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ABSTRACT

In this paper, we will cover the bonus-malus system 1n automobile insurance.
Bonus-malus systems are based on the distribution of the number of car
accidents Therefore, the modelling and fitting of that distribution are consid-
ered. Fitting of data 1s done using the Poisson inverse Gaussian distribution,
which shows a good fit Building the bonus system 1s done by minimizing the
insurer’s risk, according to LEMAIRE’s (1985) bonus system.
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As LEMAIRE (1976) put 1t, bonus-malus systems are based on the random
variable number of claim N (frequency), irrespective of their amount To begin
with, we must adapt a Poisson process which 1s not homogeneous The
heterogeneity aspect is introduced by mixing the Poisson distribution The
parameter A tn the Poisson distribution is considered a random variable. A
similar contention is made by BeEssoN and PARTRAT (1992).

Let us assume that the expected frequency of claims varies within the
portfolio. Let us further assume that any particular risk 1n the portfolio has a
Poisson distribution of claim frequencies with mean A, where A is itself a
random vanable with distribution representing the expected risks inherent 1n
the given portfolio The distribution function of 4 1s given by U(A4) and the
unconditional distribution of claim frequencies of an individual drawn from the
portfolio 1s mixed Poisson. N has a Poisson distribution with probability
function

n

A
S =e" — n=012,..
n!

with
E(N) = E(A) Var (N) = Var (A)+ E(A)

It 1s obvious that mixed Poisson vanates have a varnance exceeding the mean
(unhike the Poisson where mean and variance are equal) This state of fact,
which 1s usually the case 1n practical situations, 1s normally desirable from the
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msurer’s standpoint 1n that mixed distribution can be thought of as being
“safer” than the original Poisson.

One interesting distribution for A 1s the inverse Gaussian. It has thick tails
and 1t also provides the advantage of having closed form expression for the
moment generating function It is a reasonable distribution for modeling in
many surance situattons. The probability density function of an inverse
Gaussian distribution 1s,

) A% a0
= _ e 2B , >
2 i

The distribution function 1s,

(A—u) o C=(A+w
m)=¢{ - }ww{ A } 250
N Jb

where @ () 1s the standard Normal (with mean 0 and variance 1) distribution
function.
The mean and vanance are

E(A) = pu  Var(4) = uf

The Poisson mixed over the inverse Gaussian 1s thus obtained and called the
Poisson inverse Gaussian, One can obtain the probabilities from the probabil-
ity generating function which is

- 2p(1 -z
PGy = 5" J1+2p0-2)]

The mean and variance are thus obtained,
E(N)=p
Var (N) = u(1+p)

The Poisson inverse Gaussian has two parameters.

Regarding the particular case of hability polictes (private cars) which have
had & claims, we shall use the results found by PANJER and WILLMOT (1987).
BUHLMANN (1970) published the data that had been gathered in Switzerland 1n
1961 (see Table 1.1).

We will use the maximum hikelihood estimator to estimate a parameter
6 =(0,,0,,...,0,) from our set of independent and identically distributed
data (X,, X, ..., X,) with probability function p,(6).

According to PANJER and WiLLMOT (1987), the likelihood function 1s

L@ =[] tpco0™
k=0
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TABLE 1 |
CLAIM FrREQUENCY DATA

Number of claims Number of
per policy policics \}lel::s
(k) {n)
¢ 103,704 103,710 03
1 14,075 14,054 65
2 1,766 1,784 65
3 255 254 49
4 45 40 42
5 6 694
6 2 126
Total 119,853 119,852 44

The log-likelihood 1s defined to be
10) = log L(O) = Y. Ny-log pi(0)
k=0

where N, = {number of X/s for which X, =k}, £ =0,1,2,... are the
observed frequencies. The maximum likelihood estimator 15 the random
variable 0 for which the hkelihood (or equivalently the log likelihood) 1s a
maximum

The values of the maximum hikelihood estimator of ¢ and f are ft = 0,15514
and f = 0.15527. Then, muluplying the probabilities by 119,853 yields the
fitted values of Table I.1.

