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ABSTRACT 

In this paper we derive formulae for finite time survival probabilities when the 
aggregate claims process is a G a m m a  process. We illustrate how a compound 
Poisson process can be approximated by a G a m m a  process and by a process 
defined as a translated G a m m a  process. We also show how survival probabil- 
ities for a compound Poisson process can be approximated by those for a 
G a m m a  process or a translated G a m m a  process. 
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1. INTRODUCTION 

The G a m m a  process was introduced into the actuarial literature by DUFRESNE, 
GERBER and SHJU [1991]. They defined a G a m m a  process as a limit o f  
compound Poisson processes and proposed it as a model for the aggregate 
claims process. They discussed many of the properties of  this process and, in 
particular, showed how to calculate the probability of  ultimate ruin for such a 
process. This paper takes this study a stage further and is concerned mainly 
with the probability of  ruin/survival in finite time. 

In the next section we derive (very simple) formulae for the probabili ty of  
survival in finite time for a G a m m a  process. In §3 we show how to 
approximate  a compound Poisson process by a G a m m a  process and investigate 
numerically how well the probabili ty of  survival in finite time for the former 
process is approximated by that for the latter process. The advantage in 
approximating a compound Poisson process in this way is that, as we show in 
§2, the probability of  survival in finite time for a G a m m a  process is 
particularly easy to calculate. In § 4 we introduce what we term a translated 
G a m m a  process and we carry out an investigation similar to that in § 3. 

2. FINITE TIME SURVIVAL FOR THE GAMMA PROCESS 

The main result in this section gives formulae for the probabili ty of  survival in 
finite time for a G a m m a  process. These formulae are derived from standard 
formulae for a compound Poisson process. Before deriving these results we 
show how to define/construct a (standardised) G a m m a  process as a limit of  

ASTIN BULLETIN. Vol. 23, No. 2. 1993 



260 DAVID C.M. DICKSON AND HOWARD R. WATERS 

compound Poisson processes. This construction follows precisely the method 
outlined by DUVRESNE et al. [1991, §§2 and 3]. However, we provide more 
details of  the construction since some of  these details are important  for the 
p roof  of  the main result. 

For  x > 0 define the function Q(x) as follows: 

a(x)  = I v exp{-Y} dy 
x Y 

(This is precisely the same as the function Q(x) in DUFRESNE et al. [1991, § 3] 
with their parameters a and b both taken to be 1.) 

Now let {S(t; 1)},> 0 be a compound Poisson process such that:  

(a) the number  of  claims occurring in (0, t] has a Poisson distribution with 
mean tQ(l ) ,  and, 

(b) individual claims amounts  have a distribution function P(y; 1), where: 

P ( y ; I ) = O  for y <  1 

=[Q(I)-Q(y)]/Q(1) for y >  1. 

For n = 2, 3 . . . .  , define the process {S(t; n)},> 0 as follows: 

(2.1) S(t; n) = S(t; n - l ) + X . ( t )  

where {Xn(t)}¢> 0 is a compound Poisson process, independent of  
{S(t; n -1 )} ,>0 ,  such that:  

(c) the number  of  claims occurring in (0, t] has a Poisson distribution with 
mean t[Q(1/n)-Q(l/(n-I))] ,  and, 

(d) individual claim amounts  have a distribution function / / ( y ;  n), where: 

H(y; n) = 0 for y < 1/n 

Q( l /n ) -Q(y )  
= for l/n<_y< I / ( n - l )  

Q(1/n)-Q(l / (n-1))  

= 1 for y_> l / (n - l )  

Then it is easy to show that for n = 1, 2, 3 . . . .  {S(t; n)},>0 is a compound 
Poisson process such that:  

(e) the number of  claims occurring in (0, t] has a Poisson distribution with 
mean tQ(1/n), and, 

(If) individual claims amounts  have a distribution function P(y; n), where: 

P(y; n) = O for y <  1In 
= [Q(l/n)-Q(y)]/Q(l/n) for y >  1/n 

(Note that S(t; n) and P(y; n) in this paper were denoted S(t; x) and P(y; x), 
respectively, with x = I/n by DUFRESNE et al. [1991].) 
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The standardised Gamma process is the process {Ssc(t)}t>o defined by" 

(2.2) Ss~(t) = Lim S(t;n) for t > 0 
tl~oO 

It is important to note that this limft exists surely, rather than just almost 
surely, for 'each t > 0, since, from (2.1), S(t; n) is monotonic non-decreasing as 
n ---~ oo .  

