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ABSTRACT 

Based on recurrence equation theory and relative error (rather than absolute 
error) analysis, the concept and criterion for the stability of a recurrence 
equation are clarified. A family of recursions, called congruent recursions, is 
proved to be strongly stable in evaluating its non-negative solutions. A type of 
strongly unstable recursion is identified. The recursive formula discussed by 
PANJER (1981) is proved to be strongly stable in evaluating the compound 
Poisson and the compound Negative Binomial (including Geometric) distribu- 
tions. For the compound Binomial distribution, the recursion is shown to be 
unstable. A simple method to cope with this instability is proposed. Many 
other recursions are reviewed. Illustrative numerical examples are given. 
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I. INTRODUCTION 

Compound distributions are used extensively in modeling the total claims for 
insurance portfolios. Consider the family of claim frequency distributions 
satisfying the recursion: 

(1) p,, p~_.(a'+ b) = - , n = 1 , 2 , 3 , . . .  
n 

where Pn denotes the probability that exactly n claims occur in a fixed time 
interval such as one year and P0 is an initial value. If the claim severity has a 
probability function ( p . f . ) f ( x ) ,  x > 0, the total claims has a compound 
distribution with a p.f. : 

oo 

(2) 9(x) = ~ pnf*"(x), x > O. 
n=0 
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PANJER [12] has shown that, if the claim severity distribution is defined on 
the positive integers with a p.f. f(x), x > 0, the compound distribution in (2) 
can be evaluated recursively as: 

(3) 9(x)= ~ (a+bJl f ( j )  9(x-j), x 1,2,3,  
j = l  - -  ~ ] X 

(4) 9 ( 0 )  = p0.  

This recursive formula is very useful for computer programming and 
significantly reduces the computing time comparing with the brute-force 
method directly using formula (2). 

As with any algorithm, round-off  errors are inevitable since computers only 
represent a finite number of digits. Practical observations show that algo- 
rithm (3) works well in evaluating compound distributions. However, in the 
actuarial literature, there are also some comments which diverge from the 
above observations and make the picture somewhat fuzzy. There is an obvious 
need for a clearer picture of  the stability of  recursive computation. 

To convey some impression that round-off  errors are not necessarily small, 
we start with a numerical example. 

Example 1: In a compund Poisson model, the claim frequency has a Poisson 
distribution with mean 2 = 10, the claim severity has a two points distribu- 
tion : 

f ( l )  --- .95, f ( 2 )  = .05. 

By directly applying recursion (3) in the usual forward direction: 

(5) 9(x)  = _2 [ f ( l )  9 ( x -  I ) + 2 f ( 2 )  9 ( x - 2 ) ] ,  
X 

10 
= - -  [.95 9(x- 1)+.1 9 ( x - 2 ) ] ,  

X 
(6) 

with initial values 

(7) 9 ( -  1) = 0, 9 (0) = exp ( -  2) = exp ( -  10), 

one can obtain the compound distribution easily. 
Values at x = 9 and x = 10 are 

9(9) = .I 140989798, 9(10) = .1183785348. 

Equation (6) can be used in the backward direction as: 

(8) 9 ( x -  2) = x 9 ( x ) - 9 . 5  9(x- 1). 

With 9(10) and 9(9) as starting points, we obtained the surprising results in 
Table 1 when 6 digits of  floating points are used. One can see that round-off  
errors blow up rapidly! 
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TABLE 1 

AN EXAMPLE USING ALGORITHM (3) IN THE BACKWARD DIRECTION 
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points probability 

.099850 

.078315 

.054807 

.027538 

.067231 
-.501005 
5.02847 

-49.2735 
478.155 

The catastrophic instability in the backward direction can indicate strong 
stability in the forward direction. The well-known Miller's algorithm (see [16], 
p. 153) is based on this principle. Thus, the stability of  a recursion depends on 
the direction in which it is used. In this paper, unless otherwise stated, the 
direction of  recursive evaluation is the forward direction. 

2. RELATIVE ERROR VS ABSOLUTE ERROR 

GOOVAERTS a n d  D E  VYLDER [9] (p .  5'7) h a v e  d i s c u s s e d  t h e  propagat ion o f  

absolute errors of  the recursion (3). Based on their analysis about  the inflation 
of absolute errors, they concluded that the recursion (3) seems to be unsta- 
ble. 

There is nothing wrong in their error analysis, but the conclusion they drew 
is inappropriate because the absolute error has little bearing on the behavior of  
errors relative to the required solution. We want to stress one basic point in 
standard numerical analysis: " a s  a measure o f  accuracy, the absolute error may  

be misleading and the relative error more meaningful"  - BURDEN and FAIRES [1] 
(p. 13). The criterion for the stability of  an algorithm should be relative error, 
rather than absolute error. 

Example 2: For a Poisson distribution with a large mean 2, say 2 = 1000, 
assume ideal computing which gives exact solutions using the recursion: 

2 
(9) P,, = - -Pn-~,  n ~ I .  

n 

Thus, in the above ideal computing process there is no error propagation.  
Rounding errors only occur when the computer  outputs the exact solution. 
Only a finite number r (r can be any desired number) digits can be represented 
in the output. In this way, both the first point, P0, and the mean point, Ploo0, 
are obtained. When r = 10, one has 

P0 = .5075958897 x 10 -434, and Pl000 = 0.1261461134, 
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with absolute errors of  about 

10 -444, and 10- 12, 

respectively. 
For  any value of  r, the absolute error is inflated l0  432 times when the 

recursive evaluation moves from P0 to Pl000. Obviously one cannot conclude 
that the algorithm (9) is unstable. 

On the other hand, one can see that the algorithm (9) is stable by observing a 
constant relative error in the evaluation process (the relative errors for P0 and 
P~000 are about the same at 10-r). 

To conclude this section, we cite Oliver's ([1 l], p. 324) argument about the 
criterion of  stabilities of  recursions : 

" I f  we should wish to determine the number of significant figures in the 
computed values, then the absolute stability of the relation is quite irrelevant ; 
what matters is the behavior of the propagated errors relative, not to unity, but 
to the required solution." 

3. LINEAR RECURSIONS OF FINITE ORDER 

Consider the linear homogeneous recurrence equation in the forward direc- 
tion 

(10) g(X) = ~ Az(X) g ( x - j ) ,  x > k, Am(x) =~ O, 
j = l  

where m is called the order of  the recurrence equation. The point k is the 
starting point of  the recursion and g ( k - m + l ) , . . . . g ( k  ) are the initial 
values. 

For  any given initial conditions 

(11) { g ( j ) = ~ j ;  j = k - m + l  . . . . .  k}; (~k-,,,+t . . . . .  CZk) = ~ ,  

the linear recurrence equation (10) has one and only one solution, gL k(X). Any 
solution of (10) can be represented by its initial values. Also, the solution 
9~, k(x) linearly depends upon the initial vector 2: 

(12) 9qa+c:~,k(X) = Clga, k(X)+C2gLk(X) 

The homogeneous linear recurrence equation (10) possesses a linearly 
independent set of  solutions {O Ih)(x), 1 < h < m}, called a fundamental set, and 
any solution of  (10) can be expressed as a linear combination of these 
functions. 

D e f i n i t i o n  1 : A solution g (x) of  equation (10) is called a dominant solution, if 
for any solution h(x)  of equation (10) there exists a constant C >  0, such 
that 

(13) Ig(x)l _> Clh (x)l, x > K for some K _> k.  
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A solution h(x)  of  equation (10) is called a subordinate solution, if there 
exists a solution e(x )  of equation (10) such that 

(14) lim g(x)  I =  or;  
. , ~  h ( x )  

in this case, we say that 9(x)  dominates h(x). 
It should be noted that some solutions may be neither dominant nor 

subordinate. However, for most recurrence equations that are encountered in 
practical applications, their coefficients Aj(x) satisfy some regularity conditions 
and there exists a fundamental set {9(h)(X), I < h < m} such that 

• o{l)(x) is a dominant solution and free from zero for x sufficiently large; 

• lim 90)(X)/9(h)(x)= ~ ,  for 2 < h < m .  
X ~ O 0  

(See CASH [2], p. 2; WIMP [23], p. 19 and p. 272-9). 

