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ABSTRACT 

An approximation of the distribution of the present value of the benefits of a 
portfolio of temporary insurance contracts is suggested for the case where the size 
of the portfolio tends to infinity. The model used Is the one presented in PARKER 
(1922b) and involves random interest rates and future hfenmes Some justifications 
of the approximation are given. Illustrations for hmttmg portfolios of temporary 
insurance contracts are presented for an assumed Ornstem-Uhlenbeck process for 
the force of interest 
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I .  INTRODUCTION 

When considering random mterest rates in actuarial funcnons, a question of 
particular interest is the distribution of the plesent value of a portfolio of policies 
Studying such distributions could be very useful in areas such as pricing, valuation, 
solvency analysis and reinsurance. 

Some references which considered stochastic interest rates in actuarial functions 
are BOYLE (1976), W~LKIE (1976), WATERS (1978), PANJER and BELLHOUSE (1980), 
DEVOLDER ( ] 986), GIACOTTO (1986), DHAENE (1989), DUFRESNE (1988), BEEKMAN 
and FUELLING (1990), PARKI~R (1992b). 

Recently, DUFRESNE (1990) derived the distribution of a perpetuity for i.i d 
interest rates. FREES (1990) recurswely expressed by an integral equation the 
distribution of a block of n-year annumes for i i d interest rates. 

This paper, taken for the most part from the author's Ph.D thests (PARKER 
(1992a)), presents an approximation of the hmiting distribution, as the number of 
policies tend to infinity, of the average present value of the benefits for a specific 
type of portfolio of insurance contracts Although, theoretically, the approach may 
be used for any stochastic process for the interest rates, tt is more convenient for 
Gausslan processes The approximation is justified by two correlation coefficients 
which happen to be relanvely high mainly because of the defininon of the present 
value function. Some illustrations of the distribution function of the present value of 
portfolios using the Ornstem-Uhlenbeck process are presented Finally, the 
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moments of  some approximate distributions are compared with the corresponding 
exact moments 

2. A PORTFOLIO 

Consider  a portfolio of  temporary insurance contracts, each with sum insured 1, 
issued to c lives insured aged x. Let Z (c )  be the random present value of the 
benefits of  the portfolio 

PARKER (1922b) used a definition of 2;(c) involving a summation over the c 
contracts of  the portfolio. That is 

c 

(2.1) Z ( c ) =  ~ Z , ,  
I = l  

where Z,, ~s the present value of  the benefit for the ith life insured of  the portfolio. 
This definmon ts convement for calculating the moments of  Z (c )  because it ms 
possible to simplify the expressmns for these moments under the assumption that 
the future lifetimes of  the c policyholders are mutually independent. 

Another definition which ms eqmvalent appears to be more appropnate  for 
studying the hmltmg distribution of  the random variable g ( c ) .  

Instead of summing over the c policies, one could consider summing the present 
value of the benefits in a given year over the n pohcy-years  of the contract 
Algebraically,  we have 

Iw- 1 

Z . , ( c ) =  2 C, e - ' O + l ) ,  
t=o  

(2.2) 

where 

I 
l + l  

(2.3) y (i + 1) = 6, ds, 
0 

de is the force of interest at time s and c,,  : = 0, 1, .. , n - 1 is the random variable 
denoting the number of  pohcms where the death benefit ~s actually paid at time 
t + 1. We let c,, be the number of lives insured surviving to the end of the term, n 
Note that the sum of  the c, 's  from t equal 0 to n is c, the total number of pohcies m 
the porffoho. Thus, 

(24)  ~ c, = c 
I=0  

When studying Z,(c), we will assume that the future lifetimes of the lives insured 
are mutually independent and independent of  the forces of interest {d~}~ >_ 0. In this 
case, the {c,}'/= i is multinominal We will also assume that the discounting of all 
the benefits for the policies in the portfolios is done with the same Gausslan forces 
of  interest. 