Since S(t; n) converges surely to Ssa(t), it also converges in distribution. 
However, DUFRESNE et al. [1991, § 3] show that S(t; n) converges in distribu- 
tion to a random variable with a Gamma (t, 1) distribution. Hence, SsG(t) has 
a Gamma (t, 1) distribution. Finally in this construction/definition, for any 

> 0 and fl > 0, define a new stochastic process {SG(1)}t> 0 a s  follows: 

SG(t) = fl- '  SsG(~t) 

We will refer to {SG(t)}t> 0 a s  a Gamma (~,fl) process, so that the 
standardised Gamma process, {Ssa(t)},> o, is a Gamma (1, 1) process. Note 
that the random variable Sc(t) has a Gamma (~t, fl) distribution. (Note also 
that we are parameterising the Gamma distribution so that So(t) has mean 
ou l l~. ) 

The remainder of  this section will be concerned with the standardised 
Gamma process. We are regarding this as a model for the aggregate claims 
process for a risk, so that Ss6(t) represents the aggregate claims generated by 
this risk in the period (0, t]. We assume that premium income is received 
continuously at constant rate c per unit time for this risk. We assume that 

c > E[Ssc(I)] (=  I) 

We denote by 6so(U, t) the probability of survival, i.e. non-ruin, up to time t 
for this process given initial surplus U ( >  0), so that:  

6sG(U,t )=Pr(Ssc(Z)_<U+cz for all r, 0 < z _ < t )  

The main result of this section is the following: 

Result: 

(2.3) 

(2.4) 

1 
~sG(O, t) = Fs6(Ct, t) - - Fs~(Ct , t+ I) 

C 

I' ~sc(U, t) = FsG(U+ct, t)--c fsa(U+cs, s) Fsc(C(t-s),  t - s ) d s +  
0 

I' + f sc (g+cs ,  s) f s c (C( t - s ) ,  t - s +  1) ds 
0 



262 DAVID C.M. DICKSON AND HOWARD R. WATERS 

where fs~(X, t) and Fsc(X, t) are the density function and distribution func- 
tion, respectively, of a Gamma (t, 1) random variable. 

Proof: For n = 1, 2, 3 . . . .  and U > 0 define: 

6 ( U , t ; n ) = P r ( S ( r ; n ) < U + c r  for all r, 0 < r _ < t )  

The first step in the proof of this result is to show that: 

(2.5) Lim O(U, t; n) = fi(U, t) 
n ~ c o  

To see this, note from the construction of the processes {{S(t; n)}l>0} and 
from (2.2) that for any sample path o9 and any r~ (0, t] '  

. . .  S ( r ;  n -  1) (~ )  _< S ( r ;  n) (co) _< . . .  _< Ssc(T) (~o) 
and" 

(2.6) Lim S(r;  n) (co) = Ss~(r) (co) 
n ~ o o  

Hence" 

Lim 6(U, t; n) _> 6(U, t) 
n ~ c o  

and the limit on the left does exist. If this limit is strictly greater than 6(U, t), 
then there must exist some sample path ~o and some re(0,  t] such that for 
all n : 

S ( r ;  n) (co) _< U + cr  < Ssc ( r )  (co) 

which contradicts (2.6). This proves (2.5). 
Since {S(t; n)},> 0 is a compound Poisson process, we have: 

