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ABSTRACT

We show how ruin probabilities for the classical continuous time compound
Poisson model can be approximated by rutn probabilities for a compound binomial
model We also discuss ruin related results for a compound binomial model with
geometric claim amounts
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1. INTRODUCTION

GEerBER (1988) presented some results for the compound binonual model which
were analogues of results for the classical continuous time compound Poisson
model These results were further discussed by SHiu (1989). WiLLmot (1992)
presented some explicit results for ultimate ruin probabilities for the compound
binomial model.

In this note we derive some known results for the compound binomial model
using very elementary methods. We also present results for a binomial claim
numbers/geometric claim amounts model which correspond to results for the
classical continuous time Poisson/exponential model Our mamn purpose 1S to
consider the conditions under which ulumate ruin probabilities for a compound
binomial model give good approximations to ultimate ruin probabilities 1n the
classical continuous time compound Poisson model

We start by considering some basic results for a general discrete time risk
model.

2. A DISCRETE TIME RISK MODEL
We will consider a nisk model with the following charactenstics :

(a) X, denotes the aggregate claim amount in the i-th tme interval;

(b) {X,}’2, s a sequence of independent and identically distmbuted random
vanables, each distributed on the non-negative integers,

(c) the insurer’s premium ncome per unit time is 1,

d EX)<l.

* Part of this work was completed while the author was at Heriot-Watt Univeraty, Edinburgh

ASTIN BULLETIN Vol 24, No | 1994



34 DAVID CM DICKSON

We will assume throughout that the insurer’s mual surplus, denoted u, 1s an
integer.
The 1nsurer’s surplus at time ¢ (t=1,2,3,...) 1s denoted Z(¢) and given by

!
Z(ty=u+t- Y, X,

1=1

The ultimate ruin probability for this model 1s defined by
w)=Pr{Z(t)=0 for some !, (=1,2,3,...]

This definttion corresponds to that given by GERBER (1988) but differs from that
used by SHIU (1989) and WiLLMOT (1992). The reason for choosing this definition
will become clear 1n Section 5 Note that ruin does not occur at time 0 if the initial
surplus 1s zero. The survival probabihity 1s denoted & (u) and O (u)=1 -y (u).

We define the seventy of ruin function G(u,y) for u=0,1,2,.. and
v=1,2,3, by

G(u,y)=Pr|T<oe and Z(T)> -y]
where T 1s the discrete time of ruin and s defined by

T=min{tr Z(1)=<0, =1,2,3,...}
=00 (f Z@)>0 for =1,2,3,...

Thus G (u, y) represents the probability that ruin occurs and that the deficit at the
time of ruin 1s at most y — |

We denote by b (k) and B (k) respectively the probability function and distribu-
tion function of X,.

3 GENERAL RESULTS

Result 1: For u=1,2,3,

(3.1) O)=0(0) + 3, (k) [1-Bu— k)|

h=1

Proof: By considering the possible aggregate claim amounts n the first time
period we have that

S(@=b(©0)d(1)

and for u=2,3,4, .
u—1

(3.2) S(u-1)=bO0)S(u) + Z S()bu—))

J=1
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Hence, for u=2,3,4,. .
L=

u—1 u u -
2 0(k)=b(0) 2 0k + Y X 0(Nbk=))

=0 k=1 k=2 y=1
u u—1
=b(0) 3, OKk)+ 3 S(Kk)[Bu—k)—b(0)]
k=1t A=
u-1
=b©0)O) + Y, O(k)Bu—k)

k=1

Thus
u-1
b d(u)=0(0) + Z Ok)[1—Bu-k)]
A=1
u-1

=8u—-1)— 3, Ok)bu—-k) (by (32)

A=1

=1

so that 0 (u—1)=0(0) + z OkY[1 =B(u—-1-k)]

k=1

for u=2,3,4, , or equivalently,

Ow)=0(0) + Y, Sk)[1-Bu—-k)] for u=1,2,3,...

k=1

Result 2: The rumn probability from initial surplus zero 1s given by

(3.3) Y (O0)=E(X)

Proof: For y=0,1,2, define g(0,y) to be the probability that ruin occurs from
initial surplus zero and that the deficit at the time of ruin 1s y Note that when the
mitial surplus 1s u(>0), g(0, y) can be interpreted as the probabihity that the
surplus falls below 1ts imitial level for the first ttme and by amount y When y=0,
g(0, y) gives the probability that the surplus returns to its initial level for the first
time without previously having been below its imitial level Using this interpretation
we can write

i

(34) dw)=0(0) + 3, g(O,u—y)o(y)

v=1

The first term on the nght hand side gives the probability that the surplus never
falls below its 1nitial level. For a fixed value of y(<u), g(0, u — y) 0 (v) gives the
probability that the surplus falls below its 1ninal level for the first ime to y and that
survival occurs from surplus level y. A sinular interpretation applies when y = u.



