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ABSTRACT

For some time now, the convenient and fast calculability of collective risk
models using the Panjer-algorithm has been a well-known fact, and indeed
practitioners almost always make use of collective risk models n their daily
numerical computations In doing so, a standard link has been preferred for
relating such calculations to the underlying heterogeneous risk portfolio and to
the approximation of the aggregate claims distribution function 1n the individ-
ual risk model. In this procedure until now, the approximation quality of the
collective risk model upon which such calculations are based is unknown

It is proved that the approximation error which arises does not converge to
zero 1If the risk portfolio in question continues to grow. Therefore, necessary
and sufficient conditions are derived 1n order to obtain well-adjusted collective
risk models which supply convergent approximations. Moreover, it 1s shown
how 1n practical situations the previous natural link between the individual and
the collective risk model can easily be modified to improve its calculation
accuracy. A numerical example elucidates this

KEYWORDS

Individual risk model; colletive risk mode!; modified natural approximation;
aggregate claims distribution; Berry-Esséen bound.

INTRODUCTION

For decades one of the central themes of risk theory has been the calculation of
the aggregate claims distribution of a portfolio. The aim of this paper 1s to take
this subject and shed a new light on theoretical aspects and practical
apphcations

In the eighties, with the development of recursive algorithms, a considerable
degree of progress was made towards the numerical calculation of the aggregate
claims distribution for both the individual and the collective risk model. In
particular, the special collective nsk models considered by PANJIER (1981) are
generally accepted by practitioners as being adequate, and the use of Panjer’s
algorithm has meanwhile become a widespread standard technmique of actuaries.
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In applied risk theory the n policies X, of which a portfolio is composed are
usually independent but, as a rule, not identically distributed random variables
Instead of the collective risk model, in practice one is mitially concerned with
the individual risk model, in which the calculation of the distribution function
of

Smd — i X,
=1

1s a fundamental task. The fact that the above-mentioned collective risk model
can be calculated so quickly has led in the practical application to a switch
from the individual risk model to a collective risk model, in the hope that the
error which inevitably occurs as a result is sufficiently small. So a (hopefully)
appropriate collective risk model 1s linked to the individual risk model

Until now, when this link was being made, it was not the whole class of
collective risk models

N
Scoll = Z Z,
=1

(with independent identically distributed random variables Z, and random
claims number N independent of the sequence of single claims amounts Z,, N
in the Panjer-class) which was considered with regard to its suitability. Rather,
in literature and 1n practice a “classical link ’, which is described precisely e.g
in GERBER (1979, p. 50), and, for our purposes, in Section 1, Remark 1.4, has
become generally accepted. Here, the N (whether binomial, Poisson or negative
binomual distributed) and the (Z), both charactenzing the collective risk model,
are clearly determined by the individual risk model In practice N is almost
always chosen as the Poisson distributed claims number.
For the error

(N 4 = sup |[P(S™ < x)—P(S" < x)|
AeR

the paper by Hipp (1985) provides an error estimate for the classical link to the
compound Poisson model which 1s small enough for various practical applica-
tions. This sharpens an error estimate given by GERBER (1984)

However, for very large portfolios, these error estimates become so bad that
they are unusable — which does not of course rule out the fact that the error 4
itself may converge to zero for portfolios which are becoming increasingly
large. (The meaning of this is to be defined more specifically.)

With regard to the standard link to the compound Poisson model, in
Section 1 of this paper, proof 1s supplied for the (surprising?) results that this
error does not in fact converge to zero. This also applies when the Poisson
distribution 1s replaced by the negative binomial distribution. In the binomal
case, the situation has proved to be ambiguous (cf. Section |, Model 1.1). In
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short, the methods normally used in practice have proved to be bad for large
portfolios.

These results can be derived from the answers to more general questions
concerning the connections between the individual and collective risk models.
These questions are of interest in their own right and of fundamental
significance, and they refer in the first instance to general collective risk models
with weak additional conditions. In particular there is no requirement for a
collective risk model to emerge from an individual risk model in the standard
manner.

The requirement

) 40

(for portfolio size growing to infinity) is obviously a theoretically reasonable
(asymptotic) quality criterion for judging whether individual risk models can be
adjusted precisely by means of collective risk models. This immediately gives
rise to two questions:

With regard to (2), are there equivalent and simple conditions which make it
possible to check the vahdity of (2) in concrete cases? Is the theoretical quality
criterion (2) also a relevant measure of quality for practical applications, or, to
put it more precisely, 1s the assumption contained m (2) that 4 becomes small
equivalent to the assertion that the difference 1n the two risk premiums does
not become overly large?

Both questions are answered in the affirmative with Theorem 2.1, the first
question 1n particular being answered by the fact that (2) is equivalent to the
(mostly easily verifiable) condition

Var S

(3) Va ind
Var S

-

The more comprehensive result of Theorem 2.2 represents a quantitative
sharpening of Theorem 2.1 which 1s particularly interesting because equivalent
conditions are given for situations where the difference in the two portfolio
premiums even remains bounded. A useful tool for proving these central
statements of the paper is provided by the often neglected paper by von
CHossy, R. and G. RarpL (1983); here the possibility of representing
stochastic sums by means of deterministic sums is proved These results and
required Berry-Esséen bounds are presented separately in the Appendix.

An important point for the practical application 1s that for good approxima-
tions, 1n addition to the requirement that the expected values should be equal,
it would now, in view of (3), be appropriate to seek and construct collective
risk models with

Var §'™ = Var §°°!,

In order to ensure that collective risk models can be calculated quickly, only
collective risk models belonging to the Panjer-class are suitable. On the other
hand—as mentioned at the beginning of this paper—collective risk models
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which emerge from an individual risk model via the standard link are ruled out.
However, converging approximation models which are simple to construct can
be obtained by scaling the range of the single claims amount n the standard
link.

If an appropriate scaling factor and the parameter modifications correspond-
ing to 1t are chosen, then for all three claims number distributions of the
Panjer-class, the equality of the first two moments can be achieved n the
individual and the collective risk model. Moreover, 1in Section 3 an analysis 1s
carried out to show that the best adjustment should be reached with the
compound binomal model. This 1s also verified by several numerical examples,
which can be taken from the Gerber portfolio (GERBER 1979, p. 53). Thus, in
practical applications, instead of the standard link to the compound Poisson
model, a modified compound binomial model, which 1s described precisely in
Section 3, should be used (cf. JEWELL and SunDT (1981)).

