
ARTICLES 

ERROR BOUNDS FOR COMPOUND POISSON APPROXIMATIONS 
OF THE INDIVIDUAL RISK MODEL 

BY NELSON DE PRIL AND JAN DHAENE 

Catholic University of Leuven, Belgium 

ABSTRACT 

The approximation of the individual risk model by a compound Poisson model 
plays an important role in computational risk theory. It is thus desirable to 
have sharp lower and upper bounds for the error resulting from this approxi- 
mation if the aggregate claims distribution, related probabilities or stop-loss 
premiums are calculated. 

The aim of this paper is to unify the ideas and to extend to a more general 
setting the work done in this connection by BOHLMANN et al. (1977), GERBER 
(1984) and others. The quality of the presented bounds is discussed and a 
comparison with the results of HIPP (1985) and HIPP & MICHEL (1990) is 
made. 
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1. INTRODUCTION 

In the individual risk model an exact calculation of the aggregate claims 
distribution and of associated functions, such as stop-loss premiums, is very 
time consuming. Therefore actuaries often prefer to use an approximative 
computation method or to replace the individual model by a collective model 
in which the aggregate claims distribution can easily be calculated for example 
by Panjer's recursion formula. 

Of course, only approximations that are close enough to the original model 
will be of real interest. Theoretical error bounds are helpful in this regard since 
they give a quantitative measure to asses the quality of an approximation. 

This paper examines the error caused by approximating the individual model 
by a compound Poisson model. Explicit lower and upper bounds are derived 
for the error in calculating the distribution function of aggregate claims, 
associated probabilities and net stop-loss premiums. The analysis applies to 
approximations with different values of the Poisson parameter and generalizes 
the results obtained by BOHLMANN et al. (1977) and GERBER (1984). It is 
shown that the error bounds for the aggregate claims distribution and for the 
stop-loss premiums are minimized for different values of the Poisson parame- 
ter. As a special case, it also pointed out that the well-known upper bound of 

ASTIN BULLETIN, Vol. 22, No. 2, 1992 



136 NELSON DE PRIL AND JAN DHAENE 

GERBER (1984) for the stop-loss error in the classical compound Poisson 
approximation, can be improved by a factor 1/2. 

To conclude, the quality of  the error bounds is discussed and a comparison 
is made with the results at which HIPP (1985) and HIPP & MICHEL (1990) arrive 
by applying concentration functions. It turns out that the presented bounds are 
much easier to calculate, but are only useful for small and moderate portfolios. 
This is inherent to the method used to derive these bounds. 

2. COMPOUND POISSON APPROXIMATIONS OF THE INDIVIDUAL MODEL 

Consider a portfolio containing n independent policies labelled from l to n. Let 
Pi, with 0 < Pi < l, denote the probability that policy i produces no claim in a 
given period and qi = l - P i  the probability that the policy leads to at least one 
claim. Further, define Gi as the conditional distribution of the total claim, 
amount  of  policy i in the period, given that at least one claim occurs. As usual 
only positive claims are considered, that is Gi(O) = O. 

With this notation the distribution Fi of the claim amount  generated by an 
individual policy i can be written as 

(1) Fi=pi I+qiGi ,  i =  1,2 . . . .  , n ,  

where I is the atomic distribution concentrated at zero. 
In the individual risk model, the distribution F ind of the aggregate claims of  

the portfolio is obtained by convoluting the n distributions (l)  

n 

(2) F ina= ~ F i. 
i = l  

Now, suppose that one wants to approximate the individual model by a 
compound Poisson model. This can be done by replacing each distribution F; 
by a compound Poisson distribution P~, say with Poisson parameter 2i > 0 and 
amount  distribution Q; 

(3) Pi=  ~ e- ~'' 2ik Q~k, i=  1 , 2 , . . . , n ,  
~=0 k! 

where by convention Q~0 = I. 
The quality of  the resulting approximation will depend on the choice of ,,l~ 

and Qi. Several arguments can be used and in the literature different proposals 
for 2i can be found, but Qi is always taken identical to Gi. This assumption will 
also be made in the remainder of  the paper. 