1 I ct (2.7) 6(0, t; n) = -- f ( y ,  t; n) dy 
c l  0 

where F(y, t; n) is the distribution function of S(t ;  n). See SEAL [1978b, Ch. 4]. 
The convergence in distribution of the processes {{S(t;n)}t>o} and the fact that 
Fsc,(y, t) is everywhere continuous show that for all y and all t: 

FsG(Y, t) = Lim F(y, t; n) 
n ~ cl~ 

Applications of this result, of (2.5) and of the Bounded Convergence 
Theorem to (2.7) show that:  

,ic' (2.8) 6so(O, t) = - -  Fsc(y, t) dy 
Cl 0 
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Since Ssc(t) has a Gamma (t, 1) distribution, we can rewrite (2.8) as follows: 

,i i x 6 s a ( O ,  t )  = - -  Yt- t  e-Y-- dy dx 
ct o o F ( t )  

ct o y F ( t )  

= [ c ' y t - l e - y  d y -  F ( t + l )  I c' yte  -r  ay 
J0 F(O c t F ( t )  o F(t+l) 

1 
= FsG(ct, t) - --FsG(ct , t+ I) 

c 

This proves (2.3). Formula (2.4) can be derived as follows. Using the familiar 
general reasoning argument (see SEAL [1974, p. 126]), we have: 

I' 6sa(U, t) = Fsc(U+ct ,  t ) - c  3so(0, t - s )  f sc (U+cs ,  s) ds 
o 

Formula (2.4) is obtained by substituting (2.3) into this last expression. 
Table I shows values of  Osc(U, t) for the standardised Gamma process for 

various combinations of U and t. The premium has been taken to be 1.1 per 
unit time, so that the premium loading factor is 10%. 

TABLE 1 

VALUES OF 3 s c ( U  , t )  WHEN C-~ 1.1 

t U = 0  U =  1 U = 5  U = 10 U = 2 5  

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
2O 
30 
40 
5O 

100 
200 
3O0 
400 
5OO 
600 
700 
800 
900 

1000 

0.39352 0.82211 0.99706 0.99998 1.00000 
0.30244 0.71818 0.99108 0.99991 1.00000 
0.25906 0.65070 0.98304 0.99975 1.00000 
0.23254 0.60271 0.97378 0.99947 1.00000 
0.21423 0.56647 0.96393 0.99907 1.00000 
0.20064 0.53790 0.95386 0.99852 1.00000 
0.19005 0.51467 0.94384 0.99784 1.00000 
0.18151 0.49532 0.93402 0.99703 1.00000 
0.17445 0.47890 0.92449 0.99608 1.00000 
0.16848 0.46475 0.91531 0.99503 1.00000 
0.13662 0.38506 0.84296 0.98058 0.99999 
0.12306 0.34924 0.79653 0.96428 0.99996 
0.11534 0.32837 0.76483 0.94935 0.99987 
0.11030 0.31460 0.74194 0.93644 0.99971 
0.09919 0.28380 0.68487 0.89569 0.99801 
0.09351 0.26783 0.65187 0.86585 0.99409 
0.09195 0.26345 0.64234 0.85617 0.99176 
0.09138 0.26182 0.63872 0.85233 0.99055 
0.09113 0.26112 0.63717 0.85063 0.98993 
0.09102 0.26080 0.63645 0.84983 0.98961 
0.09097 0.26065 0.63610 0.84944 0.98945 
0.09094 0.26057 0.63592 0.84924 0.98936 
0.09093 0.26053 0.63582 0.84913 0.98931 
0.09092 0.26051 0.63578 0.84908 0.98928 
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3. THE G A M M A  PROCESS APPROXIMATION TO A COMPOUND POISSON PROCESS 

In this section we demonstrate how finite time survival probabilities for a 
compound Poisson process can be approximated by those for a Gamma 
process. 

