this paper is to improve the practical implementation of 
equations (4) and (5) so as to reduced the sequence of  errors {ej} Numerical 
results are gwen for the Pareto d~stnbutlon. 

In the sequel, it will always be assumed that F (x)  ~s dffferentmble and yields 
the probabdlty distribution function (pdf) f ( y )  For most of  the distributions 
used by actuaries, the p d f / ( x )  is mfimtely dlfferentmble except, perhaps, at a 
countable numbcr of  points. 

2, MAIN RESULTS 

2.1.  Rounding  errors  

Goovaerts  and de Vylder's strategy for approxm~atmg ~u(u) was to use 
equations (4) and (5) for successively smaller values of h 0 .e ,  larger values of 
n), stopping when they obtained agreement to some desired degree of  accuracy 
RALSTON and RABINOWlTZ (1978, chapter 4 2, p 93) pointed out that, when 
using floating arithmeuc, this procedure is fraught with danger since rounding 
errors wdl eventually dominate the calculations. This is because, as h --~ 0, the 
difference between g((l-- 1)h) and K(lh) tends to the difference of two nearly 
equal numbers, and thus contains fewer and fewer slgmficant digits They 
recommended that h should not be too small and that the Richardson 
extrapolation techmque be used to improve the accuracy of the approxima- 
tions 

To reduce the loss of  significant digits, one must avoid subtractions, 
especially subtracting nearly equal terms. For some distributions, ~t is possible 
to calculate th~s difference "exac t ly"  For example, m the Pareto case where 
F(x)  = 1 - 1/(1 + x )  2 and K(x) = 1/(I + x ) ,  it is better to calculate AK(ih) as 
- h / [ ( l  +dO (I + ( i +  1)tl)] rather than as [1/(1 + ( i +  1 ) h ) ] - [ I / ( l  +th)] 

Unfortunately, there are &strlbuuons where neither F(x)  nor K(x)  can be 
obtained exactly m closed form. However, for most of  these distribuuons, f ( y )  
can be calculated "exac t ly" .  In such cases AK(x)  must be evaluated very 
carefully because both K(x)  and F (x )  may be known only to small number of 
decimal places or slgmficant. When h is small, ~t ~s better to compute AK(x)  as 
follows' 

l ~'+/ '  
AK(x)  = - - ( 1 - F ( y ) ) d y  

191 ~, .~. 

1 (7) = - h - F(y )  dy 
Pl ,,~ 

'I f+' 1 (8) = - - h - ( ( x + h )  F ( x + h ) - x F ( x ) )  + ) f ( y ) d y  
Pl ,~ ~ 

The integral terms m equations (7) and (8) may have to be evaluated 
numerically using a composite Gauss-Lcgcndre or a composite Newton-Cotes 
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quadrature  formula. These formulas do not revolve subtractions see Ralston 
and Rabmowltz  (chapter 4 ) - -and  as such may result in the loss of  at most 1 or 
2 slgmficant digits. 

Equahon (8) is recommend over equation (7) because (8) reqmres fewer 
(only 2) evaluations of  F ( r )  hence should require less time to calculate AK(x)  
Since f ( y )  can be obtained exactly, F(x)  should be calculated to a large 
number of  significant &glts. This will ensure that AxF(x)  = 
(x + h) F(x + h ) -  xF(x )  can be evaluated accurately. Note A vF(v)  represents 
the subtraction of nearly equal terms and, ff not evaluated carefully, may result 
m a significant loss of  slgmficant digits The integral term m equation (8) can 
be obtained to any prachcal degree of accuracy. 

2.2.  Truncated  error 

An important  aspect in the development of  equations (4) and (5) is Goovaer ts  
and de Vylder's &scretlzatlon of  their integrals. This reqmres lmphclt use of the 
following composite quadrature rule 

J 

(9) ~ ( x j - s ) d K ( s )  = Z ~ u ( ( j - t ) h ) A K ( ( t - l ) h )  
0 t = l  

where h = u/n and .% = jh. Unfortunately this rule yields exact results 1% and 
only if, K(x)  is a constant or a step function with &scontmumes at h, 2h . . . .  lh. 
It ~s therefore not as accurate as more t radmonal  rules such as the composite 
trapezoid of Simpson's  rules. However ~t does prowde upper and lower bounds 
on ~ (x). 