36 DAVID CM DICKSON

Summing over y gives the probability that survival occurs and that the surplus
process has not always been above its imtial level.
By (3.1) we also have

S)=0() + Y, O(v) |1 =Bu—)]
y=1
Since equattons (3 1) and (3.4) hold for w=1,2,3,..., it follows that
g0, y)=1-~B(y). Equation (3.3) follows since

v =Y g@O,y)

yv=0

If we wnite the premium income of 1 as (1 + &) E(X)), then
(3.5) w(©O)=1/(1 +0)

as in the classical continuous time model.
We can easily obtain further ruin related results when the mittal surplus 1s zero,

starting with the joint distribution of the surplus prior to ruin and the deficit at ruin.
We define a new function f(u,x,y) for x=1,2,3,... and y=0,1,2, as
follows

fu,x,y)=Pr[T<o, Z(T)=-y and Z(T-1)=x]

Thus f(u, x, y) gives the probability that ruin occurs from initial surplus u, with a
deficit of y at the time of ruin and a surplus of x one time unit prior to ruin. When
u=0, the function 1s defined for x=0,1,2, ., and (0,0, y) simply gives the
probability that ruin occurs at time 1 with a deficit of y at ruin. Thus

f@0,0,y)=b(y+ 1)
By considering the possible aggregate claim amounts 1n the first time penod we
can write

flu,x,y)= Z b(Nfu+1—-3,xy) for u=0,1,2,. .,x-1,x+1,
1=0
and
fux,y)=Y b fU+1-p0,y)+b(x+y+1) when u=x
=0

Assuming that

(3.6) Z [l x y)<e
u=0
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we have that

Yo fuxy)y= 0 D b flutl-pxy)+bx+y+1)
=0 u=0 ;=0
=Y fuxy) Y, b())+bx+y+])
u=1 J=0
Hence
37 fO,x, Y )=b(x+v+1)

As an immediuate consequence of this we have that

y=1 v=1

GO,»)= 2 Y bx+y+ly= Y [1-B())

J=0 =0 ;=0

and
YO =Y, [1-B()
=0
Simularly

v=1 x
(38) Pr(T<e and Z(-D=x-lu=0]=), D b(y+y+1)
Jj=0 v=0

=1
= 2, [1=-B()HI=G(0, )
J

l]
(=)

We have not discussed the conditions under which (3.6) holds The most obvious
situation when (3.6) holds 15 when Lundberg’s inequahty applies Formula (3 7)
does however hold when the sum m (3 6) 1s infinite

The results presented above are in terms of a general distribution 8 (k) However,
they are 1n fact the same as tesults given by GERBER (1988) and Stiu (1989). This
follows since the distribution of X, can be expressed as a compound binomial
distributton with binomial parameters | and 1 —5(0) and probability function for
individual claims A ()[1 - b(0)] for y=1,2,3,.. .

4. THE BINOMIAL/GEOMETRIC MODEL

Throughout this section we assume that the distribution of the number of claims per
unit time is binomial with parameters 1 and p, and the individual claim amount
distribution 1s geometric with distribution function P (x) and probability function

for x=1,2,3, .

=1

p)=(1 —a)a
Then
B(k)=1-pa* for k=0,1,2,...
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Since we have assumed that E(X,) <, the parameters p and « must be such that
pll-a)<i
We can rewrite equation (3.1) as

Yu)=y (O - kil [(T=p &)1 -Bu=-4)]
and nserting for ¥ (0) we have
Yu)= klZ_’,l Y& [1-Bu-k)]+ Li [1=B(k)]
The continuous time compound Poisson analogue of this equation can be found 1n,

for example, GERBER (1979).
Now nsert for B (k) to find that

@1 Y=Y, p®pat+ Y pat
k=1 h=u
and
u+l =
(4.2) Yu+l)= Z Yk)pat' Tt 4 Z pot
k=1 A=u+1