Remarks: 

For positive arithmetic severities with finite support, by a simple rescaling, one 
can assume that f ( x )  is defined on positive integers with finite support 
{xl, x2 . . . .  , xr} such that 

(15) I _<x~ <x2  < ... < x , <  co, 

(16) 9cd(Xl , x2 . . . . .  xr) = 1, 

where 9cd stands for greatest common divisor. In this case, formula (3) becomes 
a special case of  (10) with m = xr and k = 0: 

(~7) 

with initial values" 

08 )  {g(x) = 0; x = - m +  I . . . . .  - I}; g(0) = P0 > 0. 

4. RELATIVE STABILITY THEORY 

For the general linear recurrence equation (10), OLIVER I l l  l] proposed a 
theory of relative stability. Oliver's relative stability theory is presented with 
modifications and refinement. 

J. Oliver, wrote his Ph.D. dissertation partly on the relative stability theory of  linear recurrence 
algorithms under J .C .P .  Miller at Cambridge. 
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4.1. Concepts and definitions 

Definition 2: The desired solution of recursion (10) is a special solution to be 
computed, which can be represented by the initial values 

(19) {g(j)=%;j=k--rn+l, . . . ,k};(ak_m+l, . . . ,~k)=~.  

We denote this desired solution as gz, k(X). 

Notation: We use e to denote absolute errors and ~/ to denote relative 
errors. 

Two possible ways to generate round-off errors are: (i) rounding, and (ii) 
chopping. Most computers use rounding; however, some computers do use 
chopping. 

As indicated in Example 2, when the desired solution is a rapidly varying 
solution, the absolute round-off errors also vary rapidly. However, OLIVER [1 l] 

(p. 326-7) pointed out that, for a rapidly varying solution, floating point 
arithmetic would be used. If floating point arithmetic is used then the actual 
relative round-off errors ~; are fairly evenly distributed within a small range 

{ [ - ~ ,  t/-] if rounding is used, 

[ - ~ , 0 ]  if chopping is used. 

If r digits are assigned by a user to the computer, r + l  digits would be 
actually used by the computer to leave some room for rounding or chopping 2. 
Then every real number in the floating-point range of the computer can be 
represented with a relative error bounded by 

{ . 5 x 1 0  -r if rounding is used, 

(20) ~ = 10 -r if chopping is used. 

(See DAHLQUIST and BJORCK [4], p. 45). 
To symbolize this fact, we give the following definition. 

Definition 3: The basis relative error generator ~/ge,, is a random variable 
uniformly distributed on 

(21) / [-rT' r/-] if rounding is used, 

[ - ~ , 0 ]  if chopping is used. 

During the recursive evaluation by computers, each of the initial values 
{g(j ) ;  j =  k - m +  1 . . . . .  k} has only initial round-off error. After the starting 
point k, there are two sources of errors in each step of the evaluation of.q(x):  

= To be consistent, 'the number of digits' will refer to the number of digits assigned to the 
computer. 
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(i) the propagation of  earlier errors, and (ii) the newly generated round-off  
error when the computer outputs its 'exact '  result assuming that all inputs are 
exact. We assume that the newly generated round-off  errors are independent 
and identically distributed random variable qg,,. Obviously, for any newly 
generated error, it will be propagated in the same way as the true 'value '  and 
thus satisfies the recursion (10). 

Definition 4:  The relative error for the initial value g ( j )  = ~j is qj (a value of  
~/ge,). The propagation of  the initial value errors is a solution ek(X) of  (10) 
which satisfies the initial condition: 

(22) ek( j )  = tljOtj, j = k - m +  I , . . . ,  k .  

We shall adopt the following convention : if one of  the initial values aj is zero, 
then the actual value used will be correct. This is equivalent to assuming that 
the computer can represent zero exactly, i.e. all bits set to zero. For  example, in 
the initial conditions (18) of the recursion (17), the first m -  1 initial values are 
zero, and in actual computing they are used as zero without error. OLIVER [11] 
(p. 330) also supports this convention. 

Definition 5 : The (newly generated) round-off  relative error at point r (r > k) is 
q~ (a value of  qge.). The propagation of  the round-off  error at z is a solution 
e~(x) which satisfies the initial condition at r" 

(23) { e ~ ( r - m + j )  = O; j = 1 . . . .  , m -  1}; er(r)  = q~ ga, k( r ) .  

4.2. The basic error propagation 

Consider the first order homogeneous linear recursion: 

(24) g (x) = cg ( x -  1), x _> !. 

For recursion (24), it is easy to see that the propagated value of  any 
generated error remains constant relative to the solution g (x ) :  

ci(x) 
(25) - qi, i = 0 , 1 , 2 , . . .  

g(x )  

An upper bound for the accumulated relative error is 

Z ~ Z x t~i(x)l I "i=Oei(x)l i=O 
(26) < < (X + I) ~. 

Ig (x)f Io (x)f 

Note that at worst the accumulated relative error increases linearly with the 
number of  points that have been evaluated. " This is an acceptable form of  error 
accumulation, since if floating point arithmetic is used then doubling the range of  
evaluation corresponds to the loss of  a single binary digit (in terms of  error 
bounds rather than actual errors)." - OLIVER [11] (p. 325). 



234 HARRY H. PANJER AND SHAUN WANG 

We define the basic error propagation for which (26) holds, i.e. relative error 
bound grows linearly with a slope no greather than 1, and we judge the 
acceptability of  error behavior in the general case by comparing it with the 
above basic error propagation. 

4.3. Index of  error propagation 

Definition 6: The range of interest for recursion (10) is the interval [k, R] over 
which the values of  g(x) are to be computed. 

Definition 7: The index of error propagation for the recursion (10) 
evaluating the desired solution g~, k(X) over the range [k, R] is defined by 

{ 1 I~~=k ~i(x)l } 
(27) I(k,R):=SUpx~ik, R] ( x - k + l ) 6  Ig~,k(x)l " 

in 

In evaluating the desired solution, 

1. if l(k, R) is bounded, we say that the recursion (10) is stable over the range 
[k, R). 

2. if l(k, R) _< 1, we say that the recursion (10) is strongly stable over the range 
[k, R). 

3. if l(k, R) = ~ ,  we say that the recursion (10) is unstable over the range 
[k, R). 

In other words, a recursive evaluation is stable if the round-off error grows 
linearly, and being strongly stable if the linear slope is bounded by 1; a 
recursive evaluation is unstable if the round-off error grows more rapidly than 
linear; for example, exponentially. 

Theorem 1: The linear recursion (10) is stable for evaluating its dominant 
solutions, and unstable for evaluating its subordinate solutions. 

This result can be found in WIMp [23] (p. 10) and CASH [2] (p. 3). Here we 
just give an intuitive interpretation. 

Let g(h)(x), (h = 1, 2 . . . . .  m), be a fundamental set of (10) such that g(I)(x) is 
a dominant solution and 

g(h) (x) 
(28) lim - O, for h = 2 , . . . , m .  

x-o~ gO)(x ) 

The solution O~, ~ (x )  to be computed can be writ ten as a linear combination 
o f  this fundamental set: 

(29) g~, k(X) = dl g(O(x)+ ... +dmg{m)(x), 



ON THE STABILITY OF RECURSIVE FORMULAS 235 

where 

d~ / = 0 if gz,,~.(x) is subordinate 

( 4:0 if g~,k(x) is dominant 

On the other hand, the round-off  error propagation e~(x), as a disturbance 
solution, can be written as a linear combination of the fundamental set: 

(30)  el-(X) = C Ig( l ) (x ) ' [ ' -  . . .  -Jr-Cmg(rn)(X), 

where even though c~ is small, but with probability 1 that ct 4= O. 
Since ct :P O, one has 

(31)  

el(x) _ f oo if 

lim 
CI ~ g~,k(X) ~ - i f  

ga. k (x) is subordinate 

g~,k(x) is dominant 

where cl 
- -  can be made arbitrarily small by using sufficient number of digits. 
dl 

Therefore, a recursive evaluation by (lO) is stable if the desired solution 
g~,k(X) is dominant;  and is unstable if the desired solution g~.k(X) is 
subordinate. 

Also, we can see that, regardless of our desired solution, the computation 
always generate a dominant solution 9~, k(X)+e~(x). 

Example 3: Consider the following linear recursion: 

3 
(32) g ( x ) = g ( x - l ) - - - 9 ( x - 2 ) ,  x > 2 .  

