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ABSTRACT

Outlier observations caused by big claims or by an event producing a series of
claims are a special problem in ratemaking and in tariff calculation. The
authors believe that combining credibility and robust statistics is the right
answer to this problem The main idea 1s to robustify the individual claims
experience by using a robust estimator 7, instead of the individual mean X,
and to look at the credibility estimator based on the robust statistics
{T,:1=1,2,..} Choosing a particular influence functton leads to data-
trimming with an observation-dependent trimming point.
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1. INTRODUCTION AND MOTIVATION

The data in Figure 1 represent observed loss ratios (claims amount divided by
sum nsured) of a given risk group in industrial fire over a ten year period.
Figure 1 1s an example of the following situation often encountered 1n practice:
most of the observations are lying randomly within a band depending on the
size of the group and on the line of business, but a few observations are far
away and much bigger The smailler the group the more likely are such ‘outher
observations’. They are cause by individual big claims or by events producing a
series of claims (e.g. storm).

Assuming you want to estimate the pure risk premium for the given risk
group of Figure | based on a ten year observation period, the first obvious 1dea
would be to take the mean over the observation period as an estimator, which
would give an estimated value of 0.66% But if you do the same calculation
one year later, then the ‘outlier’ observation of year 1 1s probably replaced by
an ordinary observation 1n year 11, and the ten year average decreases by
about 20% Of course such random fluctuations have to be avoided in a
professional tariff-calculation. The simple mean 1s not a suitable estimator and
there 1s a real need for more sophistication The main problem to be solved is
how to treat outlier observations in rate making and in tanff calculation.

I A first version of the paper was presented at the ASTIN Colioquium 1990 1n Switzerland
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FIGURE | Observed loss ratios of a nisk group n industnal fire

Before trying to give a theoretical answer 1t 1s nteresting to see how this
problem was tackled in actuanal practice. For this purpose let us have a look
at the methods used for the calculation of the pure risk premium 1n industral
fire in Germany and in Switzerland.

A short description of the German calculation system 1s given in J. STRAUSS
(1984). The annual statistics are built up 1n a hierarchical way. On the lowest
level there are the data (sum insured, loss ratios, etc.) of so-called risk types,
which are taken together into risk groups, which again are combined to risk
categories. At the top level, we have the data of the total industrial fire business
as a whole. The tanff is calculated by some kind of hierarchical procedure from
top down. The Buhlmann-Straub credibility model is successively applied at the
different levels By doing so the total claim amount 1s first spread among the
risk categories, then within the risk categories among the risk groups and
finally within the risk groups among the risk types. Thus the claims load of
each claim (for instance a big claim) hitting a particular risk type 1s successively
divided up at the different levels. The higher the level on the hierarchical tree
the bigger will be the credibility weight, and the larger will be the portion of the
claims load that will remain within the corresponding group or category.

The Swiss calculation is based on a method developed by H. AMMETER
(1982). In each position of a hierarchical tree (risk group, risk type etc.) he
makes a distinction between ordinary and extraordinary loss ratios. The
extraordinary loss ratios are trimmed 1n an approprnate way. By doing so the
corresponding aggregate claim amount is divided up mto an ‘ordinary part’
and an ‘xs-part’ But how to distinguish between the two types of loss ratios
and where to fix the tnmming pomnt? Ammeter’s 1dea was to look at the
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influence of an annual observation on the loss ratio taken over the whole
observation period. The trimming point 1s calculated in such a way that the
mfluence of each observation ts limited to the influence of a zero-observation.
This calculation 1s carried out at different levels of a hierarchical structure from
bottom up. At each level the xs-part of the aggregate claim amount 1s equally
distributed over the neighbouring group at the next hierarchical level.

Both methods—although quite different—were successfully applied in the
tanff calculation and led obviously to reasonable results {otherwise they would
have been rejected by the practitioners). From both methods we can learn
something

The German system 1s based on credibility theory. Indeed credibility theory
m its standard form makes a first step in the right direction, how to charge
outlier observations. It explains to us that claims should not be fully charged,
but only with their respective credibility weight. However, it turned out in
practical applications that outliers might still have distorting effects. On the
one hand they cause a substantial reduction of the credibility weights. As a
consequence the credibility premiums of ‘risks’ without large claims are
smoothed too much towards the overall mean. On the other hand the
credibility premium of a nisk might increase tremendously by the occurrence of
one single large claim. To overcome this GISLER (1980) combined credibility
procedures and data timming. This method has successfully been used in
actuarial apphcations However, it 15 not applicable to situations where only
claims rates are given and where the corresponding volume measures are
different 1n size The use of hierarchical procedures and the introduction of
hierarchical credibility models was certainly a further step on the credibility
staircase, which 1s of great importance for practice. As already mentioned, the
German system 1s based on such an approach

At first sight the Swiss method introduced by Ammeter seems to be an
original, rather pragmatic approach. However, looking a little closer, one
observes that 1t 1s also related to a famous theory. The idea of Ammeter 1s to
limit the influence of single observations. But this is the basic concept behind
robust statistics. Indeed Ammeter introduced—perhaps without being aware of
1t—a robust estimator. We shall come back to this estimator later on

The first to have the idea of combining credibility theory with robust
statistics was H. R. KUNSCH (1992). He already presented some main 1deas at a
lecture given 1n February 1990 at the ETH in Zurich The diploma work of
REINHARD (1989) had also been written under his gurdance. At the 1990
ASTIN colloquium at Montreux the present authors then presented an early
version of this paper At the 1991 ASTIN colloguium 1n Stockholm there was
another paper by Kremer on the same subject, which has been published in the
meantime in the German actuanal journal (KReMER (1991)). The main
objection of the present authors agamst Kremer’s approach 1s that his
estimators are globally (expectation over the whole portfolio) biased.

