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ABSTRACT

The sensitivity of the ruin probability depending on the claim size distribution
has been the topic of several discussion papers in recent ASTIN Bulletins. This
discussion was initiated by a question raised by Schmitter at the ASTIN
Colloquium 1990 and attempts to make further contributions to this problem.
We find the necessary and sufficient conditions for fitting three given moments
by diatomic and diexponential distributions. We consider three examples
drawn from fire (large spread), individual life (medium spread) and group life
(small spread) insurance data, fit them with diatomics and diexponentials
whenever the necessary and sufficient conditions are met, and compute the ruin
probabilities using well known formulas for discrete and for combination of
exponentials claim amounts. We then compare our approximations with the
exact values that appeared in the literature. Finally we propose using diatomic
and diexponential claim distributions as tools to study the Schmitter prob-
lem.
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l. INTRODUCTION

Parametric representation of claim data and exact calculation of ruin probabil-
ities have a long history. In the classical work of CRAMER (1955, p. 43), the
following claim amount distribution was used to represent data from Swedish
non-industry fire insurance covering the years 1948-1951:

(1) p(x) = 4.897954 ¢ 5314388~ 1 4 503 (x+ 6)"27°, 0 < x < 500.
Exact ruin probabilities were computed by numerically solving

Ao A
@ w(u)=—f [I—P(y)]w(u—y)dy+—§ (1= P() dy.

4 0 c

"

which was a nontrivial numerical task then (CRAMER 1955, p. 45). A modern
reference for the above integral equation is Exercise 12.11 in BOWERS et alii
(1986).

ASTIN BULLETIN, Vol. 22, No. 2, 1992



236 JOSHUA BABIER AND BEDA CHAN

A much easier numerial task even now is to approximate (1) by a
distribution for which there is a readily executable formula for its ruin
probabilities. In this paper, we choose our approximants from special types of
claim amount distributions in which there are recent interests: For combina-
tion of exponential distributions, there are the TAckLIND (1942) types formu-
las. See SHIU (1984), GERBER, GOOVAERTS and KAAs (1987), DUFRESNE and
GERBER (1988) (1989) (1991), and CHAN (1990). For discrete distributions
(mixture of atomic distributions), there are the TAKAcs (1967) type formulas.
See BEEKMAN (1968), SHiu (1989) and Kaas (1991). In particular, we consider
the special cases of mixture of two atoms (diatomic) and of combination of two
exponentials (diexponential).

2. THREE MOMENT FIT FOR DIATOMIC AND
DIEXPONENTIAL DISTRIBUTIONS

2.1. Diatomic distributions

Proposition 1:

Given mean, variance, and third central moment written as g, o2, and «°, there
is a unique diatomic fitting these moments. The locations of the two atoms
are

€) {u—x, nty},
and the corresponding probabilities are:
@ A
x*+g? x?+g?)’
where
6+4 6 __ .3
%) x =N TI0 7K
20
Ve +408 +i3
(©) y=ETTTTE
20

Clearly, x > 0 and y > 0. In addition, if the given x4 > 0 and non-negative
atoms are desired, then one must have

(7 K3>M‘
7]

Proof:

A diatomic distribution has the routine parametrization by probabilities
A, 1 — A at atoms x|, x,. Instead, we choose as the three parameters the mean
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4 and the locations of the two atoms expressed in (3). The equation of
mean = g is equivalent to the probabilities at the atoms equal

y x
®) { , }
x+y x+y
The equation of variance = ¢? is equivalent to
C)] xy=o?.

2
o
With y = —, the probabilities (8) can be rewritten as (4). Finally, the

X
equation of third central moment = «* is equivalent to
2,2 2
o (0" —x
(10) ey
X

which is a quadratic equation in x and has two solutions, one positive and one
negative in this case. The positive solution is (5). Use (9) to obtain (6).

To prove (7), observe that for fixed 4 > 0 and @2, as x> goes from the right
to the left on the real line, the corresponding u— x goes also from the right to
the left. The value of x* for which u—x =0 is given by the right side of (7).

Q.E.D.