It is well known that the trapezoid rule has a truncahon error of  O (h 2) while 
the Simpson's  rule has an error of  O(h 4) What  is the order of  the error m 
equahon (9)? It will be proved that the error m equation (9) is O(h) To 
estabhsh this result one needs the Euler-Maclaurm Summahon Formula 
(Ralston and Rabmowltz,  page 138): 

Result 1 (Euler-Maclaurin). l f  g ( x )  has denvatwes of order 2 ;77 + 2, then for r a 
posittve integer and h > 0, 

I) o + rl1 
(10) h g(yo+th)  = g ( s ) d s  + 

t=O YO 

+ ~ B2kh2k 

k-I (2k) w 

where g{')(s) Is the t-th derlvatwe of g(s), 

rh 2 ,,, + 2 E,,, = 82,,,_+ 2 g(2,,+ 2) (~), 
(2 m + 2) ' 

h 
[g(Yo +rh) - g (Y0)] 

2 

[g(2k- I) ( Yo + rh) -  g(2k- I)(Y0)] + E,,, 

Yo < ~ < Yo + rh 
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and the B~'s are  Bernoulh numbers ,  i.e., 

l ~ I k 
--- Bk 

e t -  1 ~=l k!  

Theorem I. Assume 

( I )  the p d f f ( y )  is bounded  by M, 

(2) x > 0 is fixed, and  

(3) r is a posmve  integer such that  x = rh. 

As h ~ 0, the t runca t ion  e r ror  E, defined by 

(l l) E = ~ ( ( t - -  , ) / , )  ,~K( ( , -  I)/,) - 
I ~ ]  0 

~ ( x - s )  d K ( Q ,  

is o f  o rde r  h, i e ,  E = O(h) .  

P roo f :  Using equa t ion  (10), let v 0 = 0 and replace rh by x. Since x is held to be 
cons tan t ,  equa t ion  (10) can be rea r ranged  to give 

(12) h g(th)  - g ( s )  ds = aoh + a?kh21"+a2,,,+lh 2'"+1 
: = 1  0 /,-I 

where the ak 's  are constants depending on the Bk'S , the gIk)(X)'S and the 
g(k)(0)'S Note the summation on the left starts from t = I. The final term m 
equation (12) Is h 2"'+~ rather than h 2'''~2 because m the Em term (in 
equation (10)) rh = x, a constant. 

Assume g(~), given by 

g ( s )  = ~ ( x - s )  K(i ) (s ) ,  

is at  least twice dffferenUable,  ~.e., m >_ 0 Since K(s )  must  be at  least twice 
dffferentmble,  then 

h 2 
z l K ( ( t - I ) h )  = h K ( ' ) ( , h )  - - -  K(2)(~,) 

2 

where ( t - I ) h < ~ , < t h  So equation ( I I )  imphes 

E = ~ , ( ( r -  t )h )  J X ( 0 -  I )h)  - ~ , ( x - s )  aK(s)  
t=l 0 

± I' = h ~ ( x - d 0  K(I)(ih) - ~ ( . v - s )  K(t)(s)  ds - 
l ~ l  0 

(l  3) -- 22 q / ( ( r -  t) It) X (2) (~,) 
t - - I  

]12 ~-~ ~ h 2k h 2m+. 
(14) = -- T ~ff((r--l)h) K(Z)(~,)+ao h + a2k +(/2m+l 
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Since f ( s ) I s  bounded by M, K(2)(~)=J(s) /p l  and 0 < ~u(s)< 1, it follows 
that 

h 2 + h2rM x h M  
ql(X-lh) K (2 ) (~ , )  < = = O ( h )  

2 ,=l 2pl 2pl 

It follows that, for m > 0, the terms on the right hand side of  equation (13) 
yield 

E = 0 (h) + ao h + 0 (h 2) + 0 (112''' + i) = 0 (17). 

Q.E.D. 