The present authors believe that combining credibility with robust statistics is
the right answer for dealing with outlier-observations and that this idea has a
great potential for practical applications Tn Section 2 some basic definitions
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and findings from the theory of robust statistics will be given. To make this
paper self-contained, some well-known results of standard credibility are
summarized in Section 3. Specific robust credibility estimators as well as the
corresponding estimates of the structural parameters are presented 1n Section 4.
A simulation study carried through in Section 5 illustrates the functioning of
the robust credibihty estimators presented in Section 4.

2. RESULTS FROM THE THEORY OF ROBUST STATISTICS

In this chapter we introduce some basic concepts and summarize some main
results out of the theory of robust statistics, which we will need later on. We
rely on the presentation in HAMPEL and alu (1986), which we can recommend
as an excellent introduction. All results are given without proofs and the
interested reader 1s again referred to HAMPEL and alu (1986).

Robust statistics is an extension of classial parametric statistics, taking into
account that parametric models are only an idealized approximation to reality.
It studies the behavior of statistical procedures not only under strict parametric
models, but also 1n the neighbourhood of such models The idea is to construct
statistical procedures which still behave fairly well under slight deviations from
the assumed model. In a formal sense we might say that robust statistics is the
statistics of approximate parametric models. The main aim 1s to describe what the
bulk of the data is telling us. However 1n insurance we cannot forget about the
deviating observations. A big loss ratio for instance is not simply an ‘error
noise’ in our data, but rather caused by rare events like storms, big fires etc.
which make a substantial part of the total claims costs. A ‘second’ aim of
robust statistics 1s to identify deviating data points for further treatment. In
insurance this 1s often as important as the description of the bulk of the
data.

Suppose we have one-dimensional observations X,,..., X,, which are
assumed to be 1.1.d. and distributed according to Fy (density f;) out of a
parametric family {Fy; 9 € ©}. To be more precise, we know that this is an
idealization of reality and we assume that the true distribution hes n the
neighbourhood of our model. We want to estimate the expectation of X, For
simplicity’s sake we further assume that the parametrization 1s chosen 1n such a
way that 3§ = Ey[X,]. We denote by G, the empirical cdf (cumulative distribu-
tton function) of a sample with n observations As estimators of $ we consider
real-valued statistics T,, = T(G,), where T are functionals. The simplest dea to
look at the influence of a single observation is the so called empirical influence
Junction. Given a sample (x,, . ., x,_ ) 1t 1s the plot of T,,(x;, ..., x,~;-x) as a
function of x.

By translating and rescaling one obtains the sensutvity curve

(1) SC,,(X) = ”[n(xl LI ] xn—l’x)_ T;l—l(xlv .. 7xn—l)]

Letting n — oo yields the influence function invented by HaMPEL (1968,
1974).
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Definition 1
The influence function (IF) of T at F s given by

@  IF(; 7 F) = lim T(1—t)F+14)—T(F)
! {

where 4, is the probability measure putting mass | at the point x.

The IF 1s mainly a heuristic tool with an easy heunstic interpretation: it
describes the effect of an infinitesimal contamination at the point x on the
estimate, standardized by the mass of contamination

Definition 2

The gross-error sensitivity of T at Fs defined by
3) p*=sup |IF(x; T, F)|.

The gross-error sensitivity measures the worst wnfluence which a small
amount of contamination of fixed size can have on the value of the estimator.
It 1s desirable that y* (T, F) be finite. Robustifying an estimator s typically
putting a bound on y*(T, F)

Ifther.v. X,(i= 1,2, ..) are1id. according to G, then G, will tend to G by
the Glivenko-Cantelli theorem. As a consequence

T;I(Xl,--'an)—n_._w'T(G)

whenever T is continuous with respect to the sup-norm, which will normally be
the case
In most cases

Jn (T,= T(G)) o= (0. V(T. )

1e. T, 1s asymptotically normal distributed with expectation 7(G) and variance
V(T, G)/n. V(T, G) 1s called the asymptotic variance.
In regular cases, the following important relations hold true.

4) j IF(x;T,G)dG(x)=0

(5) V(T, G) = j IF(x: T, G)? dG(x).
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Our amm is to find a functional T resp. an estimator 7, with bounded
gross-error sensitivity. For this purpose let us first have a look at the maximum
likelihood estimator (MLE), which 1s defined as the value

§=T,(X,,..., X,) which maximizes [] /5(X),

=1

or, what is equivalent, by

(6) Y 1= Infr (X)) = min !

1= n

HUBER (1964) proposed to generahze this to

n

N Z pX,,T,) = mrlnn!

=1
where p is some function on Rx @

Suppose that p has a derivative w (x, ) = (3/30) p(x, #), then the estimate T,
satisfies the implicit equation

n

(8) Y w(X,T)=0.
=1
Definition 3
An estimator defined by (7) or (8) 1s called an M-estimator

If G, is the empirical cdf generated by the sample, then the solution 7, of (8)
can be written as T7(G,), where T 1s the functional given by

9) j v (x, T(G)) dG (x) = 0.

As already said, 7, will normally tend to 7(G) Or looked at the other way
round, T(G) is the asymptotic expectation of 7,,, which can be calculated by
formula (9).

Theorem 1

Let 7, be an M-estimator defined by (8), and IF(x; w, F) the influence
function of T at F, then

v (x, T(F))

10 IF(x;w, F) = — B — .
(o) (v F) — | @/09) lw (v, D7 ry dF (3)
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Remark

Theorem 1 states that the influence function is proportional to the y-function.
Hence using (8) with a bounded w-function automatically results in an estimator
7, with bounded gross-error sensitivity

From (5) we obtain for the asymptotic variance of the M-estimator

(am V(T, G) = [ v?(x, T(G)) dG (x) 2
(] @129) [y (3, O, 4G ()]

3. STANDARD CREDIBILITY

To make this paper self-contained we summarize in this subsection the
assumptions and estimators in the Biihlmann and Straub model (1970), which
1s well known and presumably the most frequently applied credibility model in
insurance practice.