Remark: The third central moment equation (10) is best understood as

w

K

(ll) .})_’Y = ~_2 3

g

since (9) and (11) give a geometric interpretation of 2 and x° in terms of the

three points: the mean g and the two atoms u—x and u+y. Equation (9) says

the standard deviation is the geometric mean of x and y. Equation (11) says

that the asymmetry as measured by y— x is fully responsible for the skewness
3 3 : 3, 2 , .

x”, after x” is properly scaled into k”/¢°. The transformation of u, x, y to ku,

kx, ky would change skewness to k°x’, but equation (11) would be scale

invariant.

2.2. Diexponential distributions

Out of two exponentials with parameters 0 < ff < y, we adopt the convention
that the smaller of the two parameters is always named f, and call a distribution
with density function

(12) p(x)=ABe P*+(1—A)ye ™ for x>0

a diexponential distribution when and only when 4 makes the above p(x) a
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(non-negative) density function over x> 0. The necessary and sufficient
conditions for 4 making p(x) a legitimate density function are:

(3) 0o<a< 1,

y—B

since A negative would lead to p (x) negative for large x, and <4 would
y—B

lead to p(x) negative for small x. A member of this three parameter family

is traditionally called a mixture of two exponentials when 0 < A <1 and a

combination of two exponentials when 1 < 4 < =Y Note that when b=,
y—B
A =0, or A=1 it degenerates to a single exponential. When 4 = i we
=B

have p(0) = 0 and it becomes a two parameter family:
_As
(14) p(x)=ABe P*—APe 4-1" for x>0, where 0 < f,1 < 4.

This distribution is the independent sum of two exponentials of parameter
and of parameter y and is usually parametrized as:

(15) p(x)=ﬂ(e"ﬂ"—e_”) for x>0

y—B
-7 Be I
y=8 y=F
where 0 < f < y.
How big is the family of diexponential distributions? Can a diexponential
always be found to fit up to the third moment? This question translates into
the solution of the following system of equations

A 1-4
(16) —+——=EX) =y,
B y
A 1-4 E(X? L
(17) Z _ B _ ot
£y 2 2
A 1—-4 EX° Yr30iu+4°
(18) 2. - EXD) _mHSatutw
i y> 6 6

We shall find that the answer is different from the case of diatomic
distributions where any g, o2, and x> would find a diatomic fit.
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Following the intuition gained from the case of the diatomic distribution, we
1

parametrize the diexponential distribution with three ““points™, u, b = — , and
B
1
¢ = — . Solving (16) for A we get
14
—_— l —
(19) = B _u-c

y—B b—c’

which allows us to turn (16), (17), and (18) into equations in g, b, and c. Since
our points b and ¢ are not atoms, unlike the diatomic case, 1 — A4 is allowed to
be negative but still gives a genuine probability density function. The conven-
tion of 0 < <y < oo becomes 0 < ¢ < b < o0, and (13) becomes

c<u<b+ec.
Consider
0) ol =2ub+2pc—2bc—p?
3)) =2+ (b—c)—(u—c)—(b-u)’
(22) = @' =2{bc—(b+c—p)p}

where the first equality is obtained by solving (17) for % and the other two are
algebraic reformulations. For y fixed and 0 < ¢ < u < b (mixture of exponen-
tials, i.e., 0 < A4 < 1), (21) tells us that o? is at least 4* and gets close to x* when
¢—uand g« b. For y fixed and 0 < b < u < b+ ¢ (combination of exponen-
2
), (22) tells us that ¢2 is at most z® and at least £

tials, 1e., 1 < 4 <
b—c
2

because {-} is always non-negative and is at most £ The last statement 1s
4

verified by the observation that 6+c= (b)+(c)=(b+c—u)+(u) and the
maximum of {-} as a function of the two variables b and ¢ is reached at
pe—b+cand boec.
For fixed u, we found that it is necessary for ¢? to be big (> u?) to fit a
mixture; and one would guess x° must not to be too small. The exact lower
2
bound of x* will be determined later. It is necessary for % < g?<yu? to fit

a combination; and one would guess x* must be in an interval too. The exact

interval for x> will be determined later. For a2 = x4?, (21) and (22) both tell us

2

that it must be a single exponential, thus (ii) below is proved. For gl =

—2 2
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(22) tells us that we must have c=5b= ﬁ, thus (1v) below is proved. We have
2

just proved most of part A in the following proposition.