In the next sectmn, we consider hmmng portfohos, i.e portfohos where the 
number of contracts tends to infinity. 
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3. L I M I T I N G  D I S T R I B U T I O N  

Using (2.2), one could lntmtively derive that the average cost per pohcy (defined as 
Z ( c ) / c )  as the number of such policies tends to mfimty would simply be a 
weighted average of the present value functions from year I to year n. The weights 
being the expected propomon of contracts payable m each year, Le. ,~q~ The 
probabdlstlc version of  th~s mtUltton is presented in Theorem I 

T h e o r e m  1 : As c tends to infinity, the average cost per policy for a portfoho of 
n-year temporary insurance contracts tends m distributton to (see also proposi- 
tion 5 of FREES (1990)) 

t ; -  I 

t = 0  

P r o o f :  This result is true if 

n - I  

(3 2) Z ( c ) / c - ~ , , =  ~ (c,/~ - ,~q,) e -.'~'+ll 
t = 0  

tends in probabili ty to 0. 
We use the well-known result that if X tends m probabili ty to 0 and Y has fimte 

mean and variance, then X Y tends m probabdlty to 0 (see, for example,  CHUNG 
(1974, p 92)). 

Here, c, is bmomtal (c, ,,q,) so, ( c , / c -  ,,q,) tends m probab,l l ty to 0 for each t. 
And as e -~'l'+l~ Js log-normally d~stnbuted with fimte mean and varmnce, it 
follows that 

tends m probabdtty to 0 

n -  I 

~ (c,/c-,~qO e 
t=O 

- ' ¢ i : +  I) 

[]  

Now, one could theoretically obtain the density function of  ~,, by integrating the 
jomt  density functton of  the y ( t ) ' s  over  the appropriate domain. The expressmn 
would look hke the following 

Ve ~2 YL 

where Y=(y(I),y(2), . , y ( n ) )  and is multivariate normal 
But this approach is not possible from a practical point of view as it is almost 

impossible to evaluate (3 3) even for n as small as 5 In the next secuon, however, 
we derive a recursive equatton from whmh one can approximate the dtstnbut~on 
of ~.. 
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4. APPROXIMATION 

Since ~,, Is a summation over the policy-years, it is easy to break it down into the 
sum of ~,_ i and a term for the nth policy year. The recurslve equation for ~,z is then 
given by : 

n -  I n - 2  

~, '= 2 ,'q, e - " l ' + l ) =  2 ,q, e-" l '+ ' l+, , -J ,q ,  e - ' ( " )  
= 0  ~ = 0  

(4.1) ~,, = ~,~_ i + . _  i,q, e - 'u ' l  

Let z, be a possible realization of z, and vj be a possible realization of y(j) 
Let the function g,,(z.,  y,,). a somewhat unusual function based on the dlstrlbu- 

non of ¢,~ and the density function of y(n).  be defined as: 

(4.2) g,, (z,,, y,,) = P(~,, --< z,,) f,'u,I (y,,l~,, --< z,,), 

or equivalently, 

(4 3) g,,(z,,, y,,) = f ,  u,l(Y,,) P(~,, <- z,,ly (n) --.y,). 

From this last definition, it fol lows Immediately that the distribution function of 
~, is given by: 

F ~ . ( z , , ) = [ "  g , ( z , , . y , , ) d y e ,  (4.4) 
d -  ~c 

where the funcnon g, (z,,  Y,,) may be calculated with a high degree of accuracy 
from the following recurslve equation 

(45)  g , , ( z , , , , , , , ) ~ I i ~  f , , , , ) ( y , , l y ( n - l ) = y , , _ , )  x 

- -  Vn 7 x g , , - i ( z , , - , , - i Jq ,  e , ) , - i ) d y , , - i  

with the starting value '  

(46)  g j ( z , , y , ) =  ~b~ ~ / - i - ~  ) If z,-->q~ e - "  

0 otherwise 

We use the notation ¢ ( )  to denote the probability density function of a zero 
mean and un,t variance normal random variable. Note also that given that y ( n -  l) 
equal y,,_ ~, y(n)  is normally distributed with mean 