By taking the convolution of  the compound Poisson distributions (3), one 
obtains an approximation FcP for the distribution F ind of  the aggregate claims 
of  the portfolio 

n oo ,~k 

(4) Fee= * Pi = E e - h - - G ' k ,  
i = l  k = 0  k! 



E R R O R  B O U N D S  F O R  C O M P O U N D  POISSON A P P R O X I M A T I O N S  137 

which is again a compound Poisson distribution with Poisson parameter 

2 =  ~ 2i 
i=1 

(5) 

and amount  distribution 

(6) G = - 2 i G  i. 

In the following sections the individual model will be compared with 
compound Poisson approximations having different specifications of  the 
parameters 2i. This will be done by deriving upper and lower bounds for the 
error which emerges in calculating the distribution function of  aggregate 
claims, probabilities for arbitrary events and stop-loss premiums. 

3. BOUNDS FOR THE AGGREGATE CLAIMS DISTRIBUTION 

First some lemmas are given that will be useful in the proof  of  Theorem I. 

Lemma 1 : Let F, G and H be distribution functions and assume that there exist 
constants a and b such that for all s 

(7) a_< F ( s ) - G ( s )  < b.  

Then, one has for all s 

(8) a_< F . H ( s ) - G  . H ( s )  < b.  

Proof:  The proof  of (8) follows immediately from (7) and 

S F *  H ( s ) - G  * H ( s )  = [ F ( s - x ) - G ( s - x ) ]  d H ( x ) .  
--00 

Q.E.D. 

Lemma 2: Let F I, F 2 . . . . .  F n and Gt,  G2 . . . .  , G,, be distribution functions 
satisfying for all s 

(9) a i < F i ( s ) - G i ( s ) < b i ,  i =  1, 2 , . . . , n .  

Then, one has for all s 

(10) ai _< * Fi (s )  - * Gi(s )  _< bi. 
i=1 i=1 i=1 i = l  

Proof: The lemma is proved by induction. By assumption (10) holds for n = 1. 
Assume that it also holds for n = k -  I. Then, one has by using Lemma 1 
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twice 

and 

k - I  k - I  k - I  k - I  

k - I  k - I  

*Gk(S)_< bk. 

Taking the sum shows that the result holds for n = k, which proves the 
lemma. 

Q.E.D. 

The following Theorem allows an assessment of  the error in calculating the 
distribution function of aggregate claims, which results if the individual model 
is replaced by a compound Poisson model, as presented in Section 2. 

According to common usage the positive and negative parts of  a number c 
are denoted respectively by (c) + and - ( c ) - ,  that is (c) ÷ =  max (c, o) and 
(c ) -  = m i n ( c , o ) .  It is clear that - ( c ) -  = ( - c )  +, c = ( c )  + + ( c ) -  and 
Icl = (c) ÷ - ( c ) - .  

T h e o r e m  1: For  all s one has 

(II) ( p i - - e - L )  - < F i n d ( s ) - F C P ( s )  < [ p i - e -  , + ( q i - A i e  ) . 
i=l i=1 

Proof:  According to Lemma 2 it is sufficient to prove (11) for the special case 
n = 1, so that the index i can be dropped in the remainder of  the proof. Then, 
one has 

and 

F i'a = pI+ qG 

F ~p= ~ e-~ 2-~-G *~ 
k=O k! 

with G ( 0 )  = 0. 
I f s  < 0, then Find(s)= Fee(s)= 0 and (11) is satisfied since 

p-e-~+(q-2e- ; ' )  + >_ I - e - ; ' - 2 e  -~ >_ O. 