Let {S(t)}~>0 be a compound Poisson process with Poisson parameter 2. Let 
P(x)  denote the individual claim amount  distribution and let Pk denote the 
k-th moment about  zero of  this distribution. We shall approximate this 
compound Poisson process by a Gamma (ix, fl) process {Sa(t)},> o. We find the 
parameters 0¢ and fl of the Gamma process by matching the first two moments 
of  the two processes (assuming that these moments exist). For each value of  
t >  0 we set 

E[S(t)] = 2tpl = ~xt/fl = E[Sa(t)] 

V [S(t)] = 2tp2 = ~t/fl 2 = V [Sa(t)] 

which gives 
(3.1) f l= Pt/P2 and o~ = 2p]/p 2 

Note that the parameters ~ and ,6' are independent of  t. 
The surplus process associated with the compound Poisson process is 

{U(t)}t>o where U(t )= U + c t - S ( t ) .  U is the initial surplus and c is the 
premium income per unit time. In our numerical examples we write 
c = (1 +0)2pl  where 0 is the premium loading factor. The finite time survival 
probability for this process is 6(U, t) defined by 

6 ( U , t ) = P r ( S ( r ) < U + c r  for all r, 0 < r < t )  

We will approximate this probability by 6a(U, t) defined by 

O c ( U , t ) = P r ( S a ( r  )_<U+cr for all r, 0 < r < _ t )  

where the parameters ~ and ,8 of  {S6(t)}t>o are given by (3.1). We calculate 
6a(U, t) using the standardised Gamma process and the identity 

6a(U,t)=Pr(Sa(r)_<U+(l+O)o~r/f l  for all r, 0 < r _ < t )  

= P r ( , B  - t S s a ( r ) _ <  U+( l+0)o~r / f l  for all r, 0 < r _ < t )  

=Pr(Ssa(O~Z ) < f l U + ( l + O ) r  for all r, 0 < r _ < 0 ~ t )  

= ~SsaGOU, ou) 

In our numerical examples we set 2 = 1 and use two distributions for 
individual claims amounts:  

Distribution 1: P(x) is the Gamma (1/3, 1/3) distribution. For  this distribu- 
tion, Pl = I and P2 = 4, so that 0~ = fl = 0.25 in the approximating gamma 
process. Thus we approximate 6(U, t) by 6sa(U/4, t/4). 

Distribution 2: P(x)  is the Pareto (3, 2) distribution. For  this distribution, 
Pl = 1 and P2 = 4, so that ~ = fl = 0.25 in the approximating Gamma process. 

The parameters of  these distributions have been chosen so that the same 
Gamma process approximates each compound Poisson process. Although the 
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first two moments are the same for each of  Distributions 1 and 2, P3 does not 
exist for Distribution 2, but does exist for Distribution 1. Hence we would 
expect that the Gamma process approximation would be better for the 
compound Poisson process with Distribution 1 rather than Distribution 2. 

In Figures 1 to 5 the crosses denote the ratios di(U, t) :  6so(flU, ott) (shown 
as percentages) for selected values of U and t for the surplus process associated 
with Distribution 1 when 0 = 0.1. A logarithmic scale for time has been used in 
these graphs. The values of 6 (U, t) have been calculated (approximately) using 
the methods described by DICKSON and WATERS [1991]. We note that for each 
of these values of U the approximate values are fairly close to the true values. 
They are within 4 % of  the true values for all values of  U shown, and within 
1% for virtually all combinations of  U and t, except when U = 4. We conclude 
that the approximation to 3(U, t) is reasonable in this case. 
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266 DAVID C.M. DICKSON AND HOWARD R. WATERS 

100.20% 

100.15% 

100.10% 

100.05% 

100.00% 

99.95% 

x 
99.90% 

99.85% 

99.80% 

99.75% 

99.70% 

1.00 

× 
× 

× 

× × ~ x ,<×× 

× 
• • • • • • • o o o e  

• • • s  • • 

x ~ × 

x 
× x × x 

2.00 3.00 4.00 5.00 6.00 7,00 8,00 9.00 

Log(t) 

FIGURE 3. Ratios of  exact to approximate values of  6(20, t) for G a m m a  individual claims. 