(47)  E [ y ( n ) t y ( n -  l ) = y , , _ t ]  

coy (y(n) ,  y(n  - 1)) 
=Ely(n)]  + { .v , , - i -Ely(n-1)1}  

Wly(n)l 
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and variance 

(4.8) V i y ( n ) l y ( n - l ) = y , , _  ~l = Vly(n) l  - 

( s e e ,  for example, MORRISON (1990, p .  9 2 ) )  

coy 2 ( y ( n ) , y ( n -  1)) 

V l y ( n -  1)] 

To derive (4.5), we start by noting that from ( 4 . 1 ) ,  we have that" 

(49)  P(~,, --< z,,ly(n) = y . )  = P(~._  l <- z , , - , ,_ i,q, e-Y"IY(n) =Y.)  

Now using (42),  (4.3) and (4.9), we have 

(4.10) g.(z,~.Y, ,)=P(~,,- i  <--z,,-.-i~q, e -y") x 

x f~( , )(Y, , l~, , - I--<Zn-, , - t tq ,  e - " ' )  

The conditional probability density function of y(n) In (4.10) may be written as: 
(MELSA and SAGE (1973, p. 98)) 

(4.11) f, . t ,)(y,~l~,,_l--<Z,,-, ,-itq, e - " )  

= I i ~ f w ' ) ( y ' l y ( n - I ) = Y " - " ~ " - ' < - - z " - " - " q '  e-~") x 

x L,(,,_ii ( y , , _ l l ~ . _ ] - ~ z , , - , , - i ~ q ,  

Equation (4.3) imphes that 

(412)  f,,i,,_l)(V,,_ll:£,,_t <--Z,,--,,_llq, e-Y") - 

e-"")  dy,,_ i . 

g , ,  _ j ( z , ,  - ,, _ l l q ,  e - '" .  y , ,  _ i )  

P ( ~ ' , _  ] - <  z , ,  - ,, _ J l q ,  e - " )  

If we now make the following approximation (see the next section for some 
justifications) 

(413)  f ,~, , )(y , , ly(n-l)=y, ,_~.~, ,_t--<z, , - , ,_~Lq,  e .... )_= 

--f~ t,,)(y,,ly ( n -  I) =y,,_ ,), 

then equation (411)  becomes 

(4 14) f , t , , l(y, , l~._l <-- Z,, - . -  t~q, e-"°)  ~ f , , ( ,~)(y , , ly(n-1)=y._  0 x 

9 . -  i (z,, - . -  IIq, e - ' ° .  Y,,- i) 
x dy,,_ I 

P(~,,-I <- Z,,-,,-l~q., e -~") 

Finally substmltlng this last expression (4.14) into (410),  we obtain (45).  
To obtain the starting value (4.6), we simply have to note that: 

-y(1) (415)  ~l =q,  e 
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and that 

(4 16) 

Then, since 
(4.17) 

we have that 

g , (z l ,Y,)  = P ( ~ t - < z t l y ( I ) = y , )  f~t,l(V,) 

=P(~ ' I - -<z l lv( l )=v , ) .  ~p(:v,-Ely(l)])V[3~(li] ~ 

~,=q, e - "  If y ( I ) = y , .  

(4 18) P(~l ~ Z i I v ( I ) : Y ' ] ) = I  l if zl-->q,e 
(o otherwise 

Finally, by combining (4 18) and (4 16). we obtain (4 6) This completes the 
derivation of (4 5) and (4.6) 

Before doing numerical evaluations of approximation (4.5). it is ,nportant to 
study In greater details and to justify the approximation (4 13) involved here This 
is done in the next section. 

5. JUSTIFICATIONS 

Looking at the steps leading to (4.5), we note that the result ~s not exact due only to 
approxlmatmn (4.13) made m order to obtain a recurslve equation revolving only 
known quanutles This approximation may be justified theoretically by looking at 
two particular correlation coefficients, one of which vahdates the approximation for 
large values of n and the other for small values of n 

5.1 Correlat ion between y (n) and y (n - 1) 

From the subject of multivariate analysis, we know that the approximation (4.13) 
will be acceptable if y(n) and y ( n -  I) are highly correlated (see, for example, 
MARINA, KENT and BmBY (1979, Section 6.5)) This is true since If they are highly 
correlated, knowing y(n-  I) would e×plaln much of y(n). Now if thls is the case, 
introducing any other variable, correlated or not with v(n), in the regression model 
to further explain y(n) cannot improve the situation much. 