This suggests that for fixed u, as h --* 0 (or ;1 ~ oo), the approxmaaUon in 
equation (6) may converge slowly (O(h)) to the true value ~(u) .  This means 
that one must use very small values of  h (very large values of  n) or find a way 
to accelerate this slow rate of  convergence. However, from Section 2 I above, 
the use very small values of  h was not recommended and mt was suggested that 
an acceleration technique be used This approach will now be investigated. 

2.3. Accelerating convergence 

Assume that as h ~ 0, the error E, m equations (11) and (14), can be written as 

5t3 

E =  fll °)h + 2 fl~0)h k 
/.=2 

where the constants B~ °), k = 1, 2 . . . .  need not be known. One can use the 
Richardson extrapolation techmque (Ralston and Rabmowltz,  page 94) to 
accelerate the convergence of  the sequence of approxm3atlons {~(x,  i)} where 
~ (x ;  z) is calculated using a step-size h, = x/n,. The true value ~ (x )  is given by 

(15) ~ ( x )  = ~;(x;t)+fll°)h, + ~ fl~°)h~. 
1~=2 

I f  ~ ( x ,  ;) is calculated for two step razes h~ and t72, with t72 = phi,  
0 < p < 1, then fl¢o °) can be ehminated from equanon (15) to g~ve 

/?(I) i,A ~ ( x )  = ; ( x ;  l, 2) + ;,~ ',l 
k=2 

(16) 

where 

~ ( x ,  2 ) - p ~ ( x ,  1) 
t ,  2 )  = 

I - p  
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and t h e  fl~l) are constants depending on fl~0) and p. Thus the new approxmaa- 
n o n . s ~ ( x ,  1,2) whlch has an error of  order h~ I fone  wanted to ehmmate the 
h~ term m (16) then use ~ ( x ,  1, 2) and b ( x ,  2, 3) '  

where 

~ ( x )  = ~ ( x ,  1 ,2 ,3)  + ~ [~2'h~ 
/ ,=3 

(x, 2, 3 ) - p 2 ~ ( x ;  1, 2) 
( x , l , 2 , 3 )  = 

I _ / )2  

The error is now of order h~ 
ThIs process can be repeatedly apphed as follows: following the notation of 

Ralston and Rabmowltz,  let ~ ( x ;  t) be denoted by T6, ~ = I, 2, A lower 
triangular matnc  of approximations T' r can be generated as fo l lows  for 
r =  1 ,2 ,3  . . . . .  

T t + I  __pr t ,./-.I + I t 
(17) T'+l-r = --r-I Tr-I  _ ~-IT'+l + - -~ - t - -T~- i  

I - - y  p - r _  1 

where h,÷~ = ph, and p < 1. If  the stcp sizes do not decrease uniformly, then 
simply replace p~ by h,+r/h,. The element T[-~ is actually the approximation 
~ ( x ;  I, 2 . .  r) ;  It appears m the lower right hand corner of  the matrix. 

Th~s procedure can be apphed to both the upper and lower bounds 
approxmaatlons The final approxnnanon to ~ ( x )  wdl be 

1 
(18) ~ ( x )  ~ [~,,(x, 1,2, , r ) + ~ l ( x ,  1,2, . , r ) ]  

2 

where the subscripts u and / refer to upper and lower bounds respectively 

Warning 1. It may not always be the case that the extrapolation procedure Tit 
wdl retain the upper and lower bound properues, i e., 

~ / (x ,  1,2 . . . .  r) _< N(x)  _< ~,,(x, I, 2, .. , r) 

may be v~olated 

3.  N U M E R I C A L  R E S U L T S  

Using the Pareto distribution used by Goovaer ts  and de Vylder, rum probabdl-  
nes are approximated for 0 = 0.2 and u = I0, 50 and 100 as follows" 

I using double preclsmn arithmetic; 

2. using 5 step sizes. /1 = 2-/` k = 1 2 5 
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3. carefully evaluat ing  the difference K ( ( l - I ) h ) - K ( l h )  according to equa-  
txon (8), 

4 calculat ing ~ , ( u )  and ~ t (u )  according to equat ions  (4) and (5), 

5. accelerating the convergence of  the upper  and lower bounds  sequences 
using equa t ion  (17); then 

6. calculat ing the final estimates using equa t ion  (18). 