The case of  interest is s _> 0. Then, one has 

Find(s)-FCe(s)=p-e-~+(q-2e -~)G(s) - ~ e -~ 
k=2 

~k 

- -  G * k ( s )  
k~ 

_< p - e - a +  (q-  2e-a) + 
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Since G*•(s) <_ G(s) ,  one has on the o ther  hand 

Fi"d(s)-FCP (s)  >_ p - e - ; + ( q -  1 +e  -~) G(s)  

> p - e - a + ( e - ~ - p )  - = ( p - e - a )  - 

which proves  the . theorem.  
Q.E .D.  

R e m a r k  t h a t  FCP(s) ~ Find(s) for  all s, if 2 i >_ - I n p i  for  i -- 1, 2 . . . . .  n. 
Fur ther  note that  if qi >- 2i e-a ;  for i = l, 2 . . . . .  n, the uppe r  bound  in (1 l) 

can be simplified by using the inequali ty 

(12) P i -  e -  a, + (qi - -  ~ie-  a,) + < 2/2/2, 

which follows f rom 

1 - ( 1  +2i)  e-;" = l - e  ln('+~')-a' < 1 - - e  -a~ /2  < 2,?/2. 

N o w  the error  bounds  (11) will be specified for  some choices o f  the 2 i used in 
the l i terature;  see e.g. GERBER (1979, Ch. 4) for a descript ion o f  the first two 
cases. 

Case 1: The  most  c o m m o n  assumpt ion  is 

(13) 2i = qi i = 1, 2 . . . . .  n .  

This means  that  the Poisson pa rame te r  is chosen such that  the expected 
n u m b e r  o f  claims is the same in the two models.  Since e -a' > 1 - 2 i  = Pi and 
qi > 2i e - a '  one gets f rom (11) that  for all s 

(14) - - q~ < ( p i - e  -q') _< F i n e ( s ) - f C e ( s )  
2 i= l  i= l  

_< [ 1 - ( l  + qi)e -q'] < _ qi 2. 
i=l 2 i=1 

To  show the magni tude  o f  the error  simpler bounds  have been added  to the 
left and right side. The  right bound  follows f rom (12). 

Case 2: An al ternat ive is to put  

(15) 2i = - I n p i  i =  1 , 2 , . . . , n .  

Under  this a s sumpt ion  the probabi l i ty  of  no claims is the same in the two 
models.  

Since qi = 1 -e;"  > 2ie-;" one has f rom (11) and (12) that  for  all s 

(16) 0 _< Fine(s)-FCP(s)  _< (qi+Pi In Pi) < - (In Pi) 2. 
i=l 2 i=l 

This  er ror  bound  is given in HIPP (1985, fo rmula  (5)). 
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Case 3: As noticed by HIPP (1986) the first order approximation for the 
aggregate claims distribution suggested by KORNYA (1983) can also be seen as 
a compound Poisson distribution with 

(17) 2i = qi/Pi i = 1, 2 . . . . .  n. 

Since e -a' > 1--t-2 i = l ip i one has e-;" < Pi and qi = )tiPi > 2i e-a'' Hence, it 
follows from (11) and (12) that for all s 

I ~ (qi/Pi)2" (18) 0 -< F i n d ( s ) - F C P ( s )  -< (pi-e-q~/P') /Pi  < 7 i=l 
i= I 

To conclude this section it will be examined which choice of the 2i is 
preferable in the sense that the difference between the upper and lower bound 
in (I 1) is minimized. To that end consider the magnitude of  

fL(2)  = ( p - e - a )  - 
f u ( 2 )  = p - e - a  + ( q -  2e-~) + 

and 

(19) f ( 2 )  = f v ( 2 ) - - f L ( 2 )  = ( p - - e - a )  + +(q - -2 e - a )  + 

for different values of  2 > 0. 
S incefu(2)  is an ever increasing function of 2 and fL(2)  = 0 for 2 >_ - I n  p, 

the function f (2 )  attains its minimum at a value 2 * < - l n p .  In case 
,2 _< - I n  p, f ( 2 )  takes the form q - 2 e - a  which is a decreasing function if 2 < 1 
and an increasing function if 2 > 1. Hence, f ( 2 )  is minimized for 

- I n  if - I n p <  1 
(20) 2* = P 

1 if  - I n p _ >  I 

The condition - - In  p < 1 corresponds with q < 1 - e - ~  = 0,632121. Remark 
that the commonly used compound Poisson approximation with 2~ = q~ does 
not give rise to the smallest difference between the upper and lower bound 
in (I I). 