Consider a portfolio of nisk (‘risk’ = synonym for things like individual
policies, risk classes, risk types etc) numbered 1= 1,2, .., N Assume that
each risk 115 characterized by a hidden risk parameter @,. X, = (X,y, ..., X,,)
1s the observation vector of nisk i (e.g. X, = loss ratio of risk / in year ;).

Assumptions
BS!: The random variables X, (;=1,2, .., n) are conditionally, given @,,
independent with
E[X,)|0])=pu(0)
Var[X,10]=0%(8)/V,
where ¥, are known volume measures.

BS2 The pairs (@, X)), (©,, X,), . are independent, and &,,0,, . are
1id.

The aim is to estimate for each risk 1 the risk premium px(@).
An estimator (@) 1s said to be better than (@) if
E[(2(8)—p(0))’] < E[(2(0)~1(8))’]

that 1s we use quadratic loss.
The best possible estimator based on & ={X, - i=1,.. ,N,j=1,...,n}1s
A(e) = E[u(0)| %] which 1s called the exact Bayesian estimator The credibil-

ity estimator, 1.e. the best estimator of the form g(@) =, + Z a,X,, 18
Lt

(12) f(0) = p+o,(X,—p)
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where p= E[X,] = E[u(©))]

/\7: = l/l—l Z V;jX‘./ V.= Z V’f
J=1 =1
V,
0 = 17 with v = Var [u(0))]
Vv+u u= E[0*(8)].

In insurance practice the structural parameters y, u, v are mostly unknown
But they can be estimated from the data. By replacing the unknown parameters
in (12) by the corresponding estimators one arrives at the empirical credibility
estimator.

4. ROBUST CREDIBILITY

The individual claims experience enters into the credibility estimator (12) by
means of X,. It 1s well known that the credibility estimator is exact Bayesian
for various specific models. But 1t 1s also known that the credibility estimator
might behave rather poorly 1f such a specific model is disturbed by a process
producing only a few outhers (see for instance BUHLMANN, GISLER, JEWELL
(1982)). The 1dea of Kinsch was to robustify the individual claims experience
by using a robust estimator 7, = T,(X,,, .., X,,) instead of the X,. The hope 1s
to get estimators which also perform reasonably well in the neighbourhood of
models, where the credibility estimator 1s exact Bayesian. REINHARD (1989)
and KUNscH (1992) considered semilinear credibility estimators (see for
instance GISLER (1990)) based on the statistics {7,:i=1, ..., N} We suggest a
shghtly different approach. We propose to divide the pure risk premium 1tself
into an ‘ordinary part’ and an ‘xs-part’, and to estimate each component
separately.
Formally we write

(13) ,u,\’(@l) = U (01)—{_#\5(@:)
where uy(0,)) = E[X,|O)].

The ‘ordinary part’ u,(®,) should be interpreted as the expected loss ratio
generated by the claims load of ‘ordinary losses’, whereas the ‘ xs-part’ u . (@)
1s the additional expected claims load generated mainly by extraordinary events
(e g. big fires), whose occurence usually lead to an outher observation of the
affected loss ratio.

To estimate the ‘ordinary part’ p,(@,) we combine credibility and robust
statistics, that 1s we estimate u,(€,) by a credibility estimator based on a robust
statistics {T, i=1,..., N}. Since 1t 1s the very nature of a robust statistics to
describe what the bulk of the data 1s telling us, we put by definition*

(14) 1,(@) =E[T|6)].
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As to the ‘xs-part’ 1., (@,) to be interpreted as the additional expected claims
load mainly generated by extraordinary events, the present authors believe that
the actuary should reflect upon how much the nisks 1n the portfolio are exposed
to such ‘outher-events’ and to use this knowledge for ratemaking. In mathe-
matical terms this means to put more a prior structure into the model. An
often encountered <ituation will be that all risks in the portfolio can be
considered as equally exposed to outlier events. Then the a prior structure 1s
identical with the

(15) assumption 1s(@)=u,.

It might happen that for instance risk 1 is considered to be twice exposed to
‘outher-events’ than risk 2, or generally, that the a priori structure is given by
s (0) = A p, where A is a known N x 1 matrix. If no such a priori knowledge
is available then there still remains the possibility to estimate u,,(@,) by a
credibility estimator. But on what statistics should this credibility estimator be
based on? One possibility would be to base the estimation of u,, (@) also on
the robust statistics 7, Then the resulting estimator (13) of u,(®,) would be
identical to the one considered by REINHARD (1989) and K UNscH (1992) in the
case of i1dentical volumes. But this makes only sense 1f it is natural to believe
that the bulk of the data reflected by the robust statistics T, does also tell us
something with respect to the ‘xs-part’ However, in most practical situations
this is hardly the case. The usual situation will be that the bulk of the data
contains very little information with respect to ‘outlier-events’. Hence 1if using
a credibihty estimator for u,.(@)), it will be more natural and more appropriate
In most cases to base 1t on the statistics of the observed xs-loss ratios
XS, = X,—T, Very often the resulting credibility-weights will be near to zero,
such that the resulting estimators will be similar to the ones obtained on the
basis of assumption (15).

In the following we shall work on the hypothesis of assumption (15).
However 1t should be no difficulty for the skilled reader to adapt the results to
the other situations mentioned above. With assumption (15) the robust
credibility estimator of uy(@,) equals

(16) iy (@) = pyt 1,(0)

where [,(@,) is a credibility estimator of u,(€,) based on a
robust statistics {7, 1= 1,..., N}.
By standard technmiques we find that

(]7) ﬁo(@l) = #T‘+al(7-;_:uT,)
_ Var [11,(0))]
where o, =
E[Var [T)O]]+ Var [ur,(6,)]
nr(0) = E[T|0]

Hr, = E[T]
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Remark on the notation

The careful reader will have noted that ur (@) 1s identical to u,(@) by
definition (14). However, we have here and 1n the following deliberately chosen
this notation to indicate explicitly the dependence on the choice of the robust
statistics 7,.