The procedure out l ined above will now be used to calculate the probabi l i ty  
of  ruin for the Pareto 

f ( x )  = 1 - ( 1  + x )  -2 

taken from Goovaer t s  and de Vylder. These results are conta ined  m Tables 1 to 
3. The ext rapola t ion  procedure vastly improves the accuracy of the lnmal  
approx imat ions  gwen by the T~'s. F rom the final results shown m Table  3, it is 
clear that the est imate ~ ( u )  is accurate to at least 7 decimal places In fact, 
even if one had used only the first three rows (i.e., h = 0.5, 0.25, 0.125) for the 
ext rapola t ion  procedure,  the result ing approx imat ion  based on Tz 3 would be 
accurate to at least 4 decimal places This ~s more accurate than T05 and 
requires less computatJons~ Note that in Tables  1 an 2, T05 ~s accurate to 2 or 3 
decimal places. 

Final ly,  for u = 10.0, the lower bounds  provided by Goovaer ts  and de 
Vylder do not  agree w~th mine. I c anno t  explain this difference. 

T A B L E  1 

RICHARDSON'S EXTRAPOI.ATION OF LOWFR BOUNDS, 0 = 0 20 

u ?1 

10 0 20 
10 0 40 
10 0 80 
I0 0 160 
10 0 320 

50 0 I00 
50 0 200 
50 0 400 
50 0 800 
50 0 1600 

100 0 200 
I oo 0 400 
100 0 800 
I oo 0 1600 
100 0 3200 

I 0 41761640 
2 0 42596352 0 43431064 
3 0 43042938 0 43489525 0 43509011 
4 0 43273608 0 43504277 0 43509194 0 43509221 
5 0 43390772 0 43507937 0 43509157 0 43509152 

1 0 13805696 
2 0 14079460 0 14353224 
3 0 14228559 0 14377659 0 14385804 
4 0 14306363 0 14384166 0 14386335 0 14386411 
5 0 14346099 0 14385835 0 14386391 0 14386399 

I 0 06716234 
2 0 06809997 0 06903759 
3 0 06861110 0 06912223 0 06915045 
4 0 06887802 0 06914494 0 06915250 0 06915280 
5 0 06901440 0 06915078 0 06915273 0 06915277 

0 43509148 

0 14386398 

0 06915276 
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TABLE 2 

RICIIARDSON S EXTRAPOLATION OF UPPER BOUNDS, 0 = 0 20 

II It 

10 0 20 
10 0 40 
10 0 80 
10 0 160 
10 0 320 

50 0 100 
50 0 200 
50 0 400 
50 0 800 
50 0 1600 

100 0 200 
100 0 400 
I O0 0 800 
100 0 1600 
100 0 3200 

t ~ , (u)  = T~ T] r~ T~ T~ 

I 0 45552952 
2 044497968 0 43442983 
3 0 43994494 0 43491021 0 43507033 
4 0 43749479 0 43504464 0 43508945 0 43509219 
5 0 43628720 0 43507961 0 43509126 0 43509152 

I 0 15110109 
2 0 14729514 0 14348918 
3 0 14553310 0 14377106 0 14386501 
4 0 14468703 0 14384096 0 14386427 0 14386416 
5 0 14427264 0 14385826 0 14386402 0 14386399 

I 0 07164847 
2 0 07033307 0 06901767 
3 0 06972639 0 06911970 0 06915371 
4 0 06943550 0 06914462 0 06915293 0 06915281 
5 0 06929312 0 06915074 0 06915279 0 06915277 

0 43509148 

0 14386398 

0 06915276 

TABLE 3 

FINAL APPROXIMATION, 0 = 0 20 

,, ~,(,,) = T) ~,,(u) = T~ ~(u)  

l0 0 0 43509J48 0 43509~48 0 43509~48 
500 0 14386398 0 14386398 0 14386398 

1000 0 06915276 0 06915276 0 06915276 
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