Proposition 2:

A. Necessary and sufficient conditions for finding a fit: For a fixed x> 0,

0

(i)

(iif)

(iv)

v)

for 62> pz,
.3 w+3of . . .
if x° > , then a mixture of exponentials with 4 <1 fits,
2u
4 4
. +30 . . .
if k¥ < r779 , then there is no diexponential that fits;
2u
for o = i*,
A LA o : :
if «° = ——— = 2u°, then the fitting diexponential degenerates into
2u

a single exponential (1/x), any other value of x> has no diexponential
fit;

for £ < al <y
2

4+3 4
if 6uc?—4u® +J18(u*—0?)® <«? <ET7T ,

2u

then a combination of exponentials with 4 > 1 fits,

4+3 4
if K3<6uc?—4u° +J18(u*—6?)® or 2779 < K,

2u
then there is no diexponential that fits;
2
for o = - ,
2

3
if K%=6uc’—4u° + 18(u*—0?)® = £ ,
2

then the fitting diexponential degenerates into a single gamma (2, 2/u), any
other value of x* has no diexponential fit;

5 .
for ? < 2 , there is no diexponential that fits the given moments.
2
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B. The fit: When the three moments g, o2, > satisfy the above conditions to
give a fitting diexponential, the appropriate parameters are:

23 | I k=222 k%4’ uB0* - 240+ 1865~ 180° 12+ 607 p* - 2 4°
By 6(a%— 1)
-1
4= By
Y8
Proof:

The bounds for x* will be found naturally after we solve (16), (17), and (18)
and establish B. Substitute (19) into (17) and (18) and write everything in terms
of u, b, and c. Solve the second moment equation for b and substitute this back
in to the third moment equation for ¢. This is a quadratic equation which we
solve to get solutions ¢,, ¢,. Substitute back to get b, b,. With the algebraic
symmetry of b and ¢, it is not surprising that we found {c,, b;} and {c,, b,} are
the same set of two numbers. By the convention of § < y, we name the smaller
number ¢ and the bigger number b. The formulas in B are thus established.

The mysterious bounds in A are determined by studying (23). The fact that
(23) must give positive values leads to the question of when is the right side of
(23) zero:

(3=2p)=k—4K3p(Bo’—2u>)+186°— 180" 12 +60°% u* — 2 u®,
which is a linear equation in x>. Solving for x> gives
3 = u+3at '
2u

The fact that (23) must not give complex numbers leads to the equation of
the expression under the square root sign in (23) equals zero:

ke —adx*u(Ber—2uH)+180°— 180  yu*+60*u* —2u° =0,

which is quadratic in x>. The two roots for x> are

k3= 6uc?—4u> £ J18(u*—0c?3.

Of the two roots, the one taking the + sign is bigger and determines the
boundary that x> must not go below. Q.E.D.

3. RUIN PROBABILITIES FOR DIATOMIC AND
DIEXPONENTIAL DISTRIBUTIONS

The ruin probability formula for a discrete claim amount distribution has been
given by SCHMITTER (1990). See KaAs (1991, p. 136). For similar formulas see
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SH1u (1989). Proof for the atomic case and a reference to FELLER (1971) are
found in SHiU (1987). We list the ruin probability formula for diatomic claim
amounts below for use in Section 4:

0 . PPy
e vw=1-—— Y (~fth eIE
1+9k,z,:g Ky,

(W—kyx,—k2x3) 4

(1+0)u

The theory of ruin probability for mixture and combination of exponentials
is well known. See SHiU (1984), DUFRESNE and GERBER (1988), (1989), (1991),
and CHAN (1990). In the case when there are only two exponentials, the
adjustment coefficient equation

where z =

M -1
(1+0)u = _X_(r)_
r
is quadratic and has solutions:
1 1 _ 2 4 8y0
25 Rorp=—|pf+ty - +\/ —@rn) =1,
2 u(l+6) u(l+6) 1+6
and
(26) ww)=Ce R+ Cre™ 2"

where C,, C, are found by the Tacklind formula (r, = R):