1. The link between a given individual risk model and the related
collective risk model

In the following X, denotes the amount of claims produced by risk 1, i€ N. The
single risks are understood to be numbered in a suitable way. Theur, in future,
undefined claims amounts are understood as random variables. The accidental
aggregate claims amount resulting from a segment of r risks, that is the sum of
all single claims amounts, is called an individual risk model, 1f the following 1s
valid:

Definition 1.1. (Individual risk model, cf BowEeRrs et al (1987), p 25).

The individual claims amounts X,, | <i<n, nelN, set up a sequence of
independent, 1n general not 1dentically distributed random variables X, such
that X, > 0. X, = 0 means that nsk : does not produce a claim. The random

n

variable §" = Z X, 15 called the aggregate claims amount of the individual
-1
risk model.

We shall write S!™ instead of $'™ to indicate the dependency of S on the
size of the underlying risk segment. As no misunderstanding 1s possible below,
we will drop the index »n there. In view of later considerations and n order to
make the model tractable, we shall impose additional conditions.

Assumption 1.1. The sequence of random variables (X)), 1€ N, fulfills the
mequalities 0 < ¢ < EX, <d< owand 0 <a < Var X, < b < w0, wherea, b, ¢, d
are real-valued constants

Assumption 1.1 does not impose any restrictions on practical applications,
excluding only unrealstic cases The validity of Assumption 1.1 follows, as a
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rule, from the fact that in practical applications the sequence of random

variables X, are even uniformly bounded, that 1s sup |X,| < 0
1eN

Remark 1.1. In accordance with the sequence (X)), 1€ N, we can define a
sequence of independent random variables (), 1 € N, by setting /, = 1,y .. In
addition to this we can go on to construct a sequence of independent random
variables (Y), i€ N, by postulating for their one-dimensional distribution
functions:
P, <X)=P(X,=0)
(1.1) PY,<x)= —— "~ —— if x>0, P(Y,=0)=0
P(X,>0)

Thus, we have the representation X, £ [, Y, for each 1 € N. Y, can be interpreted
as the claims amount of nsk [, provided that this nisk produces
a claam The claims number N* 1n the individual risk model 1s established
by

N* = Z I, I,XB(,q) with g,= P(X,> 0) and § the binomial distribution,
=1

The events {I, = 1} and {Y, < x}, x > 0 arbitrary, are independent.

In many practical situations the calculation of the distribution function F™™
of the individual aggregate claims amount S 1s of fundamental importance.
However, 1ts precise numerical computation 1s in general impossible without
the support of a computer and, in spite of recent recursive algorithms
(Kornya (1983), Hirp (1985, 1986), DE PrIL (1989)), still costly. Therefore, at
a very early stage of risk theory, the question of the calculability of F*™ led to
the concept of the collective risk model (BowERs et al. (1987), p. 317), which 1s
easier to handle when theoretical considerations are made. Its fast numeri-
cal calculability (Panjer-class) 1s another, more recent reason for using it.

In the following we shall denote by N the random number of claims occuring
in a nisk portfolio 1n a given period, and by Z, the accidental amount of the
ith-claim, : < N. We will then be speaking of a collective risk model, if we state
the following

Definition 1.2. (Collecuive nisk model, cf. BowgRs et al. (1987), p. 317).

The random collective claims amounts Z,, ie N, set up a sequence of
independent, indentically distributed random varnables such that Z, > 0 for
each : € N. The sequence Z,, i € N, 1s assumed to be independent of the random
claims number N. The random variable N takes on non-negative integer values.

N
The random variable S = Z Z, (with §°"'=0 if N=0) is then called

—1

the aggregate claims amount of the collective risk model For N and (Z)), ieN, we
assume 1n addition" 0 < EN< o0, 0<VarN< o0, 0< EZ, < o0, 0 <Var Z, < .
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Remark 1.2. S$°" satisfies £5°" = ENEZ, and Var S*" = EN Var Z,+
Var N(EZ ).

The link between Definition 1.1 and Definition 1.2 at once becomes clear
when we refer to the individual risk model with independent, identically
distributed random varnables X,, | <: < n. This, 1n turn, brings us to

Remark 1.3. If the individual model satifies X, < F for each i, it follows that
N*ZB(n, g) with ¢ = P(X,>0). Put N2 N* and Z, X G, where G(x) =
(F(x)—(1—¢))/g for x=0. Thus we get $™Z 5" with claims number
distribution f§(n, ¢) 1n the collective risk model.

In general the question arises how the distribution functions of N and Z,
should be chosen such that the distribution function F! of S supplies a
good approximation to the distribution function F™ of $™. The following
procedure is usual:

Remark 1.4. Define the distribution function G of Z, by

(12)  Gx) =, 9 G, (x) with G,(x) = M)

=1 nq 4.

x>0

and
1 < . , .,
(13 g= Y 4¢,q=PX>0), X,£1Y, X,2F, Y,XG,.
n =1

In this remark the representation X, = /,Y, 1s such as given in Remark 1 1.

n

1
Consequently we have Z, >0 and EZ[" = - Z EX" <o, m=1,2.
nqg =1

Assumption 1.1 establishes the existence of real-valued constants a’, &', ¢’, d’
(independent of n) with 0 <c¢'<EZ,<d'<oo and 0<a’'<VarZ, <b < ow.
Note that the distribution function G of Z, depends on n.

The last remark results in three different collective risk models, each of them
specified by the choice of the claims number distribution (Panjer-class).

Model 1.1. The natural approximation (compound binomial approximation).
Let
NXB(n,q) and Z, %G,
G as defined in (1 2). Then
ES®'=ES™ and Var §°=Var §™+4,,
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where

n

dg = Z (EX)* — (
=1

1 2
- EX,| .
n =1

n n 2
dp 20, smce n Y, (EX)? > ( Y EX,) .

=1 =1

45 =0« EX,= EX, foreach i=1, ..., n.

The natural approximation can also be derived from an individual risk
model as follows. Put

sl= 3 z* with Z*£G*,

1=1

where for x = 0

n

(1.5) G*(x) = LZ F.(x) and X,ZF,

n =1

Since

n

-1 i (]_q) + ! Z g F,(.’C)—'(l“q,)

n =1 n =1 q,
(1-¢)+¢G(x),

we conclude from the characteristic function

(1e G*(x)

(1.7) (Ee"4"y = ((1-q)+q r e”"G(a’x))”
0

n

> (n ) (1=g)""*4* r e G**(dx),
k=0 \ k 0

that the two approaches lead to the same collective model.