(17) 1s the general formula of a whole class of robust credibility estimators,
since we have by now not specified the robust estimators 7,. Indeed, there are a
lot of robust estimators proposed in the hiterature on robust statistics Instead
of going through this palette we prefer to present a specific estimator, which 1s
feasible in practice and which performed well in the simulation study carried
through in Section 5. By feasible we mean that there is a simple algorithm to
calculate 7; and that there are explicit formulae to estimate the structural
parameters.

4.1. Robust credibility in the Biihlmann and Straub model
with identical volumes

In this subsection we assume that the volume measures in the Biihimann and
Straub model are identical, ie. V, =V (i=1,2,. .,N,j=1,2,.. ,n) Inthis
case an M-estimator 7, is implicitly defined by

(18) Y W, T)=0.
=1
If we assume a scale model, i.e. Fy(x) = P(X, < x|0, = &) = F(x/9), then it
is natural to put

(19) y(x, 9) =y (x/9).

A typical example of a scale model 1s model I of Section 5, where the X, are
supposed to be [-distributed with shape parameter ¥ and scale parameter ©,.
The standard credibility estimator is exact Bayesian in this model. However, as
soon as the true underlying model deviates only shghtly from the assumed
model, then the standard credibility estimator mught be rather poor. For
instance, 1n model II of Section 5, it is assumed that the bulk of the data 1s well
described by model I, but that some few observations are taken from another
‘xs-urn’. In this model IT one can show that the influence function of the exact
Bayesian estimator 1s limited and has the following shape: 1t is first linearly
growing, takes somewhere its maximum and tends then to zero for x -—» co. This
and the fact that robustifying an estimator means to use a limited influence
function, motivates us to choose

(20) w(x)=min(x—1,1).

This 15 equivalent to the influence function drawn in Figure 2.
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u(®)

FIGURE 2 Influence function of the estimator 7, given by (18) and (20)

Inserting (19) and (20) into (18) yelds

(21) me(ﬁ—l,l)zo.

=1 T,
i 2t
Since min (—x— -1, 1) = Em(x—’—) — 1, we obtain
4 {
l n
(22) T,=- Y mn(X,,2T).
n ;=1

Remarks

— Note that 7, 1s a weighted mean of trimmed data with a data-dependent
trimming point.

— The robust estimator 7, is given by an implicit equation.

— By the choice of the w-function and by (10) it becomes obvious that the
influence of a yearly observation 1s limited to the influence of a zero-
observation. Hence 1t is not surprising that the estimator (22) 1s identical to
the one used by AMMETER (1982) in the case of identical volume mea-
Sures.

For finding an algonthm to solve this implicit equation, we consider the
function

n

(23) (1) =1 Y, min(X,,20).

n ;=1
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Denoting by {X,(,y:y =1, .., n} the order statistics of {X,:j=1,. ., n} and
by /, the number of zero-observations of risk : we obtain

f2 |
;(n_[,) for ts EX,([,+|)
4 _< n—j 1 1 .
f(t)— 2 B for EX‘(J)<IS EX‘(J'*'U j—[,+1,.‘.,n_l
\O for 'lz‘X,(") <t
A
f(t)
. >t
Ti
ﬂk
3 f(t)
>t

FiIGURE 3 Two possible graphes of function f'(r) given by (23)
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Thus 7, can be calculated by the following procedure:

129

Calculate T\ =f£(X,(,,/2) for y=n,n—1, ... until T’ > X, /2 and let k,
be the first index, for which this inequality 1s fulfilled. If such a k, > 1 exists

then
kl
> X
(24) 7= otherwise T,=0.
2k,—n
Remarks

—_— If X‘(")SZ/?, then T;: /?,.

— If half or more of the observations X, are zero then 7, =0. To be more
precisc, if cxactly half of the observations arc zero, then every point in the
interval [0, 0.5+ X, , ;] would be a solution of (21). The algorithm (24) takes

the zero-solution in this case.

Figure 4 illustrates the effect of applying the estimator 7, on the data of
Figure 1. The observations in year 1 and in year 7 are timmed down to 1.16 %o

with the effect that the arithmetic mean X, = 0.66%o 1s reduced by 12% to

T, = 0.58%.

To find the empirical credibility estimator we have to estimate the structural
parameters occurring in (16) and (17). As there exists in general no explicit

%0 2,0 ¥
1.5F . .
! Truncation Point
[o]
s *
s
1,01
r
a *
t
i
o
0,5 * * % *
*
*
0 0 1 I 1 1 1 1 | 1 ]
1 2 3 4 5 6 7 8 10

year
FIGURE 4 Loss ratios as in Figure |

X, =066 7,=058 Truncation Pont =116
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formula for ur (@) and Var[7)|0)], we replace ur(@,) by the asymptotic
expectation T,(Fg ) given by (9) and Var[T]|®)] by n~! times the asymptotic
vanance V(T,, Fg ) given by (11). Then we get

nor

(25) 1,(@) = pr + (T,— ur)

nortur
where vr = Var [T,(Fp)]
ur = E[V(T,, Fe,)]
Hr = E[#T,(@,)]-
To estimate the unknown structural parameters u,,, gy, Uy, vy out of the

data, we write (22) as

I n
(26) T,=- Y T, with T,=min(X,,2T).
n

=1

For convenience we call
7,

XS, =X,-T, the xs-claim amount.

the ordinary claim amount and

The situation for estimating u; and vy 1s identical to the one in the
Biihlmann and Straub model. It is slightly different for ur, since the rv. T,
(j=1,...,n) are not conditionally independent, given &,. Therefore we
estimate Var [T|@] by n~'4,, where 4, 1s an estimate of the asymptotic

variance V(T;, Fg ). By replacing Fg 1n (11) by the empirical distribution of the