4. BOUNDS FOR PROBABILITIES OF ARBITRARY EVENTS 

Let It(F, A) denote the probability that a random variable with distribution 
function F assumes a value in a set A. By convention the word set serves as 
abbreviation for a Borel set on the real line. 

Theorem 2 gives explicit bounds for the maximal difference of probabilities 
calculated respectively in the original model and in an associated compound 
Poisson model. The proof  of  the Lemmas 3 and 4 is similar to the proofs given 
in Section 3 and is therefore omitted. Note that bounds which hold for every 
set A must be symmetrical, since It(F, A c) = 1 - I t ( F ,  .4) where A c denotes the 
complement of  .4. 
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Lemma 3: Let F, G and H be distribution functions and assume that there 
exists a constant b such that for every set A 

(21) lit(F, A)-I t(G,  A)I < b. 

Then, one has for any set A 

(22) l i t (re H, A)- I t (G ~ H, A)I _< b. 

Lemma 4: Let F I, F 2, . . . , F ,  and Gi ,  G2, . . . ,  G, be distribution functions 
satisfying for all sets A 

(23) [It(F~,A)-It(Gi, A)I <b~, i= 1,2 . . . .  , n .  

Then, one has for all A 

(24) ~ Fi, A - i t  ~ G~, A _< bi. 
i=1 i=1 i=1 

Theorem 2: For  all sets A one has 

(25) IIt(F ind, A ) - I t (F  cP, A)I _< ~ [(pi-e-~i) + +(qi-2ie-~')+]. 
i=1 

Proof: According to Lemma 4 it is sufficient to prove (25) for n = I. 
Using the same notation as in the proof  of  Theorem I one has 

It(F ;'d, A ) - I t (F  cp, A) = pit(I, A)+qit(G, A) - e -~ I t(G *k, A). 
k=0 k! 

From this it follows that 

(p-e-'~) - + ( q -  2e-  ~) - - 1 + e - ) ' +  2e -~ < It(F i'd, A ) - i t (F  cP, A) 
< ( p - e - k )  + + ( q - 2 e - ~ )  + ' 

which proves the theorem. 
Q.E.D. 

Remark  that for sets of  the form A = ] -  ~ ,  s] better bounds are given in 
Theorem 1. 

Now, (25) will be examined in detail for some special choices of  the 2i. 

Case 1: I f  2i = qi, i = 1, 2 . . . . .  n, one gets for all sets A 

(26) IIt(Fi"d,A)-It(FCP, A)I _< ~ q i ( i - e  -q') < ~ qi 2. 
i =  l i =  l 

This error bound was derived by GZRBZR (1984). In the special case of  a 
quasi homogeneous individual model, i.e. a portfolio consisting of  n policies 
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with different claim probabilities qi but identical claim amount  distributions 
G~, the above bound was improved by MICHEL (1987). He showed that in this 
case 

(27, l u (F ind, A ) - f l  (F ~e, A)]_< i=1 ~ qi2/~,=1 qi, 

which furnishes a smaller bound than (26) if 2 = ~ q j>  I. 
i = l  

Case 2: For  2~= - l n p i ,  i =  1, 2 . . . . .  n, one has for all A 

(28) Iit(F ind, A ) - ~ ( F  cP, A)I _< (qi+Pi In pi) < --  
i=l 2 ~=1 

(In p i )  2 . 