The value of ¥ 1s 0.15514 and 5% 15 0 24174,

The goodness of fit statistic D Chi-squared distributed with (k —r—/) degrees
of freedom (k intervals and r parameters) defined as

D = 5 (ﬂ_,nff‘i
1=0 np,

the value of which 1s 0.78 on 3 degrees of freedom, yielding a significance level
of 85 %, which 1s good This 1s a better fit than the Poisson-Gamma model, as
one can compare with BICHSEL’s (1964) results calculated on the same set of
data.

We have now a frequency distribution, the Poisson inverse Gaussian, that i1s
fitted to our data. We can now build our bonus-malus system in the same
manner than LEMAIRE (1985) did We will minimize the average total risk of
the nsurer, since the mnsurer 1s at nisk. Let us consider an insured observed
during ¢ years and let us call n, the number of accidents in fault reported during
the jth year For ¢ach insured, we have the information vector (n;, ,n).
Each n, 1s a realization of the random varable N,, for which we assumed
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independent and 1dentical distributions. For each observation set n,, ..., n, we
have to relate a number 4,,,(n,, ..., n,), which is the best estimator of 4 at
time 1+ 1. We also choose a quadratic loss function (4,,,—4)? which yields

Apr(ny,. .,n) = E(lny, ,n)

Hence, we need to determine the posterior mean of 4. We already know that
4#(4) 1s an inverse Gaussian with parameters f and ;. We had N/4 as Poisson
distributed, hence the likelihood distribution 1s

Ane—l).
Pny,. .,nll) = -_— where n = Z n,.

[T @y
J=1

Next, the joint distribution of the number of accidents 18

P(n,. .,n,)=j P(ny, oo nid) p (1) dA
0

o ine—-m 1 _ (;*ﬂi )
= : - e 280 1 dl
T 2npil
IT &=
j=1

S LR P
=—£—j— R T

lil () 0 2npA’

The Bayes theorem for the posterior distribution of A 1s

Ane—li (/ un)?
_ _ﬁ - e ZB/. }

- 2api

(nY)
-y
ST =_ 7 _ . __ . -
u(ilny, .. . n) P « g _pemar M}
j. —e 28 da

! : o \2npA’
,U (n,)

T (/ /t) +U_}

0 n (r = n)?
\/27zﬁ23 j‘ _i__ 3 T ')} 7
0 J2npA3 © ‘

Orne can see that the integral term 1s not a function of 1 once 1t 15 solved We
can then find to which distnibution u(4{n,, ..., n,) is proportional by omitting
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that constant term (the integral);

an e{_’)'__g%_ Z‘I;f‘} ;_;
P
p(ng, .o ng)oc (zn/};ﬁ;{m 7

Stmilarly, we omit all tlerms that do not depend on 4, since u(Aln,, ..., n,)1s a
function of 4,

ulllny, .,n)c 2("—%) e{—;'(_ZI?~ I) _/L. ( ;;3 )}

in which

to obtain
; ¢
uAny, . ,n)oc A e{ b 7}.

The above expression 1s the probability density function of Gencralized inverse
Gaussian distribution, which can also be presented as

it
w X, { 26 }

P(x)=—- -
2K, (LI

x>0

5
AR NV Y
2K,(&'1B)
where 4’ >0, />0, —o0 <v <o and K,(x) 1s the modificd Bessel function
of the third kind with index v. JORGENSEN (1982) shows several results

concerning the Generahzed inverse Gaussian. One of interest Lo us 1s the mean,
given by

Koo (H1B)
K, (i 1B)

EGILG) =y

in our case

v=ag+l=n——
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1
w=2c=p -

1+2p0

When the prior distribution of A4 is mverse Gaussian and the conditional
probability function (N,, ..., N,) given A = 4 a r-dimension Poisson distribu-
tion, we then see that the posterior distribution of A 1s a Generalized inverse
Gaussian.