{X,;7=1, .,n} we obtain after some straightforward calculations and after
changing the norming constant from n~' to (n—1)""
1 n
> (T, T)
n—1 =1
27) 4, =

2 n
1 - — Z 1[XU>2T,]
n

=1

where 1;; is the indicator function

Remark

Note that the denominator of (27) 1s equal to 1 in the case where all X, <27,
1e 1n the case where 7, = X,

Thus we finally arrive at the following estimators, which are the analogue of
the estimators in the Buhlmann and Straub model:

N
(28.1) gr =N"Y T,

-1
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N n
1
(28.2) fo =N XS, where XS, =— ) XS,
1=1 n =t
N
(28.3) dr = N7 Z a, where #, is given by (27)
=1
N
(28.4) b =W-17" Y, Ti—ap*—nlir.
=1

By inserting (28) into (16) and into (25) we get the empirical robust credibility
estimaltor

(29) fx (@) = fi+ fir+a(T,— i)
Iy
where a =
r”)r+ 127"

4.2. Robust credibility in the general Biihlmann and Straub model

Contrary to subsection 4.1 we shall now allow the volume measures ¥V, to be
differcnt. Then we have to generalize (18)-(20).

Assume for the moment that the volume measures are natural numbers.
Then we arrive at the general Buhlmann and Straub model by looking at the

X, as being averages of ¥, independent (unobservable) random variables Y,ﬁ"),

y o y

Vl
e X, = V,J_l 2 Y™, where the ¥!” fulfill the conditions of the Biihimann
v=1

and Straub model with identical volumes V,=1. By replacing the unobservable
Y,}") (v=1,2, . , V) by the ‘observed’ average X, and inserting them into (18)

we get

n

(30) Y, Vyw(x,, T)=0.

J=1

It 1s an obvious and natural 1dea to give more weight to an observation
belonging to a cell (¢,7) with a big volume measure and to use the volume
measures as weights. But we also have to modify the w-function (20). With the
idea of the X, being observed averages it becomes obvious that the observed
loss ratios will be the more smoothed the bigger the corresponding volumes ¥,
If we simply used (20), then a risk ¢ with small volumes ¥, would be favoured
compared to a nsk k with big volumes ¥, since the corresponding yearly
observations X, of risk : would have a bigger ‘chance’ of being truncated than
the yearly observations X,, of risk k. (20) leads to the estimator (22), where
observations X, belonging to the interval [0,2 7] are not truncated and are
considered as ‘ordinary’ observations. Hence we mught look at the interval
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[0, 2 T]] as something like a confidence interval. The generalization to a model
with different volumes 1s to make this interval dependent on the volume ¥, i.e.
to consider intervals of the form [0, (1+f(¥,)) T}]. This 1s 1dentical to making

the ¥-function dependent on the volume V), and to replacing (20) by

(31 w(x, V) = min (x—1,1(V,)).
Since /Var (X,10,, V,] = V,1a(0), we put
(32) fW)y=cv

where ¢ 1s a suitably chosen constant

(31) should be about the same as (20) for a risk i with average volume. Thus
natural candidates for the choice of ¢ are

N n
cl=ﬁ with I7=—1—Z Z v, or

nN =1 =1

¢; = y/median (¥)) (=12,...,N;;=1,2,...,n)

The authors suggest to use normally ¢; and to give preference to ¢, in cases,
where the volumes of the different risks in the portfolio have a distribution,
which 1s very skew.

By putting w (x, 3) = w(x/$) as in Subsection 4.1 and the inserting (32) and
(31) into (30) we obtain
n ) XU _{
(33) > ¥omin [ ZL-1,ept ) =0
J=1 T,

with ¢ = ¢, (or c=1¢y).

Note that (33) 1s a generalization of (21) to the case of different volume
measures Another derivation and justification of (33) and the resulting
estimator (34) are given in the append:x.

By the same arguments as used in the derivation of (22) we easily find that
(33) leads to

(34) T,= )

=1

min (X,, ¢, T))

g byl

RJAS

where ¢, = I+¢ V,J_*

n
V=2 ¥,
J=1
Note that 7, 1s the solution of the implicit equation

(35 T, =7(T)
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where f(¢) = Z ymin(Z,, 1)

AN 15

zZ, =¢'X,.

Denoting by Z,(,, the order statistics of Z, and by ¥, and c,(,, the
corresponding ¥, and c,, we find by using the same arguments as in Subsection
4.1 the following algorithm to solve (35):

Calculate T,V =f(Z,(,)) for j=n,n—1,... until T\ > Z,; and let k, be
the first index, for which this inequality is fulfilled. If such a k, > 1 exists
then

kl

VinamZuy
=1

(36) T, , otherwise T,=0.

n

V. — Z GV

J=k+1

I

Remarks

n
— If Zy<X then ,=X,=¥"" Y
J=1
n
— If /, denotes the number of zero-observations and 1f Z Vipcun sV,
J=4+1
then 7,=0. To be more precise, if we have strict equality in the above
equation, then every point in the interval [0, Z,, . ;)] would be a solution of
(33). The algonthm (36) takes the zero-solution in this case.