16 

Equation (32) has a fundamental set of  solutions 

(33) g(t)(x) = (.75)", g(Z)(x) = (.25) x. 

Where g(°(x) is a dominant solution, and g(2)(x) is a subordinate solution. 
A combination clg(t)(x)+c2g(2)(x) is a dominant solution if and only if 
ct ~ 0. Also, a solution g(x) is a dominant solution if and only if 

g(x) 
lim - .75. 

.,.- o~ g ( x - 0  

(I). Evaluate the desired solution g(°(x) by recursion (32) with initial 
values : 

g(l)(l) = .75, 9(0(2) = .752 . 
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The computed results for some selected points are listed in Table 2 (5 digits 
are used in the evaluation). 

T A B L E  2 

EVALUATION OF THE DOMINANT SOLUTION ~(I)(x) 

5 
10 
~.0 
30 
~0 
50 

ca lcula ted  gO) (x ) 

.23730 
.056318 

.0031710 
.00017858 

.000010057 
.56639 x ]0 -6 

relat ive er ror  

- . 000019753  
.000079649 

- . 000066832  
- . 0 0 0 0 1 1 7 0 4  

.000041251 
.00012068 

calcula ted gt°(x) relative error  

75 .42622 x 10 -9 
I00 .32074 x I0 -12 
200 .10291 x 10 -24 
300 .33020 x 10 -37 
400 .10592 x 10 -49 
500 .33970 x 10 -62 

.000089971 

.000061680 
.00047191 
.00091698 

.0010888 

.0010686 

From Table 2, one can observe that the relative error grows very slowly. The 
accumulated error at x is bounded by ( x -  1)~, (i.e. the evaluation of g°)(x) is 
stable). 

(II). Evaluate the desired solution g~2)(x) by recursion (32) with initial 
values : 

g~2)(I) = .25, .q(2)(2) = .252 . 

The computed results for some selected points are listed in Table 3 (5 digits 
are used in the evaluation). 

T A B L E  3 

EVALUATION OF THE SUBORDINATE SOLUTION g(2)(x) 

x ca lcula ted  g<2)(x) relative error  g(2)(x)/,q(2J(x- I) 

3 
5 

10 
20 
30 
50 

.015625 
.0009763 

.8781 × 10 -6 
- . 4 2 5 6 8  x 10-8 
- . 2 3 9 7 7  x 10 -9 
- . 7 6 0 3 6  × 10 -12 

0 
- . 0 0 0 2 6 8 8 0  

- . 0 7 9 2 4 5  
- 4681.4 

- . 2 7 6 4 4 ×  109 
- . 9 6 3 8 7  x 1018 

.25000 

.24995 

.23643 

.75032 

.75001 

.75000 

From Table 3, one can observe that the round-off  errors blow up rapidly. 
The recursive evaluation is very unstable. By checking the ratio 
g¢2)(x)/g~2)(x-1) of the computed results, one can see that the computed 
solution (eventually) follows a pattern of  a dominant solution. 

Remarks: 

1. In general, every (non-trivial) linear recursion is stable for some solution 
and unstable for other solutions. Thus it is meaningless to merely talk 
about the stability of a recursion without mentioning the desired solution. 
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. 

However, for simplicity, when we talk about the stability of  a recursion 
without specifying which solution it refers to, we assume that the desired 
solution is implicitly known. 

It is the rate of  growth of  the desired solution with respect to other 
solutions of  the recursive equation that determines whether or not the 
recursive computation is successful. In terms of  initial value representations, 
the family of subordinate solutions form an m - I  dimensional surface in 
the m dimensional space of all solutions of (10). As a result of  round-off  
errors and higher-order round-off  errors, the disturbance solution can be in 
any direction in the space of  all solutions of  (10). Therefore, in general, no 
matter whether the desired solution is dominant or not, the computed result 
follows a pattern of a dominant solution. When the desired solution is a 
subordinate solution, round-off  errors will blow up and make the recursive 
evaluation ineffective. 

We have clarified the stability concept of  linear recursions. In the next 
section, we shall give a family of recursions whose non-negative solutions are 
dominant' solutions. 

5. C O N G R U E N T  RECURSIONS OF FINITE ORDER 

AND THEIR DOMINANT SOLUTIONS 

Definition 8: A linear recurrence equation of  the form: 

(34) g(x) = ~ Bi (x ) f ( j )  g ( x - j ) ,  
j=l 

with the following restrictions: 

• f ( x )  is non-negative with finite support on {xl, x 2 , . . . ,  xr} which satisfies 
(15) and (16). Note that f ( x )  does not have to be a probability function 

• Bj(x), j = 1, 2 . . . . .  m, are strictly positive functions of  x > 0 

is called a congruent recursion of finite order m. 
In this section, we arc going to give the dominant solutions.of congruent 

recursions. 
We first discuss a set of solutions g(h)(x) of  (34) with starting point k (>_ 0) 

and initial values 

I if j = h ,  l _ ~ h , j < m .  
(35) g(h)(k--m+J)=6h'J= 0 if j4:h, 

Proposition 1: For  a positive number n, if it is a linear combination of  
x l ,  x2, . . . ,  xr with coefficients in ~0 = {0, 1, 2 . . . .  }, then 

(36) O(h)(k+h+n) > O. 
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Proof: Since 

9 ( h ) ( k - r n + h )  = 1, B j ( ' ) f ( j )  >_ O, 

f rom equat ion (34), we have 

9(h)(k+ h) >_ Bm(k + h) f (m) > O . 

N o w  from point  k + h ,  apply the recurson (34) again:  

9 ( h ) ( k + h +  xO > B x , ( ' ) f ( x l )  O~h)(k+h) > 0 

By induction,  for any n which is a linear combina t ion  o f  x~, x~, . . . ,  x~ with 
coefficients in Zo, we have 

9(h) (k + h + n) > O . [] 

Lemma 1 : Let  x~, x2 . . . . .  xr ~ ~ with x; not  all zero. The following statements 
are equivalent : 

• x ~ z j + x 2 z 2 +  .. .  + x r z r  = 1 has a solution in integers z:; 

• 9 c d ( x l ,  X 2  . . . .  , X r )  = ] .  

Proof: See FLATH ([7], p. 13). 

Proposition 2: Let x~, x 2 , . . . ,  x~ be positive integers with 

gcd(x l  , x2,  . . . ,  x~) = 1. 

There exists a cons tant  No, such that  for any integer k > No, k can be 
expresssed as a linear combina t ion  o f  x j ,  xz,  . . . ,  x~ with coefficients in 
2 ° = {0, 1, 2 , . . . } .  

Proof: F r o m  L e m m a  1, there exist z j ,  z2, . . . ,  zr e Z such that  

X i Z i " ~ - X 2 Z 2 - ' b  . . ,  + X r Z  r ~ I . 

Let 

N O = x I (Izllxl +[zz lx2+ . . .  +lZrlXr), 

For  any n > No, apply the division a lgor i thm to positive integers n - N o  and 
x~, we obtain 

n = N o + u x j + v ,  u > O ,  O < v < x j .  

By replacing v with 

V(XlZ l+X2Z2+ ... + x ,  zr), 



ON THE STABILITY OF RECURSIVE FORMULAS 239 

we obtain 

n =  No+v(x~z~+x2z2+ ... + x r z , ) + u x l ,  

which is a linear combination of  x l ,  x 2 , . . . ,  Xr with coefficients in Z0. [] 

Theorem 2: For the congruent recursion (34), the solution g(h)(x) is non- 
negative and free from zero when x gets large: 

(37) g~h)(x) >_0, for x>_k;  g~h)(x) > 0, for x >  No; 

where N O is some constant. 

Proof:  It is an immediate application of  Propositions 1 and 2. [] 

Now we are ready to generalize our results to the solutions of  equation (34) 
with an arbitrary non-negative initial vector ~ with at least one positive 
element" 

(38) gLk (k - -m+j )=~Zk_ , ,+ j>O,  ( j =  1,2 . . . . .  m); ~ ~Zk_m+j>0. 
j= l  

Theorem 3: For  the congruent recursion (34) with initial conditions (38), the 
solution g~,,k(X) is non-negative and free from zero when x gets large: 

(39) g~ ,k(X)>0 ,  for x > k ;  gZ,,k(X)>O, for x > N 0  

where No is some constant. 
We say that ~ > f l  if an only if O~k_,,,+j> flk-,,+j for j =  1,2, . . . ,  m. 