Model 1.2. The compound Poisson approximation
Let
N % n(ng), n the Poisson distribution, and Z,XG,
G as defined in (1.2). Then
ES®" = ES™ and Var $®" = Var §"™+4,,,



30 S KUON, M RADTKE AND A REICH

where

n

(1.8) Apy= ), (EX).

=1

Model 1.3. The compound negative binomial approximation

Let

NXZ.f #|n, -—|, # % the negative binomial distribution, and Z, £ G,

1+g¢q
G as defined in (1.2). Then
ES®"'=ES™ and Var §°"= Var §™+ 4y,

where

d !
(1.9) Ayg = Y. EX}+ - (ES™)?
=1 n

Var §'™ +

H

n
-1

I
(EX)* +  (ES™).
n

Thus, the three collective risk approximation models correctly adjust the

Hn

expected claims number E liy>or=ng=EN and the expected aggregate
{X,>0}

-1

claims amount, although they overestimate Var $™. Obviously, for the

overestimation the following 1s valid:

O0<dp <dp, <dyg.

In respect of Assumption 1.1 a simple calculation leads to the following

result, because EX, and Var X, are uniformly bounded.

(1) N bimomial distributed :

Var §! Y| d*—c?
(1 10) i .y S S
Var §™™¢ u a
Z Var X,
=1
(1) N Poisson distributed:
Var §¢ 3 A p, ¢ d*
(1.11) i (A i
Var §™ b a



(ni) N negative binomial distributed :

v Scoll A 2 d2
ar ad € [l c 1+ —

a

1
I+ -

n

1
1+ —
n
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(1.12) —1= +

Vars™ b J
ZVarX,
=1

Hence, only in the case of binomial distributed claims number N we can
achieve Var $'"™ = Var §°!', For instance, this is fulfilled if EX, = EX, for all
t=1,...,n or if even all of the X, are identically distributed (cf. Model 1.1).
The following example shows that in general the variance ratio in the
compound binomial approximation does not equal to 1 either.

Example 1.1. Look at a sequence of random variables (X)), 1 <i<n,
X,€{0, 1}. Let for each :

3/4, i even
PX,=1)=
1/4, 1« odd.
Therefore we have
3/4, i even 3/16, 1 even
EX, = and Var X, =
1/4, t odd 3/16, 1 odd.
From that
Var §° _ {4/3 , Heven
Var §™ 4/3)—1/(3n%, n odd

easily is concluded.

Further on we shall analyze the impact to which Var $'™ # Var §°! leads 1n
the case of premium calculations which are based on the above-mentioned
approximation models instead of the individual risk model. As these assertions
depend on the number n of risks underlying the portfolio at 1ssue, we shall now
add the dropped index n to our previous notations, thus §,"¢ instead of $'™,
S instead of S« etc.

Assumption 1.1 instantly implies ES,™ ——— 0, Var Snd —— %, and, as
ESM = ES! also ESCO! —— 9. As shown above, the vanances of the col-

lective and the individual risk models differ from one another in general.
Only in the case of binomial distributed claims number the variance ratio

can converge to 1. In particular we have Var S&'—Var g —— > o0 In most
situations.

The consequences of the overestimated actual variance for premium calcula-
tion by means of collective risk models is demonstrated using the percentile
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premium. Let
(1.13) 22 () = inf {x| P (5™ < x) > o}

with security level a € (0, 1), ./ («) analogously That 1s, the premium
2™ (@) 15 not exceeded by the aggregate claims amount S'™ with probability
a. Of course the difference .7 () —./"(«) 1s of interest. This heuristic
reflection serves to motivate the following. Under assumptions which are
always satisfied 1n practice, we obtain approximately the following result if n is
large enough (cf. Lemma A.2 (i)):

(i.14) ) g™+ o (o) g
and
(l -l 5) ‘9)"(20” (a) z CO" + q)— 1 (a) acoll ,

where #’l'nd — ES,l,nd, coll = EScoll md ’Var Slnd coll /Var Scoll

denotes the inverse functxon of standardlzed normal dlstrlbutlon function ¢

Thus, as u™ = x! the premium difference ..~ () —.2!" (&) of the risk
models under consideration directly depends on the dlfference of the standard
deviation, namely

(1-16) /Coll(a) ‘-/Jlnd(a)N(o_COH O'md) ¢—I(a)>0.

coll __

A further analysis shall show that the difference o, g, 1s strictly related

to the term sup |F!™ (x)— F!(x)].

2. Approximation of an individual risk model by a collective risk model

In this section, at first we focus our analysis on the approximation of
n

individual risk models §!" = Z X, of growing size by a sequence of so-
1=
called homogeneous collective risk models S, coll — Z Z,. We shall deduce
=1
our main results 1n Theorem 2.1 and Theorem 2.2 and then apply these results
to a reasonable concept for a portfolio growth which conducts to Corollary 2.1
and Corollary 22 We start with

Definition 2.1. We call (S°°"),.n a sequence of homogeneous collective risk

models if, for each ne N, S = Z Z, 15 a collective risk model and the
=1

distribution function of Z, is independent of #n. In addition we assume that N,

possesses a representation N, < L*" with arbitrary distribution function L on

Ng (cf. Proposition A.l).
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In the following, the notations used are the same as in Section 1. The
sequence (X),en 15 supposed to fulfill Definition 1.1, Assumption 1.1 and

sup {EX}} <o In addition to Definition 21, we assume that EZ} < oo,
teN

EN} < oo for all ne N. Under these conditions, all the results listed in the
Appendix are applicable to S and S and to their distribution functions
Fmd and Fcoll'

Let our analysis start from the supremum norm of the difference of the two
distribution functions F™ and F® ie.

@1 4, = sup |F™ (x)— F" (x)].

With F(x) = P(S;" < x), & (x) = & ((x— p)/0,™); F;°" and &;°" ana-
logously, note that

22) £ )= Fl) = (£ ()= & (0) + (97 (x) = 2;7(x))
(@7 () = N (1))

n
A O EIX—EX[* \n sup (EIX,— EX]%)
=1 reN
<
n 3 3 n— oo
(Z Var X, (n inf {Var X,})
=1 1€ N

the central limit theorem for S!™¢ (cf. Theorem A.l) is applicable to the first
term of (2.2) and Proposition A 2 can be applied to the third term of (2.2), the
following assertion 1s valid.