To find the empirical credibility estimator we have again to estimate the
structural parameters occurring 1in (16) and (17) from the data. Because
Fg (x) = P(X, < x|0) as well as the y-function itself depend on the volume
measure V,, a strict mathematical treatment becomes unfeasible. With the
modification made in the w-function (see (31) and (32)) we can assume that
E[T}®,] 1s approximately independent of the underlying volumes. We approx-
imate 1t by T(Fg ), where T(Fg) 1s the asymptotic expectation for a risk with
volumes V=1 The variance Var[T|@] clearly depends on the underlying
volumes. The variation of the volume measures over time within a risk, 1.e. the
variation of ¥, (j=1,2, . ,n), 18 in most practical situations rather small.
But there might be substantial differences of volumes between risks. Assume
for the moment, that the volumes V, (=1, 2, ..., n) within a nsk are fixed
and identical to ¥ . Since Var [X,Jl@,, V) = 02(@,)/17,, we might assume that

Var [T)0,, V] = V(T, F, ynV,, where V (T, Fg,) 15 the asymptotic vanance of
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a risk with volume 1. Hence a natural straightforward generalization of (25) to
the case of different volume measures is

. V.ior
(37 A,(0) = ur + ————(T,—py)
lvT+ ur

where V, =
J

vy = Var [T(Fg,)]

n
Yy

T(Fg )= asymptotic expectation for a risk with volumes V=1

ur = E[V (T, Fe,)]

V (T, Fg,) = asymptotic variance for a risk with volumes V=1

To estimate the structural parameters u,, pr, ur, vy write (34) as
n
- v, . .
(38) =) -YT, with T,=min(X,,c,T).
=1 W
For convenience we call
T, the observed ordinary loss ratio
XS, =X,—-T, the observed xs-loss ratio
and

V,T, the ordinary claim amount

V,XS, the xs-claim amount.

Inserting the empirical distribution function G, of the X, (y=1,2,. .,n)
into (10), we find after some straightforward calculations

T,-T
39 IF(x,; v, G) = y

" .
V,
_ y

J=1 1

Since Var [X,|8,, V,] = V,; '-6%(®,) we can assume that Var[7,|@,, V,] =~
vV, -V (T, Fg,). Hence we suggest to estimate V' (7, Fg ) by

1=
I\
S

|
3

(40) 4, =
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Of course (40) should be considered as the generalization of (27) to the case
of different volume measures. Then by using the analogue estimators as usually
used in the Buhlmann and Straub model (for a discussion see DUBEY and
GisLER (1981)) we obtain

N
(41.1) ir=N""1Y 4
=1
A4 i
412) ﬁr=c"{z —'(T.—T)z—(N—l)_T}
=1 V V
N
where V = Z v,
1=1
N
T=v') WT
=1
N
V. :
c = Z — |t = —
1= |14 Vv
-1
(41.3) ﬁr=(2a,) 2T,
v
where &, = o
Vior+ir
N n v
(41.4) fos = V'Y VXS, (XS, =) _”XS,,).
=1 J=1 V,

Thus the empirical robust credibility formula 1n the case of different volume
measures is given by

(42) ﬁX(@l) = ﬁxs+ﬁT+&l(T;_ﬂT)
Ve
where &, = 2 and
V,op+ iy

where the estimators of the structural parameters are
given by (41).

Remarks
N

D DV
=1

By replacing for each risk : the observed claim amount V X, by the
corresponding pure risk premium V,uy (), we get a mathematical

N
$(@)=Y VX,
=1

=»
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allocation of the total claims amount. Thus our formula provides us with a
tariff, which 1s fair for the portfolio as a whole.

ii) The authors would like to emphasize once more that a strict mathematical
treatment 1n the case of different volume measures becomes unfeasible.
But they believe that the proposed estimators are reasonable and useful for
practical purposes. This is also confirmed by the simulation study
presented 1n Section 5. It should also be noted that a suboptimal
estimation of the credibility weight a, 1s not very sensitive to the quality of
the credibility estimator with respect to quadratic loss.

S. A SIMULATION STUDY

In order to test the proposed method and to illustrate 1ts functioning we have
carried through a simulation study. We have simulated data of two different
models. In both models we consider portfolios of N risks numbered
1=1,2,..., N. We assume that each risk ¢ 1s characterized by a hidden risk
parameter ©,. To cach nisk / belongs an observation vector X, = (X, ..., X)),
where X, might be interpreted as the loss ratio of risk 1 in year ;. To each cell
(i, ) 1s given a volume measure V), (a natural number) and it 15 assumed that X,

is the mean of (unobservable) r.v Y,ﬁ”), 1.e.

Vl
- =1 v}
X,=0)" 3 v

Model 1

Assumptions

MI1: Given ©,, the random variables Y,ﬁ") (j=12,.. ,n;v=1,...,V)are
independent and Gamma (y, ©,”") distributed.
MI2: The pairs (0,, X)), . ., (O, Xy) are independent and @, ', .., @, " are

Gamma (e, f) distributed.
Remarks

— Note that given ©,, the X, are Gamma (V,y, V, 0, " distributed.
— The unconditional distribution of the ¥} 1s, in the terminology of HoGG
and KLUGMAN (1984), a generalized Pareto distribution with density

function

o

foy = T 8 yyrr
° ryroy\p+yl \B+y| »

— Tt 1s well known that in model I the credibility estimator 1s exact Bayesian
and that

(43) iA(0) = (0) = u+o,(X,~

7
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B

a—1

with u=E[X,]=7y

114
a = —— .
yVit(e—1)

Now assume that model I is a good description for the bulk of the data. But
some of the data (the outliers) are generated by another law. This 1s formalized
by assuming that occasionally, 1.e. with probability #, ¥§” 1s drawn from the
‘xs-urn’ with density f,(x) This leads to

Model I

Assumptions

MII1 - Given @,, the random variables Y,f”) (j=12,...,n;v=1,. ., V) are
independent with density function

Jo,(»)=(1—m) f(y1O)+nfo(y)
where f(y|@)) 1s the density of the Gamma (y, @, ') distribution and

a

I'(a+ b ‘1
where f,(y) = _(a <) - A
I'@a)I'(c) \b+y b+y | y
1s the density of a generalized Pareto distribution with a, b, ¢ fixed
constants.
MII2: The pairs (0, X)), ..., (@4, Xy) are independent and @7 ',..., 05"
are Gamma (o, ) distributed.
MII3: a < a.
Remark

The assumption MII3 means that large Y” are more likely to come from the
‘xs-urn’ than from the ‘ordinary’ urn.