If we multiply (4.1) by o, subtract from (4.2) and rearrange we find that

o
W+ 1l) - — pu)=0
l-p

The solution to this difference equation 1s

w(u)=6[ * ]
l-p

from which 1t follows that ¢ =1 (0). In fact, we can wnite ¢ (u) =y (0) exp { — Ru},
where R is the adjustment coefficient for this process. R 1s the unique positive
number satisfying

Elexp {R(X,—- D}I=1

and 1t is an elementary exercise to show that for this model exp {R} =(1 - p)a
Thus we have a complete analogy with the form of the ruin probabihity for the
Poisson/exponential model which can be written in exactly the same way (See, for
example, GERBER (1979)). We note that this solution matches that given by
WiLLMoT (1992) for O (u), allowing for different definitions of ruin/survival

We now extend the analogy to the severnity of ruin. We can use the function
g(0, y) to wnte down an equation for G (u, y) by considering the first occaston on
which the surplus falls below (or returns to without previously having been below)
its mitial level
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We have
u+v=1 u-1

Gu,yy= 2 gOKk)+ X g0k Gu—ky)

A=u k=0
u+3y-1

= ¥ gk + Y gOu-k)Gky)

k=u A=1

Now msert g(0,k)=1 - B(k)=pa* to give
n+y-1

Gu,y)= ¥ pat+ Y, pa "Gk y)

k=u k=1
and
u+y u+
Gu+l,y)= 2 paA+ Z pau+l—LG(k’y)
k=u+1 k=1

Using the same technique as before we find that

«
Gu+l,y) - ——Gu,y)=0

I-p
and hence
o u
Gu,y)=G(@O,y)| —
I-p
Finaily
y-1 -1 l—a“
GO, y)= 3, g0, k)= pa*=p for v=1,2,3,
k=0 k=0 | -«

and so we can write

NP a Y
Guy)=(l-a") — [—) =P(y) y )
f—al\l-p

Thus the form of G (u, y) 1s 1dentical to that for the Poisson/exponential model.
(See, for example, Dickson (1992)). However, unlike the Poisson/exponential
model, the distribution of the deficit at the time of ruin is not identical to the
individual claim amount distnibution. The deficit is geometrically distributed with
parameter «, but on 0, 1, 2, ..., since G (u, y)/9 (u) gives the probability that the

deficit 1s less than or equal to y— I, given that ruin occurs, and so

Pr|-Z(TY<ylT<w]l=l-a" for y=1,2,3,..
Let us now constder the situation when u =0 further. We have already noted that
the deficit at the time of ruin 1s geometrically distributed on 0, 1,2,... with
parameter ¢, and by (3 8) the distribution of the surplus at ime 7 -1 1s the same.



40 DAVID CM DICKSON

The conditional probability function of the deficit at T and of the surplus at T— |,
conditioning on the event that ruin occurs, 1s

go,v)=( —a)a', x=0,1,2,

If we consider the conditional distribution of the surplus one time unit before ruin
and of the deficit at ruin, conditioning on the event that ruin occurs, and agam use a
tilde to denote a conditional probabihty, then

+y

fOx, ‘,)zb(x+_v+ D =P(1 -~
v Pt — )

so that, conditionally, the surplus one time unit before ruin and the deficit at ruin
are 1ndependent and 1dentically distributed This situation also exists in the
Poisson/exponential model where the surplus prior to ruin and deficit at ruin are
independent, 1dentically distributed vaniables, and the conditional distribution of
the claim causing ruin 1s Gamma(2)

Finally, if we define the conditional probability function of the claim causing ruin
as h(0,z) for z=1,2,3, ... then

=g(0,v)g(0, y)

L -1
hO0,2)= Y, fO,x,z-x-1)= Y (I-a)c'=z(1 ~a)a""
1=0

v=0

The conditional distribution of the claim causing ruin 1s thus negative binonual with
parameters 2 and | — «, shifted one unit to the right

5. CALCULATION OF RUIN PROBABILITIES

GERBER (1988) states that the compound binomial model can be used to approxi-
mate the continuous time compound Poisson model. In this section we investigate
this statement by considering ultimate ruin probabilities

To calculate ruin probabilities for the compound binomial model, we will adapt
the framework described by DicksoN and WATERS (1991, Sections | and 8) who
use a discrete ime compound Poisson model to approximate a classical continuous
time compound Poisson model under which both the Poisson parameter and mean
individual clarm amount are |. The characteristics of this model are as follows

(a) mndwidual claim amounts are distributed on the non-negative ntegers with
mean f3, where 8(>1) 1s an integer;

(b) the Poisson parameter for the expected number of clums per unit time 15
11(1 +6)B];

(c) the premium income per unit time 1s 1.