We already estimated g and f, then we can write

1
L —
6.44039+21¢
1
W = 0.15514 x \/ L
1+0.31054¢
and

K, (W)
Al+|(”ls "7"1) =H *L,’f
K, (L1P)

In our case, the pure premium to be charged is related to the frequency of
accidents. That 1s

Ko (1)
K, (1B

Hence, we can now build a table of premiums to be charged as a function of
accdents (n) and number of years (r). To estimate the modified Bessel
functions, we use

Poi(n,...on)= Ai(ny, .,n) =y

Ko KIB)
K, («'1B)
We estimate Q by a Newton Raphson approach. Then we normahze the

posterior premium 1n a way that the premium for a new 1nsured is 100 (# = 0
and ¢t = 0). We then obtain

= O, (1)

Piy(ny,...,n) =100 liQ" (‘u_l/_/}_')
Ho Q.,(, (10/B0)
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where
1
o = -.2, B = 015527 o = 015514

But we realize that

Ho Quo(#o/ﬂo)

1s the mean of the prior distribution of A The Generalized inverse Gaussian
includes the nverse Gaussian when 4 = —1/2. So

100 S (KIB)
015514

Pl+[(nla Yn!)=

Table 1 2 gives the results for P, for various ¢ and n. We limited ourselves to
n = 10 since n > 10 accidents 1s most unhkely to occur An APL program was
used (for further calculations also)

This 1s an equitable system: each sured always pays a premium propor-
tional to the estimation of his frequency of accidents, according to the
information accumulated during ¢ years For example, if our insured had
1 acaident during his first year, he would have a surcharge of 67 72%
((163.72—100) — 100). But if he had no accident during that first year, he 1s
entitled to a reduction of 12.65% ((100~—87.35) — 100). Later, 1f he has 1
accident during the second year (and none 1n his first), he will be penalized
60.60 % ((140.28 —87 35) — 87 35). Simuilarly, 1f he has no accident during the
second year (and 1 1n the first year), he will be granted a bonus of 14 32%
((163.72— 140 28) — 163.72) This process can be continued indefinitely

TABLE 12
BoNus-MaLUS TABLE

(based on a Poisson mverse Gaussian frequency distribution)

100 NJ/A NA NA NA NA NA NA NA NA NA
8735 16372 27571 40952 55321 70111 85094 1001 76 1153 14 1304 88 1456 85
7854 14028 22919 33561 45055 56934 68996 81155 93369 105617 1178 88
7195 12376 19727 28531 38084 47991 58073 68249 78479 88742 99029
6678 11142 17394 24883 33038 41523 50175 58917 67713 76542 85393
6259 10180 15610 22113 29216 36627 44197 51856 59566 67310 75075
5910 9405 14200 19937 26220 32791 39515 46325 53186 60080 66995
5613 8767 13054 18181 23807 29705 35749 41876 48054 54264 604 96
5357 8230 12105 16733 21822 27169 32653 38220 43837 49486 55156
5133 7771 11303 15518 20160 25043 30063 351 62 403 10 45489 50689
10 | 4935 7373 10617 14484 18747 23240 27865 32566 37316 42096 468 98
20 | 3724 5112 6713 8624 11043 13723 16011 18551 21231 23924 26944
50 | 2460 3065 3632 4523 5562 6541 7376 8442 9461 10622 12060
100 | 1766 2079 2421 2885 3302 3760 4024 4431 4951 5692 6462

OO RARLN—O
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Let us now introduce a utility function of the insurer, as LEMAIRE (1979)
did. The insurer assesses the risk according to a utiity function u(x), and
determines the premium by equating the utility function of his present situation
and the expected utility of the risk. that is, he is indifferent between his present
situation and being at risk

o0

u(R) = E{u(R+P—x)} = j H(R+P—x)-dG(x)
0

where R is the reserve of the insurer, P the premium to be charged and G (x)
the distribution function of claims in a portfolio. This null utihty principle has
numerous interesting properties when one uses an exponential utility func-
tion,