The observation period 1n our simulation was 6 years. The portfolio
contained 100 risks with volume V,=1 (small volumes), 100 risks with volume
V,=3 (medium volumes) and 100 risks with volume V=5 (great volumes)

In model I we have chosen y =2, a =5, § = 2. This means, that
ux =E[X,]=1
uy =E[Var[X,|0,; V,=1]] = 0.667
vy =Var[E[X,|©]] = 0.333.

The simulation gave the following results:

— standard credibility estimator
structural parameters:
fiy= 1017, iiy=0.618, b, =0.356
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credibility weights (for volumes 1, 3, 5).
&] = 0775, &101 = 09]2, &20] = (0.945
mean quadratic loss:

MQL = 0.0352 /MQL = 0.188 .

— robust credibiity estimator
structural parameters:
e = 0.003, iy = 1013, i = 0.666, ;= 0.353
credibility weights (for volumes 1, 3, 5):
&, = 0.761, &9 = 0.905, G4y = 0.941

mean quadratic loss -

MQL = 0.0358 /MQL = 0.189.

Remember that the standard credibility estimator s exact Bayesian in this
model. It 1s therefore not surprising that the mean quadratic loss of the robust
estimator 1s greater than the one of the standard credibility esttmator. However
the difference is only 2%. Hence the loss of efficiency by using the robust
credibility estimator instead of the ‘optimal estimator’ is very small This was
confirmed by three other simulations. We refrain from listing the simulated loss
ratios of the risk in the portfolio. The differences between the robust and the
standard empirical credibility estimators were very small.

In model IT we have chosen a probability = of 5% for Y{” being an ‘outlier’.
The parameters of the ‘outlier density’ f,(y) were a =3, b= 10, ¢ = I, which
gives an expectation of 5 and a vanance of 50. Of course the parameters of the
‘ordinary density’ were the same as in the simulation of model 1. Thus the
structural parameter of the standard credibility estimator were

Hy = 1.20
uy = 3.893
by = 0.301 .

The simulation gave the following results:

— standard credibility estimator.
structural parameters -
iy = 1.246, iy = 4.308, 0y = 0.218
credibility weights (for volumes 1, 3, 5):
&y = 0.233, a9, = 0.476, a4, = 0.602
mean quadratic loss"

MQL =0.1390 \/MQL = 0.373.
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— robust credibility estimator :
structural parameters:
S = 0.108, = 1113, 4= 1.759, vy = 0.243
credibility weights (for volumes 1, 3, 5):
&; = 0.453, &5 = 0.713, &y, = 0.806
mean quadratic loss:

MQL = 0.0843 ,/MQL = 0.290.

Using the robust credibility estimator instead of the standard credibility
estimator reduces the mean quadratic loss by 40%. This order of magnitude
was obtained 1n several simulation runs. Thus the robust credibility estimator
performs substantially better than the standard credibility estimator. Note that
the credibility weights are much bigger for the robust estimator. Table 1 shows
the simulated figures of the first fifteen risks of each volume group. Risk Nr. 1
has a big outlier. The standard credibility estimator increases drastically
whereas the robust estimator reacts reasonably. But there are also differences
in cases where no outliers were observed (see for instance risk Nr. 5) The
robust estimator 1s usually nearer to the true value also in this case, due to the
greater credibility weight.

Further remark

It would also be interesting to compare the results obtained by the robust
credibility estimator with the ones which would be obtained by the method of
optimum trimming in credibility proposed by GisLER (1980). The authors have
renounced it in order not to overload this paper. The main difference between
optimum trimming in credibility and the robust credibility presented 1n this
paper 1s that 1n the first case the individual claim amounts Y,j”) are trimmed at
a trimming point which 1s the same for all risks in the portfolio, whereas in the
robust credibility approach the observed loss ratios X, are trimmed with a
trimming point depending on the claims experience of the particular contract.
In the first case the individual claim amounts have to be known, whereas in the
second case only the knowledge of the loss ratios is necessary
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TABLE 1

FIGURES OF A SIMULATION OF MODEL 1l

nsk order statistics indwviduat experience credibilty estimator true
number vaius
1 X X, T, standard  robust ux(®‘)

1 723 894 967 2357 2860 47980 9297 2387 3118 2387 1590
2 77 1156 1338 201 4 2016 6573 2329 2234 1498 2234 2324
3 378 741 1752 2237 3323 3356 1965 1965 1413 196 5 2811
4 14 203 360 452 1185 6530 1487 733 1302 733 654
E] 348 372 1188 2061 3126 3132 1855 1855 1387 1855 2104
3 34 418 48 2 71 1608 179 4 841 841 1152 841 ars
7 33 183 218 308 842 1832 569 435 1088 485 835
8 122 330 382 367 595 715 a5 415 1053 415 939
9 109 241 797 1314 1338 1503 884 884 1162 8s4 1195
10 583 %89 829 1115 1122 1410 941 841 1175 941 879
1" 757 1207 146 9 183 4 2287 5238 2132 2132 1452 2132 2766
12 577 156 3 176 3 178 0 2546 3842 2012 2012 142 4 2012 1672
13 397 790 898 158 0 1643 3546 1476 1476 1299 147 6 698
14 200 653 838 952 1128 1212 847 847 1153 847 891
15 400 648 758 1478 1797 2989 1345 145 1268 1345 1340
101 417 418 46 655 817 856 602 602 839 860 978
102 168 RO 36 512 1099 3105 ®s 611 1093 867 722
108 1038 167 173 127 3 1366 7320 2223 150 4 1711 1504 1210
104 267 423 433 09 517 886 506 506 893 792 741
105 703 804 1000 1254 1314 1601 1128 1129 1180 1236 1128
106 429 835 853 1118 1204 1242 947 947 1103 1107 1156
107 354 383 419 440 819 1250 613 606 84 4 8684 886
108 187 203 348 408 872 4338 1026 454 1141 7586 630
109 497 707 779 881 1045 1054 824 824 104 5 1019 1065
110 1323 1882 1915 2115 2563 7441 2873 2449 2021 2178 1882
1M 265 s 359 449 631 2336 726 5086 998 792 695
112 432 834 1141 177 1285 5320 1698 1217 1461 1299 1420
113 324 45 4 523 675 971 1102 675 675 97 4 913 874
14 nz 828 867 910 1138 3031 1248 Mms 1247 1227 980
115 432 451 646 660 187 5282 1443 844 1340 1033 1146
201 108 4 1128 1348 1349 1608 1928 1407 1407 1343 1461 154 1
202 1128 1208 1775 2138 2294 2814 1892 1832 1635 1852 1782
203 40 4 405 450 461 800 1482 667 596 87 808 780
204 867 1211 1504 1837 2276 508 0 2096 1774 1758 1756 1170
205 398 410 488 588 705 2348 823 613 991 821 669
206 917 958 s88 1371 1640 1781 1278 1278 1265 1356 1460
207 1015 1016 1175 1192 1334 1448 1197 197 1218 1291 1402
208 247 265 285 391 667 1227 514 439 805 681 603
203 1371 2088 2120 2182 2431 3234 2238 2238 1843 2130 2355
210 296 40 4 43 4 524 576 7 501 501 797 731 766
211 588 824 970 117 4 1187 1419 1027 1027 1114 1154 1382
212 402 508 59 825 553 8169 1778 591 156 6 803 808
213 370 485 518 558 560 1171 61.0 590 863 802 923
214 ne 801 936 1106 1161 1359 1013 1013 1106 1143 1160
215 971 118 1424 1435 1590 1882 1420 1420 1351 1471 1530
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APPENDIX: DERIVATION OF THE ESTIMATOR (33)