Theorem 4 (Comparison): For the congruent recursion (34), if ~ ~ fl, then 

gLk(x)  > g99, k(X), for x > k.  

Proof:  Since 0¢ _> fl, we have 0¢-fl >_ 0 and from equation (34) we have 

gLk(X)--g;~,k(X) = gz,-;~.k(X) >-- O. [] 

Theorem 5: For  the congruent recursion (34) with initial conditions (38), the 
solution g~,k(x) is a dominant solution. 

Proof: From Theorem 3, we can move the starting point from k to a new 
point K such that 

(40) Y = (YK-,,+ I . . . . .  YK) = {gk, k( K - m +  1), . . . ,  g~,k(K)} 

has all its m components strictly positive. 
Obviously g~,k(x) and gT, K(X) are the same for x >K.  



240 HARRY H. PANJER AND SHAUN WANG 

Let h(x) be any solution of  the congruent recursion (34), and 

(41) ,8 = (ilK-,,,+, . . . . .  ilK) = { h ( K - m +  1) . . . . .  h(K)}. 

Since a finite number of  values are always bounded, there is a positive 
constant ~ (0 < ~ < oo) such that 

7K-m+j --> IflK-m+jl, j = 1, 2 . . . .  , m. 

Therefore 

g~.k(X)=gLK(X)>~-I[h(x)[ ,  for x >  K. 

6. NON-HOMOGENEOUS RECURSIONS OF INFINITE ORDER 

Now we extend our discussions to a general family of non-homogeneous 
recursions of  infinite order. 

Definition 9: A recurrence equation of  the form 

(42) g(x) = ~ Aj(x) g ( x - j ) + H ( x ) ,  x > k > _ O ,  
j= l  

is called a non-homogeneous recursion of infinite order. 

Definition 10: The recurrence equation of  infinite order 

(43) g(x) = ~ Aj(x) g ( x - j ) ,  x > k > _ O ,  
j= l  

is called the homogeneous counterpart of recursion (42). 
The homogeneous counterpart  (43) is also a special case of (42) with 

H(x)  = 0. When H(x)  = 0, the homogeneous counterpart  of equation (43) is 
itself. 

For  an example, when claim severity has a infinite support, the recursion (3) 
is homogeneous recurrence equation of  infinite order. 

Definition 11: The desired solution is a special solution of the non-homoge- 
neous recursion (42) to be computed, which can be represented by the initial 
values : 

(44) g ( j )  = o~j, j = O, 1 . . . . .  k ;  (O~o, o~1 . . . .  , O~k) = 2 .  

We denote this desired solution as g~,k (x). 
In the above definit ion, wi thout  loss o f  generality, we assumed that the 

init ial points are {0, 1 . . . . .  k}. I f  initial points are {r, r +  1 . . . . .  r + k } ,  one can 
always introduce a new variable x '  = x - r  and get a new equation in terms o f  

• x ' .  O f  course, the stabilities for these two recursions are equivalent. Note that, 
by a transformation x '  = x - ( k - m +  1) the recursion (10) of  finite order is a 
special case o f  (42) with H ( x )  = 0 and A j ( x )  = 0 f o r j  > m. 
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Since both the desired solution g~.k(X) and the computed values ~a,k(X) 
satisfy the non-homogeneous recursion (42), the accumulated absolute error 
,0~, k (X)-- gL ~ (x) satisfies the homogeneous counterpart  (43). 

Definition 12: The relative error for the initial value g ( / )=~ t j  is q/j. The 
propagation of  initial value errors is a solution ek(X) of  the homogeneous 
counterpart  (43) with the initial condition 

(45) ek(j)  = qjCtj, j = O, 1 . . . . .  k .  

Definition 13: The (newly generated) round-off  relative error at point r (z > k) 
is r h .  The propagation of  the round-off  error at z is a solution e~(x) of  the 
homogeneous counterpart  (43) with the initial condition 

(46) e~( j )=O,  j = 0 , 1  . . . . .  r - l ;  e~(r)=q~g~,k(Z) .  

Other definitions (e.g. index of error propagation and strongly stable, etc.) 
can be similarly defined as in the finite homogeneous case. 

Definition 14: A non-homogeneous congruent recursion of infinite order is 
defined by : 

(47) g(x)  = ~ Bj(x) g (x - j )  + H (x ), x > k ,  
j= l  

with Bj(x) >_, and H(x)  > O. 
The dominance ranking between the desired solution and the error solution 

determines whether the recursive evaluation is successful or not. 
Unlike its homogeneous counterpart,  a non-homogeneous first order recur- 

sion is not necessarily stable. This is because that, for a non-homogeneous 
recursion, the desired solution and the error solution satisfy two different 
equations. 

Example 4: Consider the first order forward recursion: 

(48) g(x)  = g ( x -  I ) - . 5  x, x > 1, 

with an initial value g(0) = 1. The desired solution is g ( x ) =  .5 x. A fundamen- 
tal set of the homogeneous counterpart  is given by gtt)(x) = 1. Since g°)(x)  
dominates g(x),  the recursive evaluation is unstable in evaluating g(x).  This 
instability can be easily verified on a computer. If 5 digits are used, the 
computed results for the points after x = 40 become a constant .79228 x 10 -7, 
which again follows a pattern of a dominant solution. 

Similarly, we have a comparison theorem. 
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Theorem 6: Let ga, k(x) and gL k (X) be two solutions of the non-homogeneous 
congruent recurs_ion (47), O, k(X) be a solution of the homogeneous counter- 
part of (47). If ct >_ fl, then 

gZ,.k(x) > gLk(X) > O.k(X), for x > k. 

From the above theorem, or by mathematical deduction, for non-negative 
initial vector 2, the solution g~. k(x) of (47) is non-negative. 

Theorem 7 (Strongly Stable): A non-homogeneous congruent recursion of 
infinite order (47) is strongly stable in evaluating g~,k(X) provided that ~ is 
non-negative. 

Proof: After the initial points, any vanishing of g~,k(X) results solely from 
zeros in the initial values and does not depend on previous non-zero g~, k(x) 
values. There is no error in this case. 

We need only to be concerned with positive values of gL k(X) - 
For the propagation ek(X) of initial value errors, since 

[ek(j)l _< Og(j) = ~o~j ,  j = O, I , . . . ,  k,  

from Theorem 6, we have 

(49) lek(x)l _< ~, x > k .  

o~, k (x )  

For the propagation G (x) of the newly generated round-off error at point r, 
since 

e~(j) = 0, ( j  = 0, 1, . . . ,  r -  1); 

we have 

I~ (x)l  
(50) - -  _< ~, 

ga,~(x) 
Therefore, 

1 I "i=k ei(X)] 

( x - k +  1)6 ]g&,k(X)] 

The strongly stable condition (27) holds. 

x > k .  

1, x > k .  

[] 

In the proof, the inequalities (49) and (50) can be very loose. Thus, 1 is only 
a gross upper bound for l(k, oo). It can be much less than 1 in actual error 
propagation. Another important factor is the offset of positive and negative 
relative errors when rounding is used by the computer. 
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Theorem 8: In evaluating non-negative solutions of the congruent recur- 
sion (47), if rounding is used by the computer, the accumulated relative error at 
point x is a random variable u(x) with values in 

(51) [ - ( x - k +  I)~, ( x - k +  1)~1. 

u(x)  has a mean of zero and variance ( x - k +  1)~2/3. 

Proof: It is a direct result from a sum of x -  k + 1 i.i.d, random variables which 
are uniformly distributed on [ - ~ ,  ~]. [] 

From Theorem 8, even though the upper bound for accumulated relative 
errors at x grows linearly with x, the standard deviation is only a constant 

multiple of  x / x - k +  1. A 99% confidence interval for ~(x)  is approximately 

(52) [ - 1 . 5  ~ 1  q, 1.5 x / x - k +  1 ~].  

7. FORWARD DIRECTION VS BACKWARD DIRECTION 

The earlier discussions can also be easily extended to recursions in the 
backward direction. For  simplicity, we only discuss recursions of  finite 
order. 

Definition 15: A recurrence equation of the form 

(53) 9(Y) = ~ Aj(y)9(Y+J)+HO') ,  y < k ,  
j = l  

with 

(54) g(j)  = ct:, ( j  = k . . . . .  k + m -  1), ~ = (0Ok . . . .  ,0Ok+,,-,) 

is called a non-homogeneous recursion in the backward direction with starting 
point k and initial vector 7. We denote this solution as ga, k(Y). 