Case 3: If 2i = qi/Pi, i = I, 2 . . . . .  n, one obtains as bound 

(29) [l~(f ina, A ) - ~ ( F  cp, A)I _< (pi-e-q'/Pl)/pi < - (qi/pi) 2 . 
~=t 2 i=l 

This bound has been derived by HIPP (1986, formula (3)). 
Finally, remark that the magnitude of  the error bound (25) is determined by 

terms of  the form 

(30) f ( 2 )  = ( p -  e-~)+ + ( q -  2e-Z) + 

Hence, it follows from Section 3 that f ( 2 )  is minimized for the value 2* 
given by (20). 

5. BOUNDS FOR STOP-LOSS PREMIUMS 

Let X be a random variable with distribution function F and finite mean ,u. The 
stop-loss transform of  F is defined by 

(31) l l (F,  t) = E [ ( X - t ) + ]  = ( x - t )  dF(x) .  
I 

Remark that in particular l l (F,  O) =/1. 
If  F is the aggregate claims distribution of  a portfolio during a certain 

period, then Ill(F, t) is the net stop-loss premium with retention limit t for that 
period. 

In the following lemmas some basic stop-loss inequalities are derived. They 
are inspired by the pioneer work by BOHLMANN et al. (1977). See also the 
textbooks of  GERBER (1979, Section 7.3) and SUNDT (1991, Section 10.3). 

Lemma 5 : Let F, G and H be distribution functions and assume that there exist 
constants a and b such that for all t 



ERROR BOUNDS FOR COMPOUND POISSON APPROXIMATIONS 143 

(32) a < H(F, t ) - H ( G ,  t) < b. 

Then, one has for all t 

(33) a < H ( F  ~ H, t ) - H ( G  ~ H, t) _< b. 

Proof: Let X, Y and Z be random variables with distribution functions F, G 
and H respectively and assume that Z is independent of  X and Y. Taking the 
conditional expectation on Z yields 

H (F . H, t ) -  H ( G . H, t) = E[E[(X + Z -  t) +IZ]]- E[ E[( Y + Z -  t) +IZ]] 

= E[H(F, t - Z ) ] - E [ H ( G ,  t - Z ) ] .  

Now, (33) follows immediately from the assumption (32). 
Q.E.D. 

Lemma 6: Let F I, F2, . . . ,  F,, and Gi,  G2, . . . ,  G, be distribution functions 
satisfying for all t 

(34) ai_< H (Fi, t ) - H  (Gi, t) < bj. 

Then, one has for all t 

(35) ai _< HI * F;, t - H ~ Gi, t < bi. 
~=J ;=~ ~=1 ~=~ 

Proof:  The inequalities (35) hold by assumption for n = 1 and are proved in 
general by induction. The proof  is based on Lemma 5 and is similar to the 
proof  of Lemma 2. 

Q.E.D. 

Lemma 7: Let F and G be distribution functions on the non-negative reals. 
Then one has for all t 

(36) HI(F, t)+HI(G, t ) + ( t ) -  < HI(F~ G, t) < HI(F, t)+HI(G, 0). 

Proof:  It is easily to verify that for arbitrary t and non-negative x and y the 
following inequalities hold 

( x - t )  + + ( y - t )  + + ( t ) -  < ( x + y - t )  + < ( x - t )  + +y 

This implies the assertion. 
Q.E.D. 

Lemma 8 : Let F be a distribution function on the non-negative reals. Then, one 
has for n = 1, 2 . . . . .  and all t 

(37) n H i ( F , t ) + ( n - 1 ) ( t ) -  _ < H ( F * ' , t ) _ < ( n - I ) H ( F , O ) + I I ( F , t ) .  
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Proof:  The lemma is proved by induction. Clearly (37) holds for n = 1. Now, 
assume that it holds for n = k - 1 .  Then, the proof  for n = k follows by 
applying Lemma 7 to F *(k- ~) and F. 

Q.E.D. 

Remark that  under the assumption of  the lemma only stop-loss premiums 
with a non-negative retention t are of  real interest. It follows that for t >_ 0, (37) 
reduces to 

(38) nil(F,  t) <_ H(F*", t) <_ ( n -  1) H(F, O)+ H(F, t). 

The following theorem yields bounds for the error which results if a 
compound Poisson model is used for approximate computation of  stop-loss 
premiums in the individual model. 