a) Derivation based on Huber’s estimator

HUBER (1964) (see also HAMPEL and alii (1986), p. 172) studied robust
estimation of location by determining M-estimators that are optimal in a
minimax sense. The model framework was the following-

The distribution of X, (;=1,2,...,n) is F, a symmetric distribution with
location parameter 3. Let P, = {G . G = (1 —¢) F+¢H, H symmetric} be a set of
distributions in the neighbourhood of F.

Huber was looking for the M-estimator i minimizing the maximal asymp-
totic variance over P,, that is

(44) V(T(w), G) = mwin sup V(T(y), G)

where T () 1s the M-estimator defined by (8).
The solutions of (44) for F = @ (normal distribution) are
@5 vix, D=y (x,H=s1gn(x—Hmmn(x—33,¢) (Huber estimator)

In the case of different of = Var [X], the Huber estimator 7 1s obtained by
applying (45) on the normahzed data. Using (7) yields, that T is given by

. X-T . X,~9
(46) pr( L) < min 3 [ )
J=1 o, T G,
1
—x? x| <c¢
2
where p.(x)=
c
cllxl —— x| > ¢
2
(note, that p,(x) = w(x))
or equivalently
¢ X-T
(47 Y oty |2 =0.
J=1 O'j
Since y, (ax) = a y.,(x), (47) is also equivalent to
“48) 0, W, (X,~T) = 0.
=1

In the case of the Bithlmann and Straub model we have
ol =Var[X,|0} = c*(8)/V,.

In a scale model ¢2(®) is proportional to ©2.
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Hence applying (48) to the data of risk 7 in the Bithlmann and Straub case
yields

49) Z V,sign (X,—T) min (
J=1

X
_"_1\, ¢ ):0

!

or equivalently

(50) T,= Y —Lmax((1-r)T, min(X,,(1+r)T))
J=1

~|<

where V, = Z v,
J=1

ry =cVU“'/2.
Since X, > 0 we obtain in the case where r, > 1 (;=1,2,. ,n)
51 T=Z":V”'(X 1+r,)T)
( ) ' 1 —;m‘n 19( ru) [
1= 1

which is exactly the same as formula (34).

In the robust credibility approach we use (51) also 1n the case where some of
the r, are smaller than 1. One reason is that (50) implies also truncation from
below, which would be less accepted 1n practice than truncation from above
Another reason is that (51) 1s easy to calculate and has, except in the very
special case mentioned in Section 4.1, a unique solution which 1s not the case
for (50). Moreover 1n most cases the differences between (50) and (51) will be
pretty small. However, from a pure mathematical point of view, there would be
no reason to prefer (51) to (50) On the contrary, when considering the hmiting
case cV,,_l -0 for j=1,2,. .,n, then T, defined by (51) converges to
min (X,;7=1,2,...,n), whereas T, defined by (50) converges to median
X,;0=12, ..,n).

b) Different argument

In a) we started with the symmetric location case and then suddenly switched
to the asymmetric scale case This 1s somewhat questionable, as pointed out by
one of the referees, who mentioned the following different argument for the
case where V, =V, fory=1,2,.. ,n

Let X, X,, ... be ri.d. ~ dG (x/9) and consider the M-estimator 7, defined

by
n X,
Z sign (X,—T,) min (b, —— —1 ’) =90
1=1 T,,




ROBUST CREDIBILITY 143

Then b determines the gross-error sensitivity and the problem is how this
should depend on G. One reasonable requirement 1s that the ratio gross-error
sensitivity to asymptotic standard deviation of 7, should be independent of G,
l.e. we compare the maximal influence of outliers to the precision of the
estimator. This 1s the self-standardized sensitivity of HAMPEL and aln (1986). It

means that
X 2
b*/E | min (bz, v - 1) ) = const.
T(G)

If G is the Gamma (y, y)-distribution, then this implies at least for y —» oo

b(y) ~ const. -y~ 12

because Gamma (3, y) ~ 4 (1, ') as y—» . For V,=V, this gives (49). For
the Gamma-distribution 1t follows from Section 2.4 of HAMPEL and alii (1986)
that the above T, 1s optimal 1n the sense defined there.
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