1
pUx)y=—-(0N0—-e", ¢>0.
¢

The parameter ¢ characterizes the risk aversion of the insurer We can then
evaluate the premium

1 * 1
= (1 _e—cR) = j _ (l_e—c(R+P—.\)) dG(X)
c c

0
which yields

1
P = log M(c)
¢

where M (c) 1s the moment generating function of the claims distribution. In
our situation of a bonus-malus system based on a Poisson inverse Gaussian, we
have

1 w0
P=_log J. M(c, 1) dU(2)
0

c

where
M(c,2) = "D

1s the moment generating function of the Poisson distribution, and U(A) 1s
inverse Gaussian Then

1 o . _ o
P=~log[j e’ h —'u—e{ 2/31}dl:|.
¢ 0 V27BA3

The expression 1n brackets 1s the moment generating function of the nverse
Gaussian distribution valued at ¢“— 1. For the Generalized mverse Gaussian,
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we have
K ﬁ./l—z/fz)
-z 1
Mz)= (1-2pz) 2 § , z £
K; (i) 25
and 1n particular for the inverse Gaussian when 2 = —1/2. Hence, we replace
n P

K,(‘_‘,/l—zﬁ( e‘—l))
B

p=" log | [1 -2~ 1) 2
¢ K; (uip)

This formula 1s vahd for all values of parameters 4, f and yu, and 1n particular

for our values of v, " and y4' of the posterior distribution So,

W<

K, (i\/l—2/}’(e‘—l) )
P

Proi(maein) = Slog | (128 - 1))

K, (&1

This premium 1s a non-decreasing continuous function of ¢. A choiwce of
¢ = 025 (risk aversion) yields a reasonable imitial premuum P, = 0 18032,
since the pure premium 1s 0 15514, 1t corresponds Lo a safety loading of about

16%. The results are 1n Table 1.3

TABLE 13
Bonus-MaLUS TABLE

(based on a Poisson mverse Gaussian frequency distribution)
(with exponential utihty function, ¢ = 025)

0 I 2 3 4 S 6 7 8 9 10

!
0 100 N/A N/A. N/A N/A NA NA NA N/A N/A  NJ/A
1 8687 16415 27780 41355 55918 70898 86068 101336 116659 1320 16 1473 90
2 7784 13989 22947 33666 45235 57185 69315 81539 938 18 1061 31 1184 66
3 7115 12299 19667 28493 38063 47984 58076 68260 78498 88768 990 6!
4 6593 11044 17289 24770 32913 41381 50013 58734 67508 76314 85142
5 6172 10072 15482 21960 29035 36412 43946 51567 59239 66943 74670
6 5822 9292 14058 19763 26007 32536 39216 45979 52792 59638 66505
7 5525 8651 12907 17995 23578 29428 35423 41499 47625 53782 5996l
8 5270 8114 11954 16542 21585 26880 32314 37828 43390 48984 54598
9 5047 7655 11152 15326 19920 24753 29720 34765 39857 44980 50124
10 4850 7259 10467 14292 18508 22951 27522 32170 36864 41588 46333
20 3651 5016 6926 8963 11175 13489 (5872 18361 20927 23641 26495
50 2408 3001 3781 4521 5447 6408 7311 8332 9447 10603 11819
100 1728 2033 2347 2732 3176 3679 3997 4331 4892 5528 6324
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The Table 1.3 shightly differs from the preceding one (Table 1.2) It can be
shown that even for very unreasonable values of ¢, the differences are small.
Finally, these results compare favourably with LEMAIRE’s (1985) results where
he used a Negative Binomial distribution (4 was Gamma distributed)
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