Since

(2.3) » 0,

Proposition 2.1. Under the assumptions stipulated at the beginning of this
section we have

24  4,——— 000" —— 1 and (1 —p?Y o —— 0

Proof. Referring to (2.2) it remains to be shown that
25) @M (x)— b (x) —— 0 umiformly in x

1s equivalent to the right side of the assertion.
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With r, = ¢"/0" we have

x— coll
(2.6) o (x) = @ _”_)
coll
0”1
x— nd :'nd_ coll
=0 ( il: Tn t 4 coﬁn
on 6"

3

<=". The assertion 1s true, as @ 1s a uniformly continuous function.

(13

=" Because @ is a strictly increasing function, 4, —— 0 supplies

ind ind ind __,,coll
X~ HUp X~ Hy Hn Hn : :
2.7 = T T —"——;»0 uniformly in x
oy o) c,°
ind ind coll

By replacing x with u;™ we get (™ — u")/a " ——0.

Then by replacing x with 4™ +¢!™, we obtain r, — 1.

Furthermore, for the difference .~ (x)—.#" () of the percentile pre-
miums related to S and S we obtamn a result which corresponds to
Proposition 2.1.

Proposition 2.2. Under the assumptions stipulated at the beginning of this
section we have

(2.8)
A @)= 7 @) = 0 (0"

<::’a,’:nd/a,’cl:oll — 1 and (ﬂ:,"d—/lﬁon)/a,fo“ — 0.

Proof. For all o € (0, 1) the following i1dentity 1s true:
ycoll (a)_ymd ((Z) ( ycoll(a)_#coll

a:oll
X f—
a,':nd

(2.9)

G:oll

o_';nd

B ‘gp"lnd (a)_#'xlnd #zoll _#’l'nd

G,';nd + O_':nd
Then, Lemma A.2 (i) supplies
‘Qacoll o) — coll ‘gamd o) — ind
(210) : (CZH &l n— oo ¢—l(a)’ . (1:d i n— 45_1((1)_
afl a"
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Thus, the conclusion from the right side to the left side follows directly from
the above indentity. The converse 1s also true, since o € (0, 1) 1s arbitrary. So 1s
& (). As (e —putM/el! 1s independent of «, the argumentation 1s
complete.

The following theorem can be gathered directly from the last two proposi-
tions.

Theorem 2.1. Under the assumptions above the following assertions are
equivalent :

() sup IF"(x)— F*" (x) ——= 0,
(i) Var S™/Var S5" — 1 and (ES™—ES"/yVar ST —.0,

i) 55" (@) = " @) = o (WVar S, xe (0, 1),
(v) Z* (@)=, () = o(yVar $;™),  ae(0,1).

This result can be sharpened to a *“‘bounded version™ of (iv), 1e. the
difference of the two portfolio premiums even remains bounded under certain
conditions.

Theorem 2.2. Under the assumptions above the following assertions are
gquivalent :

() sup [F(x) = Fo"(x)l = O (1/{/Var §,),
() sup |F; (x) = F5" ()] = 0 (1/3/Var §°7),

(i) o/Var S —/Var S = 0 (1) and ES}™ - ES!' = 0 (1),
) .2 (@) -2 a) = 0(), ae(0,]1).

Proof. Let us sharpen our argumentation with regard to the equation (2.2).
Since the Berry-Esséen bounds from Theorem A.l1 and Proposition A.3 are
applicable to the first and the third term, Theorem 2.1 yields the following
equivalence:

(2.1D) 4,=0(/JVar §™) = 4, = 0(1//Var 5"
= 4,=0(1/Var M)
<4, = 0(1//Var 5",
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where 4, = sup |® (x)— & (x)]. According to Lemma A.1, (i) <> (1i) <= (ii1)

has been proved.
With 7,2 (@) = (& (@)~ u"9)/o™, 7 (@) analogously, a € (0, 1), we have

212 S @=2 @) = =)+ 02 @ =" @) 0,
+ 77 @) (0" = 0™

Consequently, Lemma A.2 and (1) <> (ui) supply (i) = (iv).
It remains to prove (iv) = (i). For all a € (0, 1) we have

213) 0() =" @-2" @
= (=) + 75 @) (07 = 0+ 0 (1),

again in respect of Lemma A.2 (11).
By choosing a, # a,, we can conclude that

2.14) 0(1) = (" () = 17" (@) (" = 0;™").

Agam using y£"(a) — @~ («), we have

(2.15) oM —gl = 0(1), hence u™—ut" = O(1).
Thus (iv) = (i1i) has been proved, and therefore (1v) = (1) since (1) <> (i).

It should be noted that the statements of Theorem 2.2 (i) and (ii) can be
specified by deriving explicit constants in the O-estimates from the proofs.

Each assertion of Theorem 2.2 implies the corresponding one of Theo-
rem 2.1, but the converse is false, which becomes obvious in Example 2.1 at the
end of this section.

For the rest of the section we consider a concept of a portfolio growth
described by an appropriately chosen sequence of homogeneous collective risk
models. Therefore at first we have to formulate some additional requirements
to the underlying risk portfolio. These concern the mixture ratio of its distinct
risk classes.

Assumption 2.1. In addition to the previous assumptions the sequence of risks

and its random claims amounts (X,), i€ N, are required to fulfill the following:

the set of random variables (X,ie N} consists of K distinct risk classes
K

Fek=1,...,K; thus {(Xie N} = (] #. Each class is represented by
k=1

a distribution function F,. X, € ¥, means that X, £ F, and F, = F;,. Corre-
spondingly g, € (0, 1] denotes the representative of ¢,, if X,e.%;, where
q, = P(X, > 0) is related to X,. It 1s assumed that the mixture ratio of » risks
satisfies the stability criteria below: For each ne N define forall k =1,..., K
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n K
an integer n, = Z lix,e7y; thus n = Z n, . Assume, for each k there exists
=1 k=1

a number ¢, € (0, 1] independent of n, which fulfills n, —nc, = O (1) as n tends
to infinity.

Continuing to use the previous notations, we also introduce some new.
Let

1 n _ K
(2.16) ¢P=-3 ¢ and §= ) cqu.
Py

n =1

This means that g e (0, 1], since ¢, < | for all k and ¢,+# 0 for at least one k.
Furthermore, let

@17 G, )= Y 2 G(x) wih Gy =F=07a)

=1 nq(n) q,
that is
K ne q
k k
(2.18) Gu(x)= _L(")) Gy (%)
k=t h q
Moreover, let
K
_ F(x)—(1 -
@219) Gx)= Y & 29 Gyy(x) with Gyy(x) = w1 =6w) 4
k=1 q qd)

In the following, the claims number in the collective risk models specified in
Section 1 (cf. Model 1.1-1.3) 1s denoted by N, and N,, refering to the
parameters ¢ and §. We write Z,, Z, resp. for the collective single claims
amount variable, where Z, £ G,, Z, £ G resp.; thus

N,
(2 20) §el=% 7,242z
=1
and
N’l
(2.21) Seotl = Z,Z%Z,.