Looking back at the definition ofy(n)  (see (2.3)) it is clear that y(n - l) and v(n) 
must be highly correlated. Their correlation coefficient will be given by: (Ross 
(1988, p. 280)) 

coy (y(n), y(n - 1)) 
(5.1) O(y(n), y ( n - 1 ) ) -  

{V[y(n)l V [ y ( n - I ) ] }  1:2 

Note that if the force of interest is modeled by a White Noise process, i.e. 

(5.2) 6, N(ZI. 2 
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where ~t is understood that its integral, y(t), is a Wiener process, it can be shown 
that, the expected value of y ( t )  Is 

(5 3) E [ y ( t ) l = A  t 

and ~ts autocovarmnce funcuon ~s 

(5 4) cov (y(s ) ,  y( t ) )  = o,2~, mm (s, t) 

If the force of  interest i,; modeled by the following Ornstem-Uhlenbeck 
process. 

(5.5) d~t = - o~ (6, - ~) dr + ~ d W , ,  

with initial value 6o, then y( t )  has an expected value of  

(5.6) E l y ( t ) l = 6  r + ( 6 o - 6 )  

a n d  its a t t t o c o v a t l a n c e  f u n c t i o n  is  

0 2 
(5  7 )  COV ( y ( ~ ) ,  y ( t ) )  = - -  m m  ( s ,  t )  + 

o~ 2 

O 2 
+ - - 1 - 2  + 2 e - ~  + 2 e - ~ - e - " l ' - ' ~ - e - " ° + ' )  l 

2 ~  3 

(see, PARKER (1922b, equations 38 and 39)) 
The correlation coefficients between y(n) and y(n - I) for different values of  n, 

when the force of  mtere,,t is modeled by a White Noise (see (5 2)) and when it ts 
modeled by an Ornstem-Uhlenbeck process (see (5.5)) with parameter o~ = .  I, 2 or 
5 are presented m Table I 

T A B L E  I 

CORRI:LATION COEI I-ICIEN I BETWEEN V (It) AND y (It -- I ) 
FORCE O1" IN1EREST AS WHIIL NOIM AND ORNSTEIN-UIILENBFCK PROCESSES 

. While Noise 
Orns tem-Uhlenbcck  

t~= I ~ =  2 ~ =  5 

2 7071 8773 8707 8516 
3 8165 9474 9423 9270 
4 8660 9701 9659 95~5 
5 8944 9804 9769 9664 
6 9129 9860 9829 9739 
7 9258 9894 9867 9788 
8 9354 9916 9891 9821 
9 9428 9931 9909 9846 

10 9487 9942 9922 9865 
20 9747 9980 9969 9940 
40 9874 9992 9987 9972 
60 9916 9995 9991 9981 
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Results for the White Noise process are presented here because this process 
involves ~.~ d. forces of  interest, therefore, leading to the lowest correlation 
coefficients Results for the Ornstein-Uhlenbeck process are presented because it ~s 
the process used for dlustrat~on purposes m the next section. 

Note that the correlation coefficient between y(n) and y(n - I) Is not influenced 
by the parameter o,o of  the White Noxse process. For the Omsteln-Uhlenbeck 
process, the parameter 60, 6 and cr have no incidence on the correlation 
coefficients 

Table 1 clearly shows that y(n) and y ( n - 1 )  are very highly correlated, 
especmlly for large values of  n. Therefore, approximation (4.13) made to obtain the 
recursive equation (4.5) should be acceptable 

Another correlation coefficient could also JUStify approximation (4 13), indepen- 
dently of  the one discussed here This is the subject of the next section. 