2 re vy Bi—r
Q7 C, = LT E—k=1,2.

itk ri—r i=1 f,

4. DIATOMIC AND DIEXPONENTIAL AS APPROXIMANTS

In this section, we study three claim amount distributions and compute ruin
probabilities of approximating diatomics and approximating diexponentials
with matching first three moments and compare the approximations with the
exact values of w (u). In the first example (Cramér’s fire) the claim amount
distribution has a large spread, none of the approximations is very close to the
exact value. Along with the first example we discuss the run-off error problem
encountered in the Takacs type formulas. In the second example (Reckin,
Schwark, and Snyder’s individual life) the claim amount distribution has a
medium spread, both the diatomic and the diexponential give good approxima-
tions. In the third example (Mereu’s group life) the claim amount distribution
has a small spread, the diatomic gives an excellent approximation, but the
spread is so small that there is no diexponential fit.
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Example 1: We consider Cramér’s fire insurance data, the one mentioned in
the introduction. In the following table, the exact values: of w (u) for 8 = 0.3,
and the values by the Cramér-Lundberg approximation-are taken from
CRrRAMER (1955, p. 45). The values by the Beckman-Bowers approximation are
taken from BEEKMAN (1969, p. 279). The ruin probability formula for diatomic
claims, (24), leads to convergence problems when u is large. Our exprience
echoes with that reported in SEAH (1990, § 4). For values of u close to and above
30 times u, run-off errors take over and we obtain probabilities less than zero
or greater than one. These problematic values are indicated by ** below. In
Table 1, the approximating diatomic has atoms {.7657175616, 181.1382584}
and probabilities {.9987011192, .001298880855} as found by (3), (4), (5), and (6).

1 1
The approximating diexponential has 7} = 60.75201696, — = 6552147239,
Y
and 4 = .005737165094 as found by (23) and (19).

TABLE 1

CRAMFRS FIRE INSURANCE
u= 1, o¥u’ = 4220323069, x*jo> = 27. 69286626

u w(w) CL BB diatom. diep. CL/w(u) BB/y (u) dia./y (w) die./y (w)
20 .5039 4524 5140 4133 4666 0.898 1.020 ' 0.820 0.926
40 .3985 3904 4079 e 4010 0.980 1.028 b 1.006
60 3280 3370 3369 o 3447 1.027 1.027 bk 1.051
80 2757 .2909 2812 b .2962 1.055 1.020 bk 1.074
100 .2346 2511 2369 b 2546 1.070 1.010 b 1.085

Example 2: In this example, we consider the individual life insurance data
from RECKIN, SCHWARK, and SNYDER (1984). This claim amount distribution
was studied as Example 3 in SEACH (1990), from where we took the exact
values of w(u). The claim amount X is discrete with 'support
{1,2,3,4,5,7,8,10,12,13,15,16} and probabilities (in order) {.5141, .3099, .0639,
0220, .0194, 0096, .0276, .0036, .0041, .0019, .0013, .0226}. Since the claim
amount distribution is dispersed enough, we have a dxexponenual fit by (1) of
Proposition 2.

TABLE 2.1

w (#) BY SEAH FOR RSS s INDIVIDUAL LIFE INSURANCE DaATA
= 22896, ¢/u* = 1.43257300, x*/o’ = 3 60560786

g=.1 0=.2 0=23 0=.4 6=.5
u=0 .909091 .833333 769231 .714286 .666667
u=10 .644361 450722 .334890 .260412 .209732
u=20 469129 .254324 152965 .099371 .068466
u=730 341528 143813 .070341 .038430 .022840
u=40 .248408 .081101 032173 .014735 .007526

u=150 .180700 045752 014725 005654 .002482
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TABLE 2.2

(DIATOMIC APPROXIMANT)/yw (1) FOR RSS’S DATA
The approximating diatomic has atoms {1.580450117, 12.887964915} and probabilities {.9372389245,
06276107517} as found by (3), (4), (5), and (6).