We will replace this discrete compound Poisson model by a compound binomual
model. We simply change (b), replacing the Poisson distribution by a binomial
distribution with parameters | and 1/[(1 + 6)3]. For reasons given by DICKSON and
WAaTERS (1991) we can regard ¥ (Bu) as an approximation to p.(u), the
ulumate ruin probability for the continuous compound Poisson model. Note that the
defimition of 4 (u) given in Section 2 corresponds to that used in this approxima-
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tion. In effect all we are doing 1s approximating a discrete compound Poisson model
(which approximates a continuous compound Poisson model) by a compound
binomial model The approximation to the discrete compound Poisson model 1s
reasonable for large values of f, since the Poisson distribution with parameter
/[(1+6)B] 1s then very close to the approximating binomial distribution. For
example, if =100 and @ =0 1, then the probability of more than one claim per unit
ume under the compound Poisson model 1s 0.00004. Note that there is one small
difference between this formulation of the compound binomial model and that used
by previous authors In this formulation, individual claim amounts are distributed
on the non-negative integers rather than the positive integers The reason for this 1s
simply that in order to approximate ruin probabilities in the classical continuous
tme compound Poisson model, we have to discretize the continuous individual
claim amount distribution in that model In our first two examples, we will use the
discrenization proposed by DE VYLDER and GOOVAERTS (1988), which discretizes
the distribution on the non-negative integers If we had chosen a discretization on
the posttive integers then our model would correspond to that used by previous
authors
We will calculate ruin probabihities recursively from the formulae

(5.1) 1/)(1)=b(0)_'ll/J(O)—|+B(0)l
and for u=2,3,4, ..

(5.2) w<u>=b(0>"[w<u-l)—l+B(u—l)— )y b(nwu—n}

s=1

These formulae correspond to GERBER’s (1988) formulae (5) and (6) In each of the
following examples the premium loading factor, 8, 1s 10%

Example 1: Let the individual claim amount distribution 1n the continuous time
mode] be exponennial with mean 1. Then it 15 well known (see, for example,
GERBER (1979)) that

P, (u)= exp (=R u) where R.=0/(1+0)

1+

Table | shows exact and approximate values of 1 .(«) The approximate values
are calculated from (3.5), (51) and (52). The legend for this table 1s as
follows

(1) denotes the exact value of ¥, (u);

(2) denotes the approximate value when f3=50,

(3) denotes the ratio of the value 1n (2) to that in (1);
{(4) denotes the approximate value when $=100,

(5) denotes the ratio of the value 1n (4) to that n (1);
(6) denotes the approximate value when =200;

(7) denotes the ratio of the value in (6) to that in (1).
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TABLE |
{SEE EXAMPLE | FOR DETAILS)
(N 2) (3) 4) (5) (6) (7
u=0 09091 09091 1 0000 09091 1 0000 09091 1 0000
u=2 0 7580 07567 09983 07573 09992 07576 09996
u=4 06319 06299 09967 06309 09983 06314 09992
u=>6 05269 05243 0 9950 05256 09975 05262 09988
u=38 04393 04364 09934 04378 09967 04386 09983
u=10 0 3663 03632 09917 03647 09959 03655 09979
u=20 01476 0 1451 09835 0 1463 09917 01470 09959
u=40 00240 00232 09673 00236 09836 00238 09918
=280 0 0006 0 0006 09357 0 0006 09674 0 0006 09836

We note the following points about Table 1-

(a) When u >0, the approximate values are less than the exact ones. This 1s to be
expected since the compound binomial model excludes the possibihty of
multiple claims per unit time.

(b) As the value of § increases, the approximate values become closer to the exact
ones. This 1s as expected for reasons given by DiCksoN and WATERS (1991,
Section 2)

(c) The larger the value of u, the poorer the approximation becomes.