5.2. Correlation between e-Y~"J and ~. 

Again from the subject of multivariate analysis, we know that the approximation 
(4 13) would also be acceptable ff y(n - I) and ~,,_ ~ contained about the same 
useful reformation to explain ~,(n) (see, for exemple, MARDIA, KF:NT and BIBBY 
(1979. Section 65)) .  This may be investigated by studying the correlation 
coefficients between e - '  I,,-~) and ~,,_ 

If e - ' ° ' )  and ~,, are highly correlated, the approximation would be reasonable. 
The correlation coefficient between these two random varmbles is: (Ross (1988, 
p. 280)) 

cov (e-'C"~, ~,,) 
(5.8) ~o (e - ' ~"), ~,,) = - -  

{ V l e - ' l " l  Vl~,,ll 1/2" 

Using (3.1), we obtain 

(5.9) ~o (e-'{"J, ~,,) = 

I t -  I 

2 
I = l )  

{ Vie-~"11 
i=(1 j=O 

,~q, coy (e - ' ("), e - ,.i, + i)) 

n-I t 5 Y~ ,,q, jIq, coy (e - '~ '+J) ,e  -'~j÷l)) 

where coy (e - '1'), e -'11)) is given by 

(510) cov (e -~ ( ' l , e - ' l J ) )=Ele  -''~'~ e - ' l J q - E [ e - ' " ~ l  Ele-"~J)l 

Note that ff the force of  interest is Gauss~an, the expected values revolved m 
(5.10) are simply the expected values of  lognormal variables (see PARKER (1992b, 
Section 6)). 

The correlation coeff,clents between e - '  ~'J and ~,,, for different values of n, 
when the force of interest is modeled by a White Noise or an Omsteln-Uhlenbeck 
process with particular parameters are presented m the following table. The 
mortality rates used are the male ultimate rates of the CA 1980-82 mortahty table 
(CowARD (1988, pp. 227-231 )). 
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TABLE 2 

CORRI~LAIION COEJ I-ICIENF BETWEEN e -  ~ (n) AND ~,t 
FORCE OF INILRESr AS WHITE NOISE AND ORNSTEIN-UIILENBECK PROCE.SSES 

55 

White Nozse 
A = 06, cr~,= 01 

~ = 3 0  

Ornstem-Uhlenbeck ,'3 = 06, b~l = I ,  ot = I 

o =  01 a = 3 0  o'= 02 a = 3 0  o =  01 .~=50 

I I 0 0 0 0  I 0 0 0 0  I 0 0 0 0  I 0 0 0 0  
2 9447 9899 9899 9912 
3 9199 9824 9824 9849 
4 9064 9770 9770 9802 
5 8980 9728 9727 9765 
6 8925 9693 9692 9735 
7 8890 9665 9663 9708 
8 8868 9642 9638 9684 
9 8856 9622 9617 9662 

10 8851 9605 9599 9641 
20 8969 9535 9518 9455 
40 8999 9368 9321 8693 
60 8486 8730 8494 - -  

Note that o ( e  --~(~), ~ )  is 1 This imphes that approximation (4.13) ~s exact for 
n = 2. The correlation coefficients of Table 2 suggest that the approximation should 
be good, especially for small values of n. 

Combining the two conclusions drawn from the results presented m Table I 
and Table 2, we note that the approxmlat]on should be acceptable for all values 
o f  n 

N o w  t h a t  a p p r o x m a a t l o n  (4  5)  a p p e a r s  to  b e  j u s t i f i e d ,  w c  m a y  u s e  i t  t o  f i n d  t h e  

dlstnbuuon of  ~,,. Equations (4 4) and (4 5) may be computed by numerical 
integration or by some discret[zation method Although some methods are certamly 
more accurate than others, it is not our intention in this paper to discuss or compare 
the possible methods In the next section, we present some results obtained by an 
arb~trardy chosen dlscretlzatlon of (4.5) 

6. ILLUSTRATIONS 

Figure 1 Illustrates the cumulative distribution funcuon of ~',,, n = 5, 10, 15, 20 
and 25, the Iim|tlng average cost per policy for temporary insurance contracts ~ssued 
at age 30 and with the force of interest modeled by a Ornsteln-Uhlenbeck process 
with parameters ~ = 06, b 0 = . l ,  o~=.1 and o = . 0 1 .  The mortality rates are again 
the male ultimate tales of  the CA 1980-82. 