6=.1 =2 8=.3 0=24 0=.5
u=0 I 1 1 1 1
u=10 1.013 1.029 1.045 1.060 1.073
u=20 1.003 1.007 1.012 1.015 1.018
u=730 1.001 1.000 0.996 0.990 0.981
u=40 1.001 0.999 0.992 0.982 0.968
u=150 1.001 0.997 0.988 0.974 0.957

TABLE 23

(DIEXPONENTIAL APPROXIMANT)/y (4) FOR RSS’S DATA
The approximating diexponential has %= 5.448377581, %= 1.930653556, and 4 = .1020393986
as found by (23) and (19).

=1 0=2 0=.23 0=4 0=.35
u=0 1 1 1 | 1
u=10 0.997 0.984 0.966 0.947 0.928
u=20 0.994 0.985 0.979 0.978 0.984
u=730 0.995 0.991 0.997 1.016 1.047
u=40 0.996 1.000 1.022 1.066 1132
u=150 0.998 1.009 1.048 1.119 1.224

Example 3: In this example, we consider the group insurance data from
MEREU (1972). This claim amount distribution was studied as Example 2 in
SEAH (1990), from where we took the exact values of w (x). The claim amount
X is discrete with support {4,6,8,10,12,14,16,20,25} and probabilities (in order)
{.15304533960, .07882237436, .11199119040, .10432698260, .09432769021,
10925807990, .09727308107, .18073466720, .07022059474}.

TABLE 3.1

w (u) BY SEAH FOR MEREU'S GROUP LIFE INSURANCE DATA
u = 1261243786, o¥/u® = 0.25079144, 13/’ = 0.30556145

§=.25 6=.5 g=.5 0=1
u=0 8 666667 571429 .5
u=25 .433995 232316 .141606 .094198
u=50 .222739 072766 .030113 014607
u=175 114114 022685 .006349 002236

u= 100 058463 007072 .001339 .000342
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TABLE 3.2

(DIATOMIC APPROXIMANT)/ (1) FOR MEREU'S GROUP LIFE INSURANCE DATA
The approximating diatomic has atoms {7.187946466, 19.96691435} and probabilities {.5755141225,
4244858774} as found by (3), (4), (5), and (6).

0=.25 0=.5 0=.5 0=1
u=0 1 I 1 l
u=125 0.9995 0.9992 0.9986 0.9977
u=>50 1.0003 1.0004 0.9988 0.9962
u=175 1.0000 0.9978 0.9929 0.9857
u=100 0.9997 0.9962 0.9888 0.9795

The diatomic approximant is producing excellent values! Since the variance
is quite small, there is no diexponential fit as indicated by Proposition 2, (v).
Note that because the approximating claims distribution has the same mean
and variance as the orignial, the non-ruin probabilities are overestimated as
well.

5. THE SCHMITTER PROBLEM

The Schmitter problem asks: Given 6, u, u, o, and the range [0, b], is there a
distribution with support on [0, 4] which would maximize the ruin probability
w(u)? See BROCKETT, GOOVAERTS, and TAYLOR (1991) and Kaas (1991).
Schmitter’s conjecture of diatomic being the one giving the extremal ruin
probabilitity inspires us to use diatomics as approximants. The conjecture,
however, has been disproved by Kaas (1991).

The general question is the stability of w () when p(x) is under perturba-
tion. Schmitter specialized to the question of extreme value of w (v) for fixed 8,
u, u, 0, and range [0, b]. We would ask another specialized question: Find the
extreme value of y (u) for fixed 8, u, 4, ¢?, and x3. Like the Schmitter problem,
our question may not have a complete solution. Qur question is related to the
practical problem: When the true claim amount distribution is represented by
the sample, which is a discrete distribution, or is parametrized, for example, as
a mixture of exponentials, how robust is the ruin probability? In this paper we
have found computational tools to address the stability of y (¥) when p(x) is
diatomic or diexponential with first three given moments.
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