Finally, in the collective risk model S we denote by =" and 5" the
mean value and the standard deviation resp., mn line with #" and o™
above.

In this framework the portfolio growth is defined by the corresponding
sequence of homogeneous collective risk models (5,0 which fulfill
Assumption 2.1 and to which Theorem 2.1 and Theorem 2.2 can be applied.

Thus, we can prove the following:
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Proposition 2.3. Under the assumptions of Section 2 1n all the three collective
risk models described above (cf. Model 1.1-1.3) the distribution function Fird
of $:" and F" of §°°" resp., fulfill a Berry-Esséen bound, i.e.

@) sup |F™ (x) = & (x)] = 0(1/y/Var 5",
(ii) sup IF5*" ()= B! (x)l = 0 (1/3/Var 51,

where & (x) = @

—coll
X = it
0'_:0"

Proof':

() As E|X,—EX)® < EX}+(EX)®, we have from the assumptions

r}g\‘x {E|X,— EX,*} < co. Assumption 1.1 supphes Var ;" > na and thus we
conclude

Y. EIX,-EX]' max (EIX,— EX’}
reN

=1

(2.22) < < .
Z Var X, “
=]

Consequently, from the Berry-Esséen bound for non-identically distributed
random variables (cf Theorem A.1) we obtain
Y, ElX,—EX)’

=1

6
(2.23)  sup |F™(x)— " (x)| < for all n.

ind

" i Var X,
re=1

(i) Since EN? < oo and EZ} < oo, the Berry-Esséen bound for random sums
according to Definition 2.1 can be applied (cf. Proposition A.3). When this 15
done,

(2.24) Var §°" = n(g Var Z,+ Var Z,(EZ,))
must be taken into consideration.

Consequently S:" and S°" fulfill in particular the central imit theorem with
the standard normahlization and the law of large numbers.
_ A result such as that in Proposition 23 valid for §©°" and & resp.,
DM (x) = d((x— a2")/6:°"), cannot be directly deduced from the Berry-
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Esséen bound in Proposition A.3 In fact, the distribution function G, of Z,
depends on n. Thus G, and the distribution function of N, do not satisfy the
assumptions required in Definition 2.1.

Nevertheless, taking into account the stability of the mixture ratio given In
Assumption 2.1 we have

(2.25) ESe! = ESM 4 0(1)
and

(2:26) WVar 5o = Nar 55T+ 0(1/3Var 5.

Together with

(227 sup |FeoM (x)— FeM(x)| = O (1/Var S,

and the Berry-Esséen bound for S and F°", ie.

(228) sup IF;°" () = 85" (x)1 = O (1/y/Var §;"),

we get ultimately the vahdity of Theorem 2.1 and Theorem 2 2 even for S$°"
straightforward from the identity

229)  Fe)= R0 = (R ) = Ft o)+ (B () = £ ().

Thus we have proved

Corollary 2.1. Under the assumptions of Section 2 these assertions are
equivalent :

(1) sup IF;nd(x)_F:O”(x)f"Tw‘O,

~

(1) Var $;"/Var §

coll 1
—_ 1,

n n-—» oo

(i) & " () —. 2™ (@) = 0(Var PN, ae (0, 1),
(v) GO (@) — () = o (fVar S™), ae (0, 1).

The following result represents a quantitative sharpening of Corollary 2.1.

Corollary 2.2. Under the assumptions of Section 2 these assertions are
equivalent

(1) sup [Fy™(x)— Feo" (x) = 0 (1/\/Var 5;),
(i) sup |Fy (x) = SV (x)] = O (1/y/Var &M,
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(iii) \/Var S - /Var 5" = 0(1),
(iv) #M @) -2 @) = 0(1), ae(o,1).

Obviously each condition of Corollary 2 1 follows from the corresponding
one of Corollary 2.2. The inverse conclusion is wrong as shown below by
Example 2.1. Note that from the proofs given above explicit constants can be
derived to replace the O-constants in Corollary 2.2 (1) and (ii).

Accurate premium calculation or their equivalent, precise approximation of
the distribution function in the individual model, depends mainly on well
variance fitted collective risk models. The previous collective risk models do
not achieve that as proved for Model 1.1-1.3. In the next section we shall look
at modifications of these models, which improve the variance fit.

Example 2.1. Let us consider a sequence of positive random variables (X)),
with distribution functions

(2.30) F(x)=(1-g)+q,F(x), q,€(0, 1}, F(x)=1-e¢ ", x2>0.
Therefore,
(231 P(X,>0)=gq,, EX,=q,, Var X, = q,2—4q),

For each ne N, let

(2.32) a, = z": q,, and b, = z": q2
=1 =1

n
For S\ = Z X,, this implies that

1=1

(2.33) ESiM =g, and VarS,"=2qa,—5,.

N’l
We construct the collective risk model S5 = Z Z, corresponding to S
=]

1n the same way as described in Section I, by means of the following equation:

= 4, . I ¢
2.34 G(x) = " G/(x) with x>0, ¢ =_ .
234 G(x) _Z,,,qw” q n,;"
where G,(x) = (F,(x)—(1—¢))/q,= F(x), x=>0. Thus, we have G (x)= F(x).
Assuming Z, £ G, we obtain EZ, = Var Z, = |,
Moreover, we stipulate that N, 1s distributed as B(n,¢™) Hence (cf.
Model 1.1),

(2.35) ESf"=gq, and VarSo'=2q, -

x |8,
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Now, for all o € (0, 1/2), with a suitable choice of g, € (0, 1), i€ N,

2
(1 _a) nl—Za

(2.36) a,~n-n"% and b,~n—2n"%+
1-2a

1s fulfilled. For instance, g, = 1 —(1 — a)/i* is appropriate.
For proof of this, note that