The range of possible values for ~5 is much shorter than the one for ~25. This is 
due to the fact that with a hmltmg portfoho, there is no fluctuation due to mortahty, 
and therefore, all the possible variations in the random varmble ~,, are caused by the 
force of  interest. When there are only five years of  fluctuating force of  interest 
revolved, ~t is clear that the results will be less spread than when there are 25 years 
of fluctuating force of  interest. Finally, it should be obvious why ~25 takes larger 
values than ~5- 
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hGURL I Cumulauvc d~,,trtbut,on funcuon ol ~,, 
Temporary insurance pohcJes issued al age 30, Orn~tem-Uhlenbcck 6 = 06 J o =  I ~ =  I o =  01 

5 years 
I 0 year,~ 
15 years  

- -  - -  20 years 
- -  25 years 

There is no doubt that the dlstrlbut~on of ~,, provides very useful mformauon m 
solvency problems. One may also be interested m using such reformation for 
pricing or valuation of a portfoho of  insurance pohcles. In this regard, the relevant 
mformauon is contained m the right tall of the d~stnbtmon of ~,,. 

Table 3 contains some numerical values of  the right tall of the distnbuuons of ~5 
and ~25 dlustrated in Figure 1 

From Table 3, we know, for example,  that a company charging a single prcnuum 
of  005602 to each hfe insured of a very huge portloho of 5-year temporary 
contracts wdl meet ~ts future habdmes wffh a probablhty of  about 995. 

T A B L E  3 

RIGHT TAll. OI "IIIL APPROXIMArl:  DISTRIBUTION OF ~ . ,  5 AND 25 YI ARq II MPORARY INSURANCE ISSUI:D A'] 

AGE 30, ORNSFEIN-UHLkNBECK f ) =  0 0  {~o= I ~ =  I O =  01 

5 5,ears temporary 25 years temporary 

Zs r ~  (zs) zz~5 F~2, (z.2s) 

~)5381  940609  036135 966095 
005436  972183 038092  982494  
005547  992830  040048 989498 
005602  995229  042004 994551 
005823  997927  049827 999505 
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7. VALIDATIONS 

A validation of the results described above has been done by companng the exact 
first three moments of ~,, with its estimated first three moments from the 
approxmmte distribution. 

A dlscrenzanon of the variable (~,, has been used to estunate the moments of  the 
approximate &strlbutlon. Algebramally, the ruth moment of  ~,, about the ongm has 
been approximated by the following equation. 

h 

,=o ~, 2 ) " 

where z,,[i], t = 1, 2 . . . . .  h is the ith ordered value of ~,, at which F~:,. was evaluated. 
For the illustrations presented above, h was chosen to be 25. To deal with the 
extremmes of the d,stnbunons the following values were arbitrarily defined as. 

(72)  z , , 1 0 , = z , , [ I , .  ( .z,,[2,-z,,[l ,).2 

(7.3) z"[h + l ] = z"[h] + l z ' [h]  - z " l h -  I ] 

(7.4) F~. (z,, [01) = 0 

(75)  F¢(z , , lh+ I I) = I 

The exact moments of  ~,, about the origin may be obtained by using the 
definition of  ¢,, given by (3 1) Its ruth moment about the origin is then given 
by 

11 (76)  E[~,'~'] = E ,~q~ e - ' l '  + I) . 
k \ , = o  

Now, with m equal I, the first moment is 

,I- [ 
(7.7) EI¢ , , I=  ~ El,,q, 

t=O 

e - ~ ( , + l ) ]  

With m equal 2, the second moment is 

(78)  Ell2[  =E  ,Iq, e - " ( '+ l l  ;iq, e -'~(~+ll 
t ~ k,d = 0 

1 - , -  I n~ l  1 (79) =EL =~0 , ,q,  ),6/, e - v ° ÷ l ) - v C ~ + l ,  
j = 0  

n-  I n-  I 
(7.10) = Y~ Y~ ,Iq, j tq, Ele-"('+I)-"(~+E)I. 