Theorem 3: For  all retentions t one has 

(39) ~ Pill--2i--e-'~'W(e-2'--pi)- ] _< H(F ind, l ) -H(F  cP, t) < ~ fli(qi--2i) +, 
i= l  i=l  

where/~i denotes the mean of  the conditional claim amount  distribution Gi. 

Proof:  In view of Lemma 6 it is sufficient to give the proof  for the special case 
n = 1, where 

F i"d = p l+  qG 

is approximated by 

oo 

FoP= 2 
k=O 

Since G(O)= O, one has for t _< 0 

~k 
e-a G *k" 

k[ 

H ( F  ~"a, t ) - H ( F  ce, t) = H ( F  '~d, 0 ) -  H ( F  cp, 0) = p ( q -  2) 

where u denotes the mean of  G. It is easy to verify that (39) is satisfied. 
The case of  interest is t > 0. Then H(I, t) = 0, so that 

z 
III(F i"a, t ) - H ( F  cp, t) = q H ( G ,  t )  - e -a  - -  H ( G  *~, t ) .  

k=l k! 

From (38) it follows that for any t > 0 

qH(G, t) - e -~ - -  [ ( k -  I) H(G, O)+H(G, t)] < H(F i"a, t ) - H ( F  cP, t) 
k=l k! 

_< q H ( a ,  t )  - e - ~ -  k H ( a ,  t ) .  
k=l k! 
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Since H(G, 0 ) =  p, this can be rewritten as 

( q -  1 +e -a) H(G, t ) - ( 2 -  I +e-~) /z  ~ H ( F  i"d, t ) - H ( F  cP, t) < ( q - 2 )  H(G, t) 

Taking into account that 0 _< H(G, t) _< It for t > 0, this implies 

[ ( e - h - p ) - +  1 - 2 - e - ~ ] ~  < H ( F  i''d, t ) - H ( F  ce, t) < ( q - 2 ) + u  

which proves the theorem. 
Q.E.D. 

Remark that if 2~ < qi for i = 1, 2 . . . . .  n, the compound Poisson approxima-  
tion is always on the safe side, in the sense that H ( U  "d, t) < H ( F  cp, t) for all t. 

As in the previous sections, the error bounds (39) will be further analysed for 
some special choices of  the ).~. 

Case I : I f  2i = qi, i = 1, 2, . . . ,  n, one has for all retentions t 

(40) - - -  ttiq ~ < t t i (P i - -e  -q') _< H ( F  ind, t ) - I I ( F  cP, t) _< O. 
2 i = |  i= l  

The upper bound is given in BOHLMANN et al. (1977). The lower bound was 
derived by GERBER (1984) in the special case of  deterministic claim amounts.  

For the general case of  stochastic claim amounts  he proved that - ~ ~u~q~ 2 
i= l  

is a lower bound, but believed that this result could be improved. This is indeed 
the case, as shown here. 

Case 2: For  the choice 2i = - I n  Pi, i =  I, 2 . . . .  , n, one gets for all t 

(41) ___1 ~ pi(lnpi)2< ~ pi(qi+lnpi)<ll(Fi,,d,t)_H(FCe, _ . 
2 i=l i=l 

Case 3: Kornya ' s  first order approximation is obtained by setting 2i = qi/Pi ,  
i =  1, 2, . . . ,  n. Then, one has for all t 

(42) - - Ill q?/Pi -~ 111 (F  ind, t ) -  H (F  cP, t) _< O. 
2 i= l  

To round off  the analysis of  the bounds (39), consider 

gL(2) = l - -2--e- ; '+(e-; ' - -P)  - 
gu(2) = ( q - 2 )  + 

and 

(43) g(2) = gu(2)--gL(2) .  
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Since gL().) is an ever decreasing function of  2 and Or(2) = 0 for 2 > q, the 
function g(2)  takes on its minimum at a value 2 * <  q. In case 2 < q, g(2) 
becomes equal to e - a - p  which is a decreasing function of 2. Hence, g(2) is 
minimized for 

(44) 2* = q. 