(2.37) Z (1-pi f~ j.”(l—ﬁ)x’ﬂdxmln"”, Be(,1).
1=1

1

All these definitions supply

2 —
Var ¢!
(2.38) =
Var S04
2 —

n|:w~ = |=Q

X

since a, /n — 1 and b,/a, —= 1

However,

3 -1 AV coll y ~1
(2.39) \/VarS,',"d—\/VarS,f°”=(\/;:— n )(2—ﬂ) (1+,/i‘?"_
n \/a—,, n Var §;™

T INC AL

[—2a [ 2

- if ae(0, 7)),

— { =% af a=1,
0 if ae(, D
4 2/
2_

a‘—nb —
since — LN A

n+ja,

3. Modified collective risk models with variance adjusted to that of the underlying
individual risk model

In this section the assumptions of Section 2 are stipulated. The notations used
below are the same as stated previously. We drop the index n because there is
no misunderstanding possible.
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Corollary 2.1 and Corollary 2.2 proved above suggest to adjust not only
ES™ = ES! but also Var §™ = Var $°! for all n In this case condition (iit)
and therefore all conditions of Corollary 2.2 are vahd. The classical
approaches, which derive collective risk models from an individual one, do not
fulfill the two conditions (equality of the mean values and the variances)
simultaneously 1n general (cf. Model 1.1, 1.2, 1.3). JEwELL and SuNnDT (1981)
deal with this problem in their paper too. They discuss two different modifica-
tions of the compound binomuial approximation (Model 1.1) by using modified
counting distributions. In addition SUNDT (1985) studies an approach with an
““average” collective claims amount distribution.

We shall now derive a similar modification of our in Section 1 constructed
collective risk models which ensures the equality of their first two moments
with those in the individual risk models given. In view of practical applications
(i.e. numerical computation by the Panjer algonthm) we presume the range of
the collective claims amounts to be discrete and arithmetic For the purpose of
modeling a new collective claims distribution function we define a random
variable Z{™¢ with discrete range {kylk € N}, y > 0 fixed, by setting

3.1) P(Z™ = ky)=g(k), ke N,

where (cf. Remark 1.4)
" g PX,=k) _1¢

G2 g=) =gk, gk)=———2,9==) q, ¢,=P(X,>0).
=1 hq q, n o=

Z™4 differs from Z, as constructed m the models provided above only by a
simple transformation of the range. Obviously we have (cf. Remark 1.4)

(3.3) Ezfd=yEz) = Y EX,
ng =1
and
2 n
(3.4) E@ri=y6Ez2= 7Y Ex?.
ng -1

If one considers §¢°! = Z Zmd  the basic requrement ES™ = Egc!
=1

results in EN = ng/y, because ES®" = ENEZ ™. The following 1s also valid in
this case.

(3.5)  Var " = ENE(Z["*%)?+ (Var N— EN) (EZ[™%)?
2EN &
Y Z EX,Z +

nqg =1

2
L) (Var N— EN) (ES™)?
nq
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n 1 V N
=7 Z EX,2 [ p— ar -1 (ESlnd)2
1=1 EN EN
= Var §™+4(y),
where
c . | [VarN
(36) 40)=@-1 Y EX}+ Y (EX)*+ — ANy sy,
=1 = EN\ EN

Therefore the following equivalence holds:
3.7 Var § = Var §™es A (3) = 0.

4(y) =0 cannot be fulfilled with y =1 (cf. Model 1 1-1.3), i.e. the original
range of the collective claims variables Z,, 1 € N, must be transformed.

Model 3.1. The modified natural approximation (modified compound binom-
1al approximation; ¢f JEWELL and SUNDT (1981))

Let
Z (EX,)Z_n— 1 (ESmd)Z

(3.3) y=1- - and N X f(n, qf7).
Y EX?
=1

Then y e (0, 1], since (ES™)* < n Z (EX)* and

=1

i EX}

1=1

y=1{Y Var X,+n“(ES”'d)2)/

=1

If ¢/y > 1 we modify the parameters n, g, y, see below. Obviously we have
4(y) =0 and, hence, Var §™ = Var §°°". However, with this stipulation

n

EN = ng/y differs from E Z Liy>0 = ng.

=1

A simple manipulation of the parameters n, ¢, y facilitates obtaining in

n
addition EN = E Z lix,>0- For this purpose, we set N X f(n’,q'(y’) and

=1

adjust n', ¢, y' accordingly. The condition ES™ = ES®" implies that

n
n’'q’ = nq; consequently ¢’ = —g¢q
nl
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From the equivalence Var $™ = Var §°" <« 4 (y) = 0 we deduce

n

Z EX)z_(n (ESmd)Z

(3.9 y=1-

i EXx}?
=1

n
On the other hand EN = E 2 Lixs>oq<y' =L

=1
This leads to the choice

L (Eslnd)z 3 )
(3.10) n"=| ———— |, [x] = greatest integer m with m < x,

D, (Ex)’
=1
from that we have y'~ 1(y" > 1) and n' < n as
(ES™)?<n Y (EX)
=1

However, note that possibly

g' n

— <1, where q’=—lq,

y n
1s no longer valid with such a choice of n’. Clearly, increasing n’ ultimately
guarantees ¢'/y' < 1. Note that n’ = n<>g' = q. However, y' 1s then more and
more different from I.

To show that possibly ¢'/y’ > 1, let n > 2. Choose X, ..., X, such that

g =qy>1/2foreach:=1,. ., nand EX,=.. = EX,,=1.
The ratio

(ES*)*  _ (1+ (=D (EX,/EX))

" 1+~ 1) (EX,/EX,)*
EX)?

;( )

311

takes on values near n for EX, close to 1, and tends to 1 if EX; — co.
Therefore, we can choose EX| such that

indy2
(3.12) ESTY .

"
i (EX)? ?
=1
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If n 1s even we have n” = n/2 and y’" = 1, however.

! n 2
q,= 9 = ngy— > 1.

y n'y’' n

Model 3.2. The modified compound Poisson approximation.
Let

Y, (Ex)? )
=1 Vv Sln ,
G13) y=1- = A and N%n(ﬂ).

i EX? Z EX}?
=1 =1

In this case we have 4(y) =0, that is Var $" = Var §°,

n
With this choice of parameters, EN = nq/y differs from E Z Lix >0, = ng.
=1

The harmonization of these two quantities fails 1n this case, because we can
select only two parameters.

Model 3.3. The modified compound negative binomial approximation.
Let

ZVarX,
(G14) y=—t ]

Y EX? "y Var X,
Z Z
=1 1=

|
1+q/y

_ 1 (ES'"d)Z

and N2 v % (n

Obviously y < ( Z VarX,)/( Z EX,Z) < 1.
=1

=1

Hence, y=1 is mmpossible, that 1s equivalent to the assertion, that

n

EN = nq/y differs from E Z lix >0 = nq. However, we have achieved 4 (y) = 0.