t=O j=O 
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Wtth m equal 3, the third moment is 

n -  I n -  I n -  I 

(7.11) E [ ~ ] =  ,~, ~ ,~ ,,q, j,q, ~q~ E[e - ' ° + l ) - ' l J + l ) - ' t ~ + l ) ]  
I = 0  j = 0  k = 0  

Note that the moments of  ~,, are exactly the hmitlng moments of  the average cost 
per pohcy studied m PARKER (1992b) 

Table 4 presents, for different terms of  temporary insurance contracts issued at 
age 30, the exact moments of  ~,,, E[~,'~'], and the difference between the exact and 
the estimated moments (gtven by (7.l)), Le. E[~ ; i ' ] -  E'[~;'], for m equal 1, 2 and 3, 
The force of  interest ~s modeled by an Ornsteln-Uhlenbeck process with parameters 
6 =  06, 60= .1 ,  o~= 1 and a = . 0 1 .  

T A B L E  4 

COMPARISON OF EXACT AND APPROXIMATF MOMENIS OF ~. ,  tt/-YIzAR TEMPORARY INSURANCE ISSUED 
AT AGE 30, ORNSTF.IN-UHLENBE(K 6 = 06 b 0 =  I a =  I O =  OI 

m =  I m = 2  m = 3  m =  I m = 2  m = 3  
( x I0) ( x 1130) ( x I000)  ( x I0) ( x 100) ( x I000)  

I 0 1 1 9 7  00014  00000  00000  00000  00000  
2 02284  00052  001301 00000  00000  00000  
3 03291 00108  00004  00000  00000  00000  
4 04246  00180  00008  - 00001 130000 00000  
5 05160  00266  013014 - 00003 00000  00000  

I 0 09517 00909  00087 - 00017 - 00004  - 0000  I 
15 14163 02023  00292  - 00031 - 00011 - 00003  
20 19731 03964  00811 - 00041 - 00024  - 00009  
25 26356  07167  02013  - 00054  - 00053  - 00030  

Note that, m order  to present  more  s~gmficanl digits, the first m o m e n t  has been mult~phed by 10, the 
second m o m e n t  m u h J p h e d  by 100 and the third m o m e n t  mul t lphed  by 1000 

From Table 4, we note that the exact and approximate first three moments of ~,, 
agree to at least four, five and stx decimal places respecttvely (for n <-- 25). Thts is 
excellent, especially if one considers that many approximations were involved 
before obtaining the esumated moments of  ~,,, Ell , ,] .  

Let tile relattve error for the ruth moment of  ~,, be: 

(7 12) IE[~i~']- E[~i '[I  

Then, for any term, tl, the relative error on the expected value of ~n IS about .2 % 
or less. For its second moment, it ts about .7 % or less. And for tts third montent, it 
is about 1.5 % or less 

The results for other parameters of  the Ornstem-Uhlenbeck process and for other 
ages at tssue, not dlustrated here, were all excellent The maximum relattve error 
observed, generally for the thtrd moment, being about 3%. Although for the 
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illustrations presented here, the error ts always negative, for other situations it may 
be positive or even alternate over different ranges of values of  the term, n. In all 
cases, however, the relattve error ~s small. 

From the justificattons made in Section 5 and from the validations presented 
here, it appears that the approxmmtton (4.13) suggested to obtain the resurswe 
equation (4 5) has to be highly acceptable. 

8 CONCLUSION 

The resultg of  this paper provzdes a way of  approximating the distribution of  
hmttlng portfohos that ts valid for any process for the force of interest as long as 
the conditional density function of  y(n) given y ( n -  I) IS known and expression 
(5.10) can be evaluated As indicated earher, choosing a Gausslan process slmphfy 
things considerably 

Although equation (4.5) might not be acceptable for any random variables, the 
very nature of  the problem under consideration here, i.e. the present value of  future 
benefits, has some particular propemes which imply that the approximation ~s good 
The worse possible case for Gausstan Interest rates is when they are independent, 
l e White NoJse process Even in this case, the correlation resulting between 
consecutive present value functions is fairly high. 