Definition 16: A non-homogeneous congruent recursion in 
direction is defined by: 

(55) g(y) = ~ B j ( y )g (y+ j )+H(y ) ,  y < k ,  
j = l  

with Bj(y)  _> 0, and H(y) >_ O. 
Similarly, we have a strongly stable theorem. 

the backward 

Theorem 9: The non-homogeneous congruent recursion (55) is strongly stable 
in evaluating its non-negative solution 0~, k(Y) in the backward direction. 

When a congruent recursion in the forward direction is rewritten as a 
recursion in the backward direction, it is no longer a congruent recursion in the 
backward direction. Thus, 'congruent '  is direction dependent! 

The links between the two directions are important. 
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For a first order homogeneous recursion, since there is no dominance 
ranking among the solutions, the recursion is strongly stable in both direc- 
tions. 

For  a second order homogeneous recursion, there are only two solutions in a 
fundamental set. If the recursion is unstable in one direction, which means the 
undesired error solution grows unboundedly with respect to the desired 
solution, then this undesired error solution will decrease rapidly in the reverse 
direction, and thus the recursion is stable in the reverse direction. 

For  a recursion of  order rn > 2, its solutions are ranked by their dominance 
relationship. There may be solutions which are subordinate in both directions; 
for these solutions, the recursion is unstable in both directions. Nevertheless, if 
the desired solution dominates all other solutions (in a fundamental set) in one 
direction, then the same desired solution will be dominated by other solutions 
in the reverse direction. Thus, if a recursion is stable in one direction, it is 
unstable in the reverse direction. In general, the more stable a recursoin is in 
one direction, the more unstable when it is used in the reverse direction. 

Definition 17: Asssuming that m _> 2, a recursion is called strongly unstable in 
one direction for a desired solution if it is strongly stable in the reverse 
direction for the same desired solution. 

The next two theorems follow directly from this definition. 

Theorem 10: A recurrence equation (m >_ 2) 

m -  I 

(56) 9(x )=B, , ( x )9 (x -m) -  E Bj(x)o(x-j)-H(x),  x>k ,  
j=l 

with Bj(x) > 0 and H(x) > 0 is strongly unstable in the forward direction in 
evaluating its non-negative solutions. 

Theorem 11 : A recurrence equation (m > 2) 

(57) 9(y)=Bm(Y)9(y+m)-  E B}(y)9(y+j)-H(y), y < k ,  
j=l 

with Bj(y) > 0 and H(y) >_ 0 is strongly unstable in the backward direction in 
evaluating its non-negative solutions. 

Example 5: Reconsider Example 1. From Theorem 7, the forward recursion (6) 
is strongly stable in evaluating its non-negative solutions. From Theorem I1, 
the backward recursion (8) is strongly unstable in evaluating its non-negative 
solutions. 
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Example 6: Consider the recurrence equations for modified Bessel functions 
(see Press, et al. [16], p. 192): 

(58) 1.+ I (x) = - (2 n/x) In (x) + In_ n (x), 

(59) K.+ t (x) = + (2 n/x) K. (x) + K._, (x). 

Since l.(x) and K.(x) are non-negative solutions for x > 0 ,  the recur- 
sion (58) is strongly unstable in the forward direction, and the recursion (59) is 
strongly stable in the forward direction. 

8. EMPIRICAL INFLATION FACTOR 

In this section, based on the signs of  the coefficients Aj(x) and the term H(x) 
in (42), we investigate the growth of the relative errors in each step of  the 
recursive evaluation. 

Lemma 2: Let a and b be two positive real values, with their estimates d and 
having relative errors v h , q2, respectively. Then, 6 + ~  as an estimate of  a+b, 
has a relative error 

a b 
(60) - -  qt + - -  r/2 

a+b a+b 

which is bounded by [ - q ,  q] where 

(61) r /=  max (Iq.I, Iq21). 

As a special case, if r/2 = 0 (bis exact), then, &+b, as an estimate of  a + b ,  has 
a relative error which is less than t/n. We say that the relative error is 
damped. 

Lemma 3: Let a and b be two positive real values, with their estimates 6 and 
having relative errors ~q, v/2, respectively. Then, 6& as an estimate of  ab, has a 
relative error r/i + q2, provided that r/i is small relative to 1 (r/i ,~ 1, i = 1, 2). As 
a special case, 6b, as an estimate of  ab, has a relative error q/l. 

Lemma 4: Let a and b be two positive real values, with their estimates 6 and 
having relative errors of  any value in the range ( - ~ ,  03. Then, & - ~  as an 
estimate of  a -  b, can have a relative error of  any value in the range ( -  7if, 703, 
where 

(62) 

is called the error inflation factor. 

a+b 
~2 - -  - -  , 

l a - b l  

In Lemma 4, one can see that, when a ~ b, y can be infinitely large, which 
causes extraordinary unstable result. This should be avoided in any computing 
schemes. 
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Consider the non-homogeneous recursion (42) of  infinite order. The value 
g(x) at point x depends upon all previous values 9 ( x - j ) , j  = 1 . . . . .  x. In each 
step of recursive evaluation, there are x +  1 terms involved : 

H(x) and Aj(x) 9 ( x - j ) ,  ( j =  I . . . . .  x ) .  

Some of  them may be positive, and some may be negative. To indicate 
clearly the sign of  each term, we re-write the equation (42) into the following 
form:  

(63) g(x) = ~_, sj(x) Bi(x ) g ( x - j ) +  H + ( x ) -  H -  (x), 
j = l  

such that 

(64) 

and 

Bj(x) 9 ( x - j )  = [Aj(x) 9(x- j ) [  > O, 

(65) 

and 

!if 
sj(x) = if 

1 if 

Aj(x) g ( x - j )  > O, 

AAx) g ( x - j )  = O, 

Aj(x) g ( x - j )  < O, 

IH(x)[ + H(x) [ H ( x ) [ -  H(x) 
(66) H + (x) -- , H -  (x) = 

2 2 

Definit ion 18:  Associated with the computed solution 9 (x), we define a positive 
part  g+ (x) and a negative part  9_ (x) at each point x such that 

(67) 9+(x) = Z BJ (x) 9(x-j)+H+(x)>-O 
sj=l 

(68) , q _ ( x ) =  Z B j ( x ) 9 ( x - j ) + H - ( x ) > O  
s j = - I  

(69) 9 (x) = 9 + (x) - g _ (x) 

Definition 19: An empirical inflation factor at x is defined by 

(70) 

and 

,q+ (x) + o -  (x) 
~ ( x )  = , if  9 +  ( x )  ~ 9 -  ( x )  ; 

10+ ( x ) -  o-  (x)l 

(71) : ( x )  = oo, if 0+ (x) = 9 -  (x) .  
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Definition 20: If k is the starting point of the recursion (63), then we define an 
empirical accumulated relative error bound recursively: 

(72) fi(x)=a(x-l)~(x)+~, x>k ,  

with initial value fi(k) = ~. 

Theorem 12: Assuming that r digits are used. For the computed value g (x) by 
recursion (42), an empirical upper bound of the relative error is given by 

( x - k +  1) I-I x r (73) ~(x) < i=k ~(i) x .5 x 10- if rounding is used, 

(x--k+l)I-lT=k~(i)xlO -r if chopping is used. 

Proof: It can be easily verified by mathematical induction. 

Definition 21 : We say that the number of significance digits in the computed 
value g(x) is v(x) if the relative error is less than 10 -"(x). 

One can empirically estimate the number of significant digits v(x) in the 
computed value g(x) by the following inequality: 

I in 1 
(74) v(x)_> ~(x) = [ - l o g , 0 a ( x ) ]  = - i r~ ~ _1 

where lnx denotes the natural logarithm of x, Ix] denote the largest integer 
which is no greater than x. For example, [2.317] = 2, and [-2.317] = - 3 .  

Example 7: Reconsider the backward recursion (8) in Example 1. Now we 
calculate the estimated ff(x) and compare it with the actual v(x) at each point. 
The results are listed in Table 4. 