100.10% 

100.05% 

100.00% 

99.95% 

99.90% 

99.85% 

99.80% 

99.75% 

99.70% 

1.00 

× 

D 0 0  ° m 

X 
X 

i¢ 

K 
X 

I 
@ • • g @ @ l  

× 
× × 

X 

X 
K ~ X ~ x  

2.00 3.00 4,00 5,00 6.00 7,00 8.00 9,00 

Log(t) 

FIGURE 4. Ratios of  exact to approximate values of  6(40, t) for Gamma  individual claims. 

100.02% 

100.01% 

100.00% 

99.99% 

99.98% 

99.97% 

99.96% 

99.95% 

99.9,1% 

99.93% 

99.92% 

1.00 

x x x x x × × x x x  
x x 

x 

O O O O Q O  

x 

× 

~ × ~  

2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 

Log(I) 

FIGURE 5. Ratios of  exact to approximate values of  6(100, t) for G a m m a  individual claims. 



GAMMA PROCESSES AND FINITE TIME SURVIVAL PROBABILITIES 2 6 7  

The crosses in Figures 6 to 10 denote the corresponding ratios for the same 
combinations of  U and t for the surplus processs associated with Distribu- 
tion 2, again with 0 =  0.1 and with a logarithmic scale for time. The 
approximations are generally worse for this distribution, although the approx-  
imate values are within 1% of  the true values when U =  40 and when 
U = 100. 

We have used the same G a m m a  process to approximate  to two different 
compound Poisson processes. It is therefore no surprise that the approximation 
is better for one of the compound Poisson processes. In the following section 
we present a method which allows us to approximate  survival probabilities for 
compound Poisson processes with identical first two moments  by different 
G a m m a  processes. 
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FIGURE 6. Ratios of  exact to approximate values of 6(0,  t) for Pareto individual claims. 
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4. THE TRANSLATED GAMMA PROCESS APPROXIMATION TO A COMPOUND 

POISSON PROCESS 

As in the previous section, {S(t)},>o is a compound Poisson process with 
Poisson parameter 2; Pk denotes the k-th moment about zero of  the individual 
claim amount  distribution. We shall approximate {S(t)}t>0 by what we term a 
translated Gamma process {Sra(t)}t>o. For all t > 0 we define 

STa (t) = Sa (t) + kt 

where {Sa(t)},>o is a Gamma (~t, fl) process and k is some constant (which may 
be positive or negative). The parameters ct, fl and k of the process {SrG(t)}t>o 
are chosen such that for all t > 0 

E[S(t)]  = 2tp, = ~t/ f l+kt  = E[STG(t)] 

V [S(t)] = 2tp2 = ott/fl 2 = V [STc(t)] 

Sk [S (t)] = 2tp3/(2tp2) 3/2 = 2/(ctt)l/2 = Sk [ST6 (t)] 

i.e. we are matching the mean, variance and coefficient of  skewness of  S( t )  and 
Sra (t) for all t (again assuming that these quantities exist). These identities give 
the parameter values as 

o~ = 42p~/p~ fl = 2p2/p 3 k = 2(p,-2p22/P3) 

As in the previous approximation, the parameters are all independent of  t. 
We now approximate 

~ ( U , t ) = P r ( S ( r ) _ <  U + c r  for all r, 0 < z _ < t )  

by 

6 r a ( U , t ) = P r ( S T a ( r ) _ <  U+cr  for all z, 0 < z < t )  

= P r ( S a ( z ) + k z _ < U + c r  for all z, 0 < r _ < t )  

= P r ( S a ( r ) _ < U + ( c - k ) r  for all z, 0 < r < t )  

Note that 

c - k  = (1 +O)2p1-  2 (p  I - 2p22/p3) 

= 02p ,+22p~/p3  

= 02p¿ "Jr 0~/~ 

Thus c - k > E [ S a ( i ) ]  (where Sa ( l )  has a Gamma(~ , f l )  distribution) 
regardless of  the values of  k. Since 2p~ = ct/fl+k, 6ra (U, t) represents the finite 
time survival probability when the aggregate claims process is a Gamma (ct, fl) 
process and when the premium loading factor is 0 = 0(1 +kfl/~). Hence we can 
approximate &(U, t) by 6sa(flU, ott) using a premium loading factor of  0. 