=1

Application 3.1 In order to venify, whether our modified collective risk models
lead to good results also in the case of small portfolios, we have calculated the
stop loss premium (without any loading) by means of the distribution functions
of the discussed standard and modified collective risk models (Model 1.1-1.3,
Model 3.1-3.3 resp ). The calculations are based on the Gerber-Portfolio (cf
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GERBER (1979), p. 53) and the 100-fold Gerber-Portfolio. Comparison was
made between the different models by the relative error, that is the absolute
error 1n percentage of the *“true” risk premium, which was exactly calculated
by convolution. It can be easily seen from the figures below, that the modified
collective risk models lead almost always to smaller errors than in the case of
the standard approximations. Obviously the absolute relative error depends on
the underlying priority, 1.e. the stop loss point.

Gerber — Portfolio of 31 Policies Gerber — Portfoho of 3100 Pohcies
Amount at Risk Amount at Risk
P 14
| 2 3 4 5 1 2 3 4 5
003 2 3 1 2 0 003 200 30 100 200 0
004 0 1 2 2 I 004 0 100 200 200 100
005 0 2 4 2 2 005 0 200 400 200 200
006 0 2 2 2 1 006 0 200 200 200 100
Total 006 035 043 036 020 Total 06 35 43 36 20
Error of Stop—Loss Premiums
for the Gerber—Portfolio
related to the Standard and Modifled Collective Models
negafive—binomlat
p 7 modH. neg.bln,,
] polsson
® 10000 / polsson
/
[ e
° 10004 e Hinamial
: . binomia)
] .
2 100 y
o y -
] 104,
-
aggregate clalm of the portfolio
9 14 expected value 1 4. 49
'; variance 1 15. 3003
°
" _
3 0.1
[ ]

T T T T T T T T T 1
5 10 15 20 25 30 35 40 45 50

stop—loss point
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absolute retative aerror
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Error of Stop~Loss Premiums
for the 100—fold Gerber—Portfolio
related to the Standard and Modified Coliective Models

negattve—binomial
/
/ polsson
10000 / -
// — modlf. neg.~bin
i If. polsson
100+ — nomial
— If. binomial
1
0.01+ aggregate clalm of the portfollo
expected value 448. 00
variance s 1530.03
0.0001
0.000001

L

T T T T T T
300 400 500 600 700 800 900 1000

stop-loss point

TABLE 1

STANDARD COLLECTIVE MODELS FOR THE GERBER PORTFOLIO
ERROR Or THE STOP LOSS PREMIUM
(WITHOUT ANY LOADING)

Security Level Stop Loss Stop Loss Error
of Percentile P[:)mt Premium 1n in % of the Stop Loss Premium
Premium the Ind Mod Binomial Poisson Neg Binomial
50 4 1776 016 1 68 3552
60 5 1 340 037 262 5295
70 6 1 004 054 368 7510
80 8 0515 125 692 146 61
90 10 0251 235 1139 268 31
95 12 0113 428 17 97 492 38

99 16 0019 987 3751 1725 27
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TABLE 2

MoDirteED COLLECTIVE MODELS FOR THE GERBER PORTFOLIO
ERROR OF THE STOP LOSS PREMIUM
(WITHOUT ANY LOADING)

Security Level Stop Loss Stop Loss Error
of Percentile PE)mt Premium 1n in % of the Stop Loss Premium
Premium the Ind Mod Binomal Poisson Neg Bmomial
50 4 1776 015 005 003
60 5 1 340 010 045 057
70 6 1.001 012 038 027
80 8 0515 006 185 210
90 10 0251 044 371 395
95 12 0113 142 681 8 950
99 16 0019 431 1589 2479
TABLE 3
STtaNDARD COLLECTIVE MODELS FOR THE 100-FOLD GERBER PORTFOLIO
ERROR OF THE STOP LOss PREMIUM
(WITHOUT ANY LOADING)
Security Level Stop Loss Error
of Percentile Stc;);:)ll;[oss Premium in in % of the Stop Loss Premium
Premium the Ind Mod Binomial Poisson Neg Binomial
50 448 16 10 044 246 951 24
60 458 1157 061 338 1332 18
70 469 770 084 466 1999 85
80 482 449 119 6 56 3406 36
90 499 199 1 80 9 81 7503 74
95 514 088 247 1348 16554 90
9% 543 014 422 2318 99879 00
TABLE 4

MoDIFIED COLLECTIVE MODELS FOR THE 100-FoLD GERBER PORTFOLIO
ERROR OF THE STOP LOSS PREMIUM
{(WITHOUT ANY LOADING)

Security Level Stop Loss Error
of Percentile Su]),%lk?ss Premium 1n in % of the Stop Loss Premium
Premium the Ind Mod Binomial Poisson Neg Binomual
50 448 16 10 000 000 001
60 458 1157 000 003 004
70 469 770 002 008 012
80 482 449 004 017 028
90 499 199 009 038 059
95 514 088 016 067 105

99 543 014 038 1.51 244
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APPENDIX

We start with a selection of results which are contained in a paper written by
voN CHossy, R. and G. RappL (1983). Let
N,

(A1) Sey Y, neN,
=1

be a random sum where (Y),.n 1S a sequence of real-valued, independent,
1dentically distributed random variables, and (N,),.n 15 @ sequence of integer-
valued random variables, N, > 0. N, and (Y),. are supposed to be indepen-
dent for each n € N. Furthermore, the second moments of Y¥; and N, may exist
in the proper sense (cf. Definition 1.2).

voN CHossY, R and G. RappL (1983, p 252) proved that, in certain cases 1t
1s possible to represent random sums as deterministic sums.

Proposition A.1. Let K be a distribution function on N, such that for each
neN

(A 2) N, % K*".

Further, let

(A.3) F= j F* K(dk), Y, %F.
Ny

Then there exists a sequence (¥,, ¥5, ..) of independent and, according to F,
indentically distributed random vanables with

n N,
(A.4) SPNLY ¥ (1.e. 72y Y,)
=1 =1

for all ne IN.