There is no doubt that knowmg the distribution of  the average cost per policy is 
useful for pricing, valuation, solvency and reinsurance The approximation sug- 
gested m this paper ~s certainly accurate enough for most smtatlons one may 
encounter, tt is more justifiable and less subjectwe than the testing of  a hmlted 
number of scenarios and it avoid,; the extremely lengthy simulations reqmred to 
obtain reasonable information about the taft of the distribution 

ACKNOWLEDGEMENT 

Comments from an anonyrnous referee are gratefully acknowledged. 

REFERENCES 

BEI~KMAN J A and FUELLING C P (1990) Interest and Monahty Randomness m Some Annume~ 
hl~uran~e Mathematlc.~ and Economtc~ 9, 185-196 

BOYLL P P (1976) Rates of Return as Random Variables JRI XLIlI, 693-713 
CHUNG K L (1974) A Course m Probabthty Theory Second edtllon, 365 pp, Academic Press. New 

York 
COWARD L E (1988) Mercer Handbook of Canadian Pension and Welfare Plan~ 9th edition, 337 pp, 

CCH Canadmn, Don Malls 
DI:'VOLDLR P (1986) Op6rauons Slochashques de Capltahsatlon ASTIN Bullenn 16S, $5--$30 
DHAENe J (1989) Stochastic lnterest Rates and Autoregress~ve Integrated Mowng Average Processes 

ASTIN Bulletin 19, 131-138 
DOFRF.SNF. D (1988) Moments of Pension Contrlbullon ~, and Fund Levels when Rates of Return are 

Random Journal of the Institute of Actuaries 115, part Ill, 535-544 
DUFRESNt; D (1990) The Distribution of a Peq'~ttnty, with Apphcanons to Risk Theory and Pension 

funding Acandmavtan Actuarial Journal, 39-79 
FRJZLS E W (.1990) Stochashc Lde Contingencies with Solvency Conslderauons Tran.~actton of the 

Society of Actuartev XLll, 91-148 



60 GARY PARKER 

Giacor lo  C (1986) Stochasuc Modelhng of Interegt Rate,, Actuarial vs Equd.bnum Approach Jomnal 
of Rt~k and In~urame 53, 435-453 

MARDIA K V. KI~Nq J T and BmnY J M (1979) Multtvartate Analygt~, 463 pp, Academic Pies~ 
London 

MELSA J L and SAGE A P (1973) An Inltodu~tton to Ptobabtht~ and Sto~hastt~ Pioces~es. 403 pp, 
Prentice-Hall, New Jersey 

MorrisoN D F (1990) Multtvartate Stattrtt~al Method~ 3rd edmon, 586 pp, McGraw-Htll lnc, New 
Yolk 

PANJFR H H and BLLLttOUSE D R (1980) Stocha~,ttc Modelhng ol Interest Rates and Apphcatlons to Lde 
Contmgenoes Journal of Rtvk and Insurance 47, 91-110 

PARKER G (1992,1) An Apphcal.on ol Stochastic Interest Rates Models m Life Assurance. 229 pp, Ph D 
thesis, Henot-Watt Umvers~ty 

ParKEr G (1992b) Moments of the present value of a portfoho of pohoes To appear m S~andmavtan 
Actuarial Journal 

Ros'; S (1988) A Ftr~t Course m Ptobabthtv 3rd edfllon, 420 pp, MacMillan, New York 
WAIERS It R (1978) The Moments and Distributions of Actuarial Functions Jomnal of the ht~tttute of 

Actuartei 11)5, Part I, 61-75 
WILKBF A D (1976) The Rate of Interest as a Stochastic Process-Theory and Apphcatlons Proc 20th 

Internattonal Congte~ of Actualte~. 7~'~kvo 1, 325-338 

GARY PARKER 

Department of Mathemattca and Stattsttcs, Simon Fraser  Umverstty,  

Bunlaby,  B C  V5A IS6. Canada 