Comparison with (20) shows that the Poisson parameters which minimize the 
error bounds depend on the measure used to define the difference between the 
exact and the approximate model. 

6. COMPARISON WITH HIP P 'S  BOUNDS 

The lower and upper bounds given in the Theorems 1, 2 and 3 increase linearly 
with the number of policies and so it is to be expected that they will be too 
pessimistic for large portfolios. This is inherent to the way in which these 
bounds are derived, i.e. the use of  the Lemmas 2, 4 and 6. 

Alternative bounds for the error in calculating the distribution function and 
stop-loss premiums were derived by HIPP (1985) in case of  the classical 
compound Poisson approximation with 2 i =  qi, i =  I, 2 , . . . , n .  His method 
consists in applying concentration functions. The concentration function 
C(F, r) of  a distribution function F on an interval of  length r > 0 is defined 
by 

(45) C(F, r) = sup [F(x+r)-F(x)]. 
X 

An updated version of  Hipp's results is given in the risk theory book by HIPP 
and MmHEL (1990), where the following bounds are derived. 

(46) 

and for all t 

Theorem 4 (Hipp): Consider the compound Poisson approximation with 
2i = qi, i = 1, 2 . . . .  , n. Denote, for each i, by ~i and ~(2) respectively the first 
and second moment about the origin of  the conditional claim amount  
distribution Gi. Then, one has for all s 

~z2 ~ q/2 
I F i n d ( s ) - -  Fce(s)l _< - -  - -  C(F, ,ui). 

4 i=l Pi 

(47) rt2 q2 iti + _ _  C ( F, t2i) 
4 i=l Pi 2 f l i  

_< H ( Fi"d,t ) - lT ( FCP,t ) < 0 

where P is the compound Poisson distribution with Poisson parameter 

= - -  P i  qi  
2 i~ l  
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and claim amount  distribution 

Pi qi Gi. 
C_,-  2"2 i=l 

To apply these bounds the concentration functions C(P, l~i )  must be 
evaluated. In case the G~ are arithmetic distributions the numbers C(F,/~i) can 
be computed numerically, but for this another application of  Panjers's recur- 
sive algorithm is needed. However, from a practical point of  view, it seems 
unreasonable to spend much effort in calculating the theoretical bounds 
exactly. After all, the main advantage of  a compound Poisson approximation is 
that the necessary calculations can be done in a minimal time. When the 
computing time is not a major constraint preference should be given to other, 
more accurate, approximation methods, as proposed in the recent literature. 

The demand for making the bounds (46) and (47) easy to handle, necessitates 
to dispose of a quickly computable estimate for the C(P,~i).  Hipp has 
mentioned several upper bounds for concentration functions, but most of them 
are hard to compute. Further, Hipp's work contains no indication which of 
these bounds should be used in a given application. This is indeed a difficult 
problem, since the best choice depends on the form of  the claim amount  
distribution G. 

In order to get an idea of  the magnitude of Hipp's error bounds the 
following general and simple bound for C(F,/1i) can be used 

(48) C(F,/t i)  _</,t~ C(F, 1) _< u~ (2 e ~.)-./2 

where /~  denotes the smallest integer greater than or equal to ltd. 
Since C(F, ~ )  is of  order ~--i/2, Hipp's method leads to error bounds of  

order x/~, whereas the Theorems 1, 2 and 3 yield only bounds of order n. This 
indicates that (46) and (47) are asymptotically better than the corresponding 
formulas (14) and (40). A further discussion of  asymptotic results can be found 
in KUON, RADTKE and REICH (1991). 

The preceeding considerations show that the error bounds resulting from 
both methods complement each other. The bounds given in the Theorem 1, 2 
and 3 are easy to calculate and of  practical interest for small and moderate 
portfolios. For large portfolios Hipp's bounds are sharper, but they are much 
more complicated to compute. 
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