Definition A.1. The central limit theorem (with standard normalization) is
said to be vahd for a sequence of random vanable (S,),en f

(S,,—ES,,)/,/;’ar S, converges 1n distribution to a standard normal distributed

random variable as n > o0, ie. |F,(x)—®,(x)! mO uniformly in x with

F,(x)=P(S,<x)and ?,(x)= d?((x—ES,,)/w/Gar S,), @ the standard nor-

mal distrbution function

From Proposition A.l and the classical central limit theorem (cf. FELLER
(1971), p. 515), voN CHossy, R. and G. RappL (1983, p. 254) deduce
directly "
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Proposition A.2. Under the assumptions of Proposition A 1 with Var ¥, > 0,
the central limit theorem is valid for the sequence (S,f°”—ES,f°")/~/Gar Seoll.

Using the standard Berry-Esséen inequality (cf. FELLER (1971), p 542), both
authors proved, in addition, a Berry-Esséen bound for special random sums.

Proposition A.3. Let the assumptions of Proposition A.1 be fulfilled; further,
let Var ¥, >0, E|Y,]> < o0, EN,’ < 0. Denote by F" the distribution func-
tion of S and put

(A5) &V (x) = & ((x - ES®"//Var ¢,
@ the standard normal distribution function. Then, for all n € N, we have
3 EY,-EY)
(A.6) sup [FE"(x)—oM (%) < — _"_~i
x \/’_; (var Y])}/Z

Furthermore, 1t holds

(A.7) Var ¥, = u, Var Y, + 62 (EY,)?,

where

(A.8) = j kK(dk), o® = j (k= m1)* K (dk)
No No

and

(A9  EYV-EY <4 ((PJ—3P2Pl+2P13)#1+(3P2P1—3P13)#2

+ pius+EY) j‘ Ik — ) K(dk)) ;

Ng

where

(A.10) U, = J. k'K(dk), p, = j Ix—EY||' F{dx), i=1,2,3.
No R

Remark A.1. If N, is Poisson distributed with parameter nd, 2 > 0, Proposi-
tion A.l can be applied. The same is true in the case of the binomal
distribution with parameters (n, ¢), g € (0, 1), and in the case of the negative
binomial distribution with parameters (1, ¢), g € (0, 1) (cf. voN CHossy, R and
G. RappL (1983), p. 253). Thus the assertions of Proposition A.2 and
Proposition A.3 are valid for collective risk models with these distribution
functions, if Y; is appropriate.
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Finally, we formulate a Berry-Esséen bound for deterministic sums of
independent, not necessarily identically distributed random variables with finite
absolute third moments (cf. FELLER (1971), p. 544).

Theorem A.1. Let the sequence of X, be independent variables and EX, = g, ,
EX,—u) =0}, BX,~ul’ =p,, 1€ N.

n n n
Put m, = Z ey 2= Z o, rl= Z p. and denote by F, the distribution
=1 =1 =1

function of the sum Z X, @, (x)=D((x—m,)s; '), @ the standard normal

1=1
distribution function. Then for all n € N
(A.11) sup |F,(x)=®,(x)| < 6r,s,°.

The next two lemmata state some auxihary results which are needed in
Section 2. Notations and assumptions are such as stated there.

Lemma A.1. Let
(A12) 4, =sup | (x)— Dl (x)) .

Then we have
(A13)  4,=0(1/cM o —gi" = 0(1) and £ - 4™ = O(1).
Proof. Put a,=u, a, = u" b, = 0o, b, ="

3

=" By applying the mean value theorem we obtain

(A.14) 4, = sup |¢'(én) AN N
¥ b, by
where
A1S)  &=a, "+ (l—a) =, a,e(0,1), xeR

Choose a sequence x, = a,+ch, for any 0 # ¢ € R and replace x by x,. Hence
in view of the assumptions we have

(A.16) E,=a,et+(l—a,) +c
b, b,

—C.
n-» a0

a,—a, b,,)
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In addition, we have

(A.17) -

Consequently, and because 5,, =0(/b;), &, »c+0, @ (c)>0, we get
b,~b,=0() and a,—~a,= O(1).
“<«=": Again, by applying the mean value theorem, we have with r, = b, /b,

x—a, a,—a, x—a,

r, + — + (1—0,)
b, b,

(A.18) Z,, = sup .d>’ (cx,, (

n

X

x—a a,—a,
¥_"_(r"_1)+ n[”)

n n

Therefore, according to the assumptions we have

’

a,—a

an n ’ n ¢,
b,

x—a,

(A19) b, 4, =sup |@

(l—a,,(l—rn)))

n

x (";"" (bn—b;)+(an—a;)) ‘

n

Now the assertion follows from sup [x®'(x)| = 1/\/2ne.

Lemma A.2.

(i) Let the central limit theorem be valid for F}™ and £ Then for all
€ (0, 1) we have

.,,/;md o) — ’xlnd .f/,"coll o) — ;oll
(A20) T @7 gy, T @K Lo (a),
a,’llnd n— 0':0” n—

(i) F.™ fulfills the Berry-Esséen bound from Theorem A.l, F:°" that from
Proposition A.3
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dy_coll
If o6 ° —— |, then

ynmd (a)_#:lnd B .90,,(:0”((1)_#:0“

— ind
(A21) i e = 0(ljg™), ae(0,1).
Proof.
(i) Put
ind ynmd (a) - #Lnd coll
(A.22) Ya (@) = —————=—, ;" () analogously.
Then
®(yr (@) = Dy o (F) ™' o Fy™ (inf {p € [0, 00)|F}™ (p) 2 a}),
(A.23) FM(inf {pe[0, 0)IF(p) 2 o)) ——«,

d dy-1
¢,l,n o (F,:n ) m wd
in view of the assumptions; thus y," (@) —— @' (@).

The assertion for <" («) follows from a similar argumentation.

(i) From ™ (a) = (F"*) ™' (&) we obtain
(A24)  sup [F(x)= @) = sup, ly= &7 o ()7 ()
X yE.

where .# = {yly = F"(x)}

Using the mean value theorem, we have with suitably chosen a, € (0, 1)

EY ) —

a,;nd

(A25) y=& o (F ) () =@od ' (y)- 0@

=& (0, @ ' (»)+ (=) 7" () (@7 (¥)— 7™ ().

Because of (i),

(A26) @ (0, 2" (N+(1=-) 7)) —— P &~ '(y) uniformly in y.

@ od '(y)> 0 and the Berry-Esséen bound now supply

(A27) e~ ()= (¥) = 0l/a").
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The same argumentation applied to F°" and @°" yelds
(A.28) &7 ()= y) = 0 (1o M).

Finally, the assertion follows from the last two bounds taking ¢."¢/o " — |
into account.
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