We illustrate the approximation method for two distributions for individual 
claim amounts : 

Distribution 1: P ( x )  is the Gamma (1/3, 1/3) distribution. The first three 
moments of this distribution are p, = 1, P2 = 4 and P3 = 28. Let 2 = 1 and let 
0 = 0 . 1 ,  giving 0~=16/49, f l = 2 / 7  and k = - l / 7 .  Then ot/fl.--8/7 and 
c - k  = 87/70, so that 0 = 7/80. We approximate 3(U, t) by 3sa(2 U/7,16t/49) 
using a premium loading factor of  7/80. 
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In Figures 1 to 5 the circles denote the ratios 6(U, t):  Osa(flU, at) for the 
same values of  U and t as before for the surplus process associated with 
Distribution 1. Again a logarithmic scale has been used for time. The 
approximate  values are very close to the exact ones except when U = 0 (within 
0 .3% when U = 4 ,  and within 0.06% when U = 2 0 , 4 0  and 100). It is no 
surprise that the translated G a m m a  process gives superior approximations to 
those in the previous section when U > 0 since the approximating process 
matches one further feature of  the given process. The reason why the 
approximation is poor  when U = 0 is discussed later in this section. 

Distr ibut ion  3: P(x) is the Pareto (4, 3) distribution. (Note that the third 
moment  of  Distribution 2 does not exist and so we cannot use the translated 
G a m m a  approximat ion in this case.) For this distribution pl = 1, P2 = 3 and 
P3 = 27. Again let 2 = 1 and let 0 = 0.1 givinfl ~ = 4/27, fl = 2/9 and k = I/3. 
Then ct/fl = 2/3 and c - k  = 23/30, so that 0 = 0.15. Hence we approximate  
~(U,t) by ~sG(2U/9,4t/27) using a premium loading factor of  0.15. In 
Figures 6 to 10 the circles denote the ratios 6(U, t) :  6sa(flU, ctt) for the same 
values of  U and t as before for the surplus process associated with Distribu- 
tion 3. The approximate  values are fairly close to the exact ones when U > 0 
(within 6 %  when U = 4, and within about  1% when U = 20, 40 and 100) but 
the approximations are not as close as for Distribution 1. Note  that the ratios 
are not directly comparable  with those for Distribution 2 as the parameter  
values for the distributions are different. Nevertheless, when U > 0 this 
approximation represents an improvement  over the method described in the 
preceding section. 

Since the first three moments  of  the approximating translated gamma 
process match those of  the compound Poisson process for all values of  t, we 
would expect 6ra(U, t) to be reasonable approximation to 6(U, t). This is 
indeed the case when U > 0. However,  when U = 0, the approximations are 
poor  and are much worse than those in the previous section. We can see why 
this is so by writing down formulae for the exact and approximate survival 
probabilities. The formula for the exact survival probability is 

1 I ~t (4.1) ~(0, t) = - -  F(x, t )dx 
c l  0 

where F(x, t) = Pr (S(t) < x), and S(t) has a compound Poisson distribution. 
The approximation in Section 3 is 

(4.2) 6a(U, t) = __1 f~' Fa(x, t) dx 
el Jo 

where FG(x , t) = Pr (So(t) <_ x), and Sa(t ) has a G a m m a  distribution whose 
first two moments  match those of  the compound Poisson distribution. It is not 
surprising that (4.2) is a good approximation to (4.1). Not  only are the 
formulae for 6(0, t) and 6c(0, t) of  the same form, but Fa(x, t) may be 
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regarded as an intuitively reasonable approximation to F(x, t) since these two 
distributions have the same first two moments. 