TABLE 4 

EMPIRICAL ESTIMATION OF THE NUMBER OF SIGNIFICANT DIGITS FOR THE BACKWARD RECURSION (8) 
WHEN 6 DIGITS ARE USED 

x I computed g(x)  f (x)  ~(x) I exact O(x) actual v(x) 

8 .099850 4 22.71 .0998450 4 
7 .078315 3 25.22 .0783629 3 
6 .054807 2 28.15 .0543124 2 
5 .027538 0 38.81 .0325723 0 

The catastrophic instability of the backward recursion (8) can be seen from 
the large inflation factors ~(x) in Table 4. 
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Remarks: 

If all the terms are of  the same sign, (i.e. either cq+ (x) = 0 or 9 -  (x) = 0 for all 
x >_ k), then fi(x) = ( x - k+  1)~ and 

r + [ I o g l 0 2 - 1 o g l 0 ( x - k + l ) ]  if rounding is used, 

(75) v(x) > r + [ - I o g l 0  ( x -k+  I)] if chopping is used. 

Our earlier results about  the non-negative solutions of  congruent recursions 
are ' recovered'. 

One should interpret the inflation factors with care. For an example, in 
evaluating the dominant solution 9~)(x) in Example 3, the inflation factors are 
a constant ~ = 1.6667, but error inflations seldom occur and the evaluation is 
stable• 

9. APPLICATIONS 

Note that the recursion (3) is a special case of (47) with H(x) = 0 and starting 
point k =  0. The initial value 9(0) is positive and the desired compound 
distribution is non-negative• If the claim frequency is in the family of  Poisson, 
Negative Binomial or Geometric distributions, we have, from PANJER [12], 

(76) Bj(x)=a+b-~ > O, j= I , . . . ,x .  
x 

As an immediate application of  Theorem 7, the recursion (3) is strongly 
stable in evaluating compound Poisson, compound Negative Binomial and 
compound Geometric distributions. 

In using recursion (3) to evaluate compound Poisson, compound Negative 
Binomial and compound Geometric distributions, the accumulated relative 
error bound grows linearly with a slope no greater than 1. If the evaluation 
starts at point x = 0 and r digits are used, a guaranteed number of  significance 
digits in the computed 9(x) can be estimated by the following simple 
inequality : 

(77) v(x) > I r+[logl0 2-1ogl0 (x+  1)] if rounding is used, 

( r + [ - I O g l 0  (x+  1)] if chopping is used. 

If  rounding is used by the computer, with a probability of 99 %, 

I 4 1 1 (78) v(x)>r + lOgl0 3 2 1 ° g l ° ( x + l )  . 

For example, if both claim frequency and claim size have a mean 1000, one 
wishes to get an accuracy with relative errors less than l0 -7 over the interested 
range [0, 1071 . One can achieve this accuracy by using 14 digits. Also, with (at 
least) 99 % confidence, one can achieve this accuracy by using only 11 digits. 
This strongly stable property has practical significance in applications of  
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discretization method (see GERBER [8], PANJER [13], PANJER and LUTEK [14]). 
If  one increases the number  of  points by a factor of  100 in the discretization of  
severity distribution, simply adding 2 digits can keep the same level of  
accu racy. 

As an application of  Lemma 2 and Lemma 3, the effet of  round-off  
coefficients can be considered. For any finite number of  positive values, their 
summation has the same level of  relative error, and their product  has a relative 
error bound which is the summation of  individual relative error bounds. For 
any non-negative solution of  the recursion (47)z if the relative round-off  errors 
of  Bj(x) and f ( j )  are i.i.d, random variable qg~,, then the index of  relative 
error propagat ion enlarges only by a constant multiple of  3. One additional 
digit is sufficient to protect the solution from round-off  errors in the 
coefficients. 

The condition (76) does not hold for the family of  compound Binomial 
distributions. Compound  Binomial distributions share a special feature that it 
has only finite support  when claim size has finite support.  Since the desired 
solution eventually becomes zero in the forward direction, it can not be a 
dominant  solutoin. From Theorem I, recursion (3) is unstable in evaluating 
compound Binomial distributions. This instability can be encountered at the 
right tail of  the compound distribution in the forward direction. A special 
treatment for compound Binomial distributions is given in the next section. 

10. THE CASE OF COMPOUND BINOMIAL 

In this section, we investigate in more detail about  the instability of  compound 
Binomial distribution. Based on some special features of  compound Binomial 
distribution, a simple method to cope with this instability is given. 

Consider the case that the claim frequency has a Binomial distribution: 

Nt 
(79) p,  - 0 n (1 - 0 )  N-n, 0 _< n _< N.  

n! (N-n)!  

Then, in recursion (3), 

0 0 
(80) a = - , b = ( N + l ) - - .  

1 - 0  1 - 0  

Example 8 3: Consider compound Binomial distribution with parameters  

0 = .95, N =  100, 

and with claim severity distribution as in Table 5. 
In order to investigate how unstable the recursion (3) is in evaluating this 

compound Binomial distribution, we use 200 digits in the calculation. The 

3 All the numerical examples in this paper are done on Maple V [6], on which one can freely assign 
the number of digits. Rounding is used by Maple V. 
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T A B L E  5 

THE DISTRIBUTION OF CLAIM SEVERITY .4 

x I 2 3 4 5 6 7 8 9 10 

f(x) .150 .200 .250 .125 .075 .050 :050 .050 .025 .025 

T A B L E  6 

THE EMPIRICAL INFLATION FACTOR AND ESTIMATED SIGNIFICANT DIGITS IN THE COMPUTED VALUE 
WHEN 200 DIGITS ARE USED IN THE COMPUTATION 

x p(x) 

50 1 
100 I 
150 1.9574 
200 2.8849 
250 4.6382 
300 6.4586 

O(x) x ;(x) O(x) x ;(x) ~(x) 

199 350 9.5099 61 650 50.818 - 345 
198 400 12.905 8 700 68.394 - 434 
191 450 17.447 - 51 750 99.559 - 529 
171 500 22.699 -116 800 157.89 - 634 
143 550 29.683 ~ - 186 850 328.04 -752 
106 600 38.372 [ - 263 900 - -  - -  

empir ica l  inf la t ion  factors  are  ca lcu la ted  a long  with the recursive eva lua t ion .  
The  results  for  some selected po in ts  are  listed in Tab le  6. 

F r o m  Tab le  6, one can see that  the e r ror  inf la t ion fac tor  remains  flat  a t  1 
when x < 100, and  accelera tes  af ter  x > 100. The  acclera t ing  g rowth  in the 
e r ro r  inf la t ion  fac tors  indicates  tha t  the recursive eva lua t ion  becomes  more  and  
more  uns tab le  when it p roceeds  to the r ight  ha l f  o f  the c o m p o u n d  Binomial  
d i s t r ibu t ion .  Even 200 digi ts  can not  p ro tec t  the desired so lu t ion  f rom the 
d i s tu rbance  o f  r o u n d i n g - o f f  e r rors !  In  the c o m p u t e d  values o f  g(x), we 
ob ta ined  the fo l lowing absu rd  resul ts :  

9(898) :  = - . 1 9 5 0 2  x 1 0  - 9 3 ,  and 9(1000):  = - . 5 9 0 5 2  x 10 -7°.  

The  c o m p u t e d  g(x) becomes  negat ive  at  x = 898, which tells us tha t  the 
empir ica l  es t imates  ; ( x )  and  f ( x )  af ter  po in t  x = 898 are  no longer  reliable.  

10.1. A combined usage of  two directions 

This  m e t h o d  involves two recurs ions :  (i) the fo rward  di rect ion,  and  (ii) the 
reverse recurs ion  in the b a c k w a r d  d i rec t ion  s tar ing at  the end po in t  raN. 

W h e n  the c la im severi ty has  a finite suppor t  {xt ,  x 2 , . . . ,  xr}, recursion (3) 
can be wri t ten  into a recurs ion (17) o f  finite o rde r  m = Xr. The recurs ion (17) 
can be easi ly turned  into a b a c k w a r d  recur s ion :  

m--I '{ (8 l )  g ( y ) -  g ( y + m ) -  ~ a+b f ( m - j )  g(y+j)  
j=~ y+m 

where  

m ) I m' 
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For compound Binomial distributions, the boundary condition at the end 
point mN is known and can be used as an initial value for the backward 
recursion : 

(83) g(mN) = oNf(m) N, g(mN+j) = O, for j = 1, 2, ... 