(d) Even with a large value of 8, the approximate values do not always agree with
the exact values to four decimal places

Example 2: Let the individual claim amount distribution in the conttnuous time
model be Pareto with parameters 2 and 1. Table 2 shows exact and approximate
values of v, (4) (The exact values have been calculated using DiCcksoN and
WATERS’ (1991) algorithm and are ‘‘exact’’ at least to three decimal places) The
legend for Table 2 1s the same as for Table I The only additional comment that we
would make about Table 2 s that, for the same magnitude of ruin probabulity, the
approximate values are shightly closer to the exact values than in Example I

TABLE 2
{SEE EXAMPLE 2 IOR DETAILS)
() (2) (3) 4) (3) (6) )
u=0 09091 09091 1 0000 09091 1 0000 09091 1 0000
u=2 08102 0 8097 09994 08100 09997 08101 09998
u=4 07498 07491 09991 07494 09996 07496 09998
u==6 07021 07014 09990 07018 09995 07020 09997
u=_8 0 6620 06613 09989 06617 09994 06619 09997
u=10 06271 06264 09988 06267 09994 06269 09997
u=20 04981 04974 09985 04978 09992 04980 09996
=40 023479 Q3473 09982 03476 09991 03477 09995
u=280 0 2040 02036 0 9981 02038 09990 02039 09995
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In Section 4 we discussed the binonual/geometric model as the discrete analogue
of the Poisson/exponential model. In Example 3 we illustrate how ruin probabulities
for the binomial/geometric model can be used to approximate those for the
Poisson/exponential model. We have included this example purely for interest as
the approach does not generalise to other compound Poisson models.

Example 3: We will use the same framework as in Examples 1 and 2, but will
discretize the exponential individual claim amount distribution as a geometric
distribution with mean 3. This discretization s a reasonable one for large values of
B since when f 1s large

Px)=1-(1-B""Y'=1-exp{-x8) ftor x=0,1,2,

As noted 1 Section 4, for the geometric individual claim amount distribution,

(1+9Hp-1 )

W (Bu)= exp (- RAu) where R=log,
' ((l L F-1)

1 +6

It 1s easy to show that

0
lim BR =
fine 1+

so that for large values of 3, w(Bu) should give a good approximation to
Yo ().

00958 -
0.095 1

00945

S

0.094 -

00935 -

0093 -

00925 -

0.092 4

0.0915

0091 i

00905 — T r T T T : T r —
) 100 200 300 400 500 600 700 800 900 1000
FIGURE | SR 4s a tunction of § when 6 15 10%

Figure 1 shows the function SR (when 68 1s 10%) and Table 3 shows exact and
approximate values of y.(u). The legend for Table 3 1s as follows-

(1) denotes the exact value of . (u);
(2) denotes the approximate value when §=100;
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(3) denotes the ratio of the value 1n (2) to that in (1),
(4) denotes the approximate value when §=1,000;
(5) denotes the ratio of the value in (4) to that in (1),
(6) denotes the approximate value when 5=10,000,
(7) denotes the ratio of the value n (6) to that in (1)

TABLE 3
(SEE EXAMPLE 3 TOR DETAILS)

n (2) (3) (4) (3) ) N
u=0 09091 09091 I 0000 09091 1 06000 0909t 1 0000
u=2 07580 0 7566 09982 07578 09998 07579 1 06000
u=4 06319 06297 0 9965 06317 09997 06319 1 0000
u=6 05269 0 5241 09948 05266 09995 05269 09999
=38 04393 04362 09930 04390 09993 04393 09999
u=10 03663 03631 09913 03659 09991 03662 09999
=20 01476 0 1450 09826 01473 09983 01475 09998
u=40 00240 00231 09656 00239 09965 00239 09997
u=380 0 0006 0 0006 09323 0 0006 09931 00006 09993

Table 3 shows the same features as Tables 1 and 2 The great advantage of using
the geometric discretization 1s that approximate values for 1, (1) can be calculated
from a formula This allows us to use very large values for 3, and shows that even
with a large value of 8 (1.e 10.000) the approximate values do not all match the
exact ones to four decimal places By contrast, if b (x) and B(x) in (5 1) and (5.2)
are values from a compound Poisson distribution, then a relatively small value of 3
produces the same degree of accuracy. (See, for example, DICKSON and WAT-
ERS (1991, Table 5)).

We conclude that 1t is possible to successfully approximate ruin probabilities for
the classical continuous time compound Poisson model by those for a compound
binomial model The main advantage in using the compound binomial model 1s that
1t is not necessary to perform recursive calculations to find the probability function
b (x) to use formulae (5.1) and (5.2). However, this advantage 1s outweighed by the
fact that a large value of 5 1s required when using the compound binomial model 1n
order to obtain a good approximation to ¥, ().
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