In this section 6(0, t) is approximated by 

1 ~(c-k) t 
(4.3) 6re(O, t) - Fc(x, t) dx 

( c -k ) t  ~o 

Comparing (4.1) and (4.3), we see that there are two differences: the factor c 
in (4.1) is replaced by c - k  in (4.3), and Fa(x, t) does not have the same first 
two moments as F(x, t). It is not surprising that (4.3) is not as good an 
approximation to (4.1) as is (4.2). In particular, in the limiting case when t ~ 
we can measure the difference between (4:1) and (4.3) since 

Lim 6(0, t) = 1/(! +0) and Lim 6ra(O, t) = 1/(I +0) 
I ~ O O  I ~ C O  

(See DUFRESNE et al. [1991].) 

5. CONCLUDING REMARKS 

The computer time required to produce approximate values for 6(U, t) using 
the methods of the previous two sections is substantially less than that required 
for the algorithms described by DICKSON and WATERS [1991]. Although these 
algorithms produce very accurate values, the amount of computer time 
required for large values of U and t can be considerable. The examples in 
Section 4 show that the approximations to 6(U, t) are good for large values of 
U and t. We conclude that the approximation method of the previous section 
can be used to produce fast and fairly reliable estimates of 6(U, t) for such 
combinations of U and t. 

The underlying idea in Sections 3 and 4 has been to approximate a 
compound Poisson process {S(t)}t>o by a Gamma process {SG(t)}t> 0 and by a 
translated Gamma process {Sra(t)}~>o, respectively. In each case the approxi- 
mation is the result of matching an appropriate number of moments. The 
probability of survival for the compound Poisson process, 6(U, t), is then 
approximated by the corresponding probability for the Gamma process or the 
translated Gamma process. However, there is an alternative and related way of 
approximating this probability. We have the following formulae: 

I I cl (5.1) 6(0, t) = - -  F(x, t) dx 
ct o 

(5.2) 6(U, t)= F(U+ct, t ) - c  Ito 6(0, t - s ) f ( U + c s ,  s)ds 

(Formula (5.1) is, of course, the same as formula (4.1).) 
We can now approximate 6(0, t) and 6(U, t) by approximating F(., t) and 

f ( . ,  s) by Gamma distributions or translated Gamma distributions with the 
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same first two or three m o m e n t s  .as the original distr ibutions.  I f  we approxi -  
mate  F( . ,  t)  and f ( - ,  s)  by G a m m a  distr ibutions,  it can be checked that  the 
result is the same as that  achieved by app rox ima t ing  the original c o m p o u n d  
Poisson process by a G a m m a  process, as in Section 3. However ,  replacing 
F( . ,  t)  and f ( - ,  s)  in (5.1) and (5.2) by t ranslated G a m m a  distr ibut ions with the 
same first three moments ,  an idea originally discussed by SEAL [1978a], is not 
the same as app rox ima t ing  the original process by a t ranslated G a m m a  process 
as described in Section 4. T o  see this, note that  Seal 's method  leads to the 
fol lowing app rox ima t ion  for 3(0, t ) :  

(5.3) ~(0, t)  1 fct  - -  Eta(x ,  t) dx 
ct JO 

where Fro(x,  t) is a t ranslated G a m m a  distr ibution with the same first three 
m o m e n t s  as F(x,  t). F o r m u l a  (5.3) is clearly not  the same as fo rmula  (4.3). An 
advan tage  of  Seal 's  me thod  as c o m p a r e d  to the method  o f  Section 4 is that  
(5.3) is a bet ter  app rox ima t ion  to (4.1) than is (4.3). A d isadvantage  o f  Seal 's  
me thod  is that  it leads to a slightly more  compl ica ted  (approx imate )  fo rmula  
for  ~(0, t)  and hence for  ~(U,  t). 
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