T h e o r e m  13: In evaluating compound Binomial distributions, we have the 
following results : 

I. The forward recursion (3) is locally strongly stable over the range 
[0, N +  l]. 

2. The forward recursion (17) is locally strongly stable over the range 
[0, N +  1], and becomes strongly unstable when it proceeds to the range 
[raN-N- 1, mN]. 

3. The backward recursion (81) is locally strongly stable over the range 
[mN-N-1,  mN], and becomes strongly unstable when it retreats to the 
range [0, N + 1 ]. 

4. As a special case, when m = 2, a combination of  recursions in both 
directions gives a locally strongly stable evaluation over the interested range 
[0, mN]. 

P r o o f :  W h e n  0 < x _< N +  1, we have 

a+b j _> O, j=  1,2, 
x 

Therefore, the coefficients of  the forward recursion (3) are all non-negative 
over the range [0, N +  I]. 

When ruN-(N+ 1) < y < Nm, we have 

P ( y ) > 0 ,  and (a+b m - j )  - > _ 0 ,  j = l  . . . . .  m - l .  
y+m 

Thus the coefficients of  the backward recursion (81) are all non-negative 
over the range [mN-(N+ 1), mN]. 

From earlier results, the theorem is proved. [] 

One can see the connection between compound Binomial and compound 
Poisson distributions. When N ~ c~ and 0 = 2/N-.-, O, the limiting distribution 
of compound Binomial is nothing but a compound Poisson distribution, which 
is strongly stable over the range [0, oo). 

Example 9: Reconsider the compound Binomial distribution discussed in 
Example 8. We use both the forward recursion (3) and the backward 
recursion (81) to evaluate the compound Binomial distribution. This time, 
instead of  using 200 digits, we use only 20 digits in the evaluation. The results 
are displayed in Table 7. 
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T A B L E  7 

EVALUATE COMPOUND BINOMIAL RECURSIVELY IN BOTH DIRECTIONS 

x g (x)  ( fo rward)  g (x)  (backward)  

0 
I 

306 

379 

1000 

.7888409052 x 10 -130 

.2248253579 x 10 -~27 

.1254727678 x 10 -22 

.2472423462 x 10 -2 

.2694072242 x 10 -2 

.8779196867 x 10 -2 

.8381164919 x 10 -2 

.2300721278 x 102~ 

- .2066050091  x 10 Ill 
.3516174897 x 10 Ill 

.1025580868 x 10 II 
- . 8857199512  × 10 I° 

- .5706507331  × l0 -6 

.2472423462 × 10 -2 

.2694072242 x 10 -2 

.8779196867 x 10 -2 

.8381164919 x 10 -2 

.1099653604 x 10 -20 

.3684354379 x 10 -160 

.3684354379 x 10 -162 

From Table 7, one can observe that the computed results by recursions in 
both directions meet each other over the middle range [305, 379] in their first 
10 non-zero digits. I f  we use the results of  forward recursion for points before 
379, and the results of  backward recursion for points after 305, then we have 
confidence in that there are at least 10 significant digits in the combined results. 

0 
Note that in (79), a = - - - ,  thus a -*  oo as 0 ~ 1. 

1 - 0  

In this numerical example, 0 = .95, which gives a large negative value a = - 19 
and thus causes rapid round-off  error blow-ups. The effectiveness of  both 
forward and backward recursions are compared in Table 8, for different values 
of  0, and in Table 9, for different values of  N. 

T A B L E  8 

EVALUATE COMPOUND BINOMIAL WITH SEVERITY h AND N = 100 IN TWO DIRECTIONS 

(20 DIGITS ARE USED TO ENSURE l0  SIGNIFICANCE DIGITS IN THE COMPUTED RESULT) 

0 fo rward  range  forward  mass  backward  range backward  mass 

.01 

.05 
.1 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

.95 

.99 

0 ~ 9 6 5  
0 - * 9 2 6  
0 ~ 889 
0 4  841 
0 ~  801 
0 ---~ 772 
0 ~ 747 
0---~732 
0--~692 
0 ~ 6 2 4  
0---~523 
0--*379 
0 ~ 2 1 4  

1 - . 6 7 4 1 5  x 10 -326 
1 - .90647 x 10 -234 
1 - .24936 × 10-187 
1 - . 7 4 1 8 1  x 10 -14° 
I - - .49640 x 10 - t t °  
1 - . 7 8 6 9 6  x 10 -90 
1 - . 3 6 4 1 3  x 10 -74 
I - . 3 9 2 5 5  x 10 -63 
I - . 4 4 5 7 4  x 10 -48 
I - . 3 5 3 2 2  x 10 -30 
I - . 4 4 4 9 2  x 10 -12 

.87753 
.15973 x 10 -13 

443 , - -1000  
4 6 5 ~ - 1 0 0 0  
4 6 2 ~ 1 0 0 0  
4 4 2 ~ 1 0 0 0  
4 3 2 ~ - I 0 0 0  
4 1 5 o 1 0 0 0  
3 9 6 ~ - 1 0 0 0  
3 7 5 ~ - I 0 0 0  
3 3 5 , - 1 0 0 0  
2 9 9 ~ 1 0 0 0  
2 7 8 4 - 1 0 0 0  
305 , - -1000  
1 8 7 ~ 1 0 0 0  

.90480 × 10-114 

.75752 × 10 -Bz 

.18494× 10 -63 

.11263× 10 -41 

.88769 × 10 -30 

.22285 × 10 -20 

.43928× 10 - t3  

.20499 × 10 -7 
.0023744 

.45509 

.98987 

.97773 
1 - .245 x 10 -20 
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T A B L E  9 

EVALUATE COMPOUND BINOMIAL WITH SEVERITY ,4 AND 0 = .5 IN TWO DIRECTIONS 

(20 DIGITS ARE USED TO ENSURE l0 SIGFICANCE DIGITS IN THE COMPUTED RESULT) 

253 

N forward  range  fo rward  m a s s  b a c k w a r d  range  b a c k w a r d  mass  

10 
20 

50 
100 

200 
500 

1000 

0 4  100 

0-- ,  192 
0 4 4 2 2  
0 ~ 747 

0---~ 1337 

0 ~ 2996 
0 ---, 5763 

- .20096 x 10 -31 
- . 1 4 6 1 9  x 10 -51 

- . 3 6 4 1 3  x 10 -74 
- . 8 1 6 9 4  x 10 - l i t  

- . 5 2 8 8 0  x 10 -207 
- .87859 x 10 -372 

0 , -  100 
12 ~- 200 

142 ~- 500 
396 ~- 1000 

962 , -  2000 
2754 ~- 5000 

5763 , -  10000 

I 
.99630 

.0043459 
.43928 x 10 - t3  

.67602 x 10 -46 

.31541 x 10 -165 

.87859 x 10 -372 

Remarks: 

1. In terms of  probability mass (not number of  points) covered by the valid 
range in which the accuracy meets a specified level, the effectiveness of the 
forward direction increases when N increases, and increases when 0 
decreases. This can be seen from Table 8 and Table 9, which is also 
consistent with the result in Theorem 13. 
However, the forward direction can be very unstable when 8 gets close to ! 
or the claim distribution is highly negative skewed. In such cases, the 
backward recursion can play a major part in evaluating the compound 
distribution. 

2. From Table 8, we can see that, when 0 _< .5, the backward direction can 
give accurate results for more than one third of  the points over the whole 
range; however, their total probability mass is very small. Thus, when 
0 _< .5, the actual usefulness of the backward direction can be used to check 
the accuracy of  the forward direction. 

3. In most insurance applications, 0_< .5 and N is large and the claim size 
distribution f(x) is positively skewed, if additional digits are used in the 
evaluation, one should not be bothered by seeing negative probabilities in 
the extreme far right tail, since almost all of  the compound distribution 
except the very extreme right tail has been evaluated with desired accuracy. 
A check of accuracy can be done by a recursive evaluation in the backward 
direction. If two directions do not meet over the middle range, increasing 
the number of  digits in the evaluation can make them so. 

4. As mentioned by CHAN ([3], p. 175) and SHIU ([19], p. 181), the famous 
J. C. P. Miller formula has been used to evaluate the power of  polynominals 
and the N-fold convolution of  arithmetic distributions. Essentially, J. C. P. 
Miller formula is a variant of  recursion (3) for the compound Binomial 
case. Assume that a discrete distribution f(x) is defined on integers 
{x0, x l ,  . . . ,  xr}. With a transformation x '  = x - N  x0, the N-fold convolu- 
tion o f f ( x )  is equivalent to a compound Binomial with 0 = l - f  (x0). In 
such situations, the Binomial parameter 0 can be very close to 1, or f(x) 
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itself can have a high negative skewness, which may cause difficulties when 
using the recursion in the forward direction. This instability can be easily 
handled by using two recursive evaluations in both directions. 

11. R E V I E W  OF O T H E R  R E C U R S I O N S  

11.1. The generalized (a, b) class 

SUNDT and JEWELL[2] extended recursion (3) to a larger family of  claim 
frequencies 

(84) p,, b - a + - ,  n = r + l , . . .  
P n -  1 n 

The compound distribution for this family of  claim frequency satisfies: 

= - -  - -  - -  P i - I  f * i ( x )  • 

j=l x i=l i 

Among the generalized claim frequencies (84), the class with r = 1 is of 
special interest and is given a name (a, b) class. In the (a, b) class, P0 can be any 
value in the interval [0, 1]. The family of  frequencies in (!) given by 
PANJER [12] is a subclass of  the (a, b) class with r = 0 and is called the (a, b, 0) 
subclass. The family of  frequencies in the (a, b) class with r = 1 and P0 = 0, is 
called the (a, b, 1) subclass. 

As counterparts of  the (a, b, 0) subclass, truncated Poisson, truncated 
Negative Binomial, truncated Geometric and truncated Binomial are members 
in the (a,b,  1) subclass. Another member in the (a,b,  1) subclass is the 
logarithmic distribution. SUNDT and JEWELL [20] and WILLMOT [21] completed 
the enumeration of  members in the (a, b, 1) subclass by adding in the extended 
truncated Negative Binomial (ETNB) distribution. 

For members in the (a, b, 1) subclass, we can modify the probabilities at zero 
arbitrarily. We name the members of  the (a, b) class as: zero-modified Poisson, 
zero-modified Negative Binomial, zero-modified Geometric, zero-modified 
Binomial, zero-modified extended Negative Binomial, and log-zero distribu- 
tion. 

For claim frequencies in the (a, b) class, the non-homogeneous recursion (85) 
becomes 

(86) g ( x ) = ~ ( a + b ~ ) f ( j ) g ( x - j ) + ( p l - ( a + b ) p o ) f ( x ) . j = l  X 

If we decompose the recursion (86) into the following form: 

(87) O(x) = a+ f ( j )  g ( x - j ) + p = f ( x ) + ( a + b )  (g(O)-po) f (x) ,  
"= X 
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and utilize the initial condition g (0)= P0, recursion (86) can be reduced to: 

(88) g(x) = J='E (a+b f ( j )  g ( x - j ) + p l f ( x ) ,  

with two initial values 

(89) g(O) = Po, g(1) = p i f  (1). 

From Theorem 7, one can easily see that the recursion (88) is strongly stable 
in evaluating compound zero-modified Poisson, compound zero-modified 
Negative Binomial, compound zero-modified Geometric and compound log- 
zero distributions. 

The recursion (88) is unstable in evaluating compound zero-modified Binom- 
ial. The method developed for compound Binomial in the last section can be 
applied to this case without any difficulty. 

For the compound zero-modified extended Negative Binomial distribution, 
we have 

(90) 0 < a <  1, b = ( r - I ) a ,  - 1  < r < 0 .  

For positive claim severities with a finite support {xl . . . . .  Xr = m}, we 
have 

(91) a+b j- > O, j =  l , . . . , m ,  for x > ( l + [ r l ) m .  
x 

Therefore, for compound zero-modified extended Negative Binomial distri- 
bution, the recursion (86) is stable. Also, once recursive evaluation has reached 
at a point k > (1 + Ir])m, the recursive evaluation for future points are strongly 
stable. 

In all the previous recursions for aggregate claims, it was assumed that 
claims were positive valued. For non-negative claim severities including zero 
claims, PANJER and WILLMOT [15] proposed a simple method, by which the 
spike at zero can be easily removed and the previous recursions for positive 
claims can be used. 

11.2. Compound Poisson (a, b) (CPAB) class 

WILLMOT and PANJER [22] discussed various contagious counting distributions 
which involve a sequential usage recursion (3). For example, a compound 
Poisson Inverse Gaussian (P-IG) distribution can be evaluated by a two-stage 
usage of recursion (3): ( i ) a  compound ETNB over the claim severity 
distribution; (ii) a compound Poisson with the compound ETNB distribution 
obtained in the first stage as its severity distribution. 

If each recursive evaluation is stable, their combined usage is also stable. 
ISLAM and CONSUL ([10], p. 93) commented that the use of CPAB frequency 
model may cause serious numerical instabilities. Clearly their comment was 
wrong. 
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11.3. Improved recursions aren't improved 

When the claim frequency has a Poisson distribution, and the claim severity 
has a special pattern of piecewise constant or piecewise linear, DE PRIL [17] 
gave some simplified recursions in terms of numbers of calculations required. 
However, since both positive and negative signs evenly appeared in the 
coefficients of the recursions, they are unstable and thus not really 
improved. 

11.4. Probability of ultimate ruin 

PANJER [13] proposed a method of direct evaluation of the probability of ruin. 
Since the desired probability is a compound Geometric distribution, the 
recursive evaluation is strongly stable. 

GOOVAERTS and DE VYLDER [9] proposed a different approach to approxi- 
mate the probability of ruin. The upper bounds are evaluated by a recurrence 
equation : 

(92) ~b~(xh)= 1+01 { K(xh)-  ~ dK((i-l)h) (V~((x-i)h)} ' x= 

The lower bounds are evaluated by a recurrence equation: 
x--I 

(93) ~t(xh)= l {K(xh)-  Z AK(ih) ~u((x-i)h)} 'x= +O+dK(O) i=1 

Since 

(94) K(s) = I °a l -F(y)  
s P l  

we have 

- - d y ,  s>_O, 

f(;+ ~);' dy > O. 
1 - F ( y )  

(95) - ziK(i h) = - -  
¢ i  h P l 

Therefore, the recursions (92) and (93) are indeed strongly stable in 
evaluating the desired ruin probability. 

RAMSAY [18] recently commented that his numerical result did not agree 
with that of GOOVAERTS and DE VYLDER [9] and was unable to explain the 
difference ([18], p. 58). Now it becomes clear that, the instability that RAM- 
SAY [18] discussed about was not from inherent rounding error accumulations 
by using recursions (92) and (93), but from the unstable evaluation of the 
coefficients dK(ih) = K((i+ l ) h ) - K ( i h )  by subtracting two nearly equal 
numbers. Also, the inaccuracy in the numerical results of GOOVAERTS and DE 
VVLDER [9] can be explained by the slow convergence (as proved by Ramsay) 
of the approximation scheme of Goovaerts and De Vylder, and not because of 
the instability of the recursions. 
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11.5. Probability of f ini te  t ime ruin 

In  their  pape r  [5], D i c k s o n  a n d  W a t e r s  suggested  a m e t h o d  o f  recurs ive  
e v a l u a t i o n  o f  f ini te  t ime  ru in  p robab i l i t i e s .  DICKSON a n d  WATERS [5] (p. 21 I) 
c o m m e n t e d  tha t  they exper ienced  some  n u m e r i c a l  ins tab i l i t ies  when  us ing  a 
c o m b i n a t i o n  o f  two recurs ions .  O n e  (see (4.2) o f  DICKSON a n d  WATERS [5], 
p. 208) is n o w  k n o w n  as s t rong ly  s t ab le ;  the o the r  r ecu r s ion  (see (3.2) o f  
DICKSON a n d  WATERS [5], p. 206) invo lves  m a n y  d i f f e renc ing  terms.  It  c an  be 
verif ied that ,  (3.2) o f  DICKSON a n d  WATERS is u n s t a b l e  in e v a l u a t i n g  the 
des i red p robab i l i t i e s .  

T h e  bas ic  ideas a n d  resul ts  in this p ap e r  can  be ex tended  a n d  app l i ed  to 
o the r  r ecu r s ions  (no t  necessar i ly  in ac tua r i a l  field). F o r  u n s t a b l e  recurs ions ,  
a l t e rna t i ve  m e t h o d s  o f  e v a l u a t i o n  mer i t  fu r the r  research.  
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