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ABSTRACT 

An iteration scheme is derwed for calculating the aggregate claims dlsmbut ion 
in the individual life model. The (exact) procedure is an efficient reformulation 
of  De Pnl 's  (1986) algorithm, considerably reducing both the number of  
arithmetic operations to be carried out and the number of  data to be kept at 
each step of ~teration. Scaling functions are used to stabihze the algorithm in 
case of  a portfolio with a large number  of  polloes Some numerical results are 
displayed to demonstrate  the efficiency of  the method. 
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I. 1NTROI~UCT~ON 

Consider a portfolio of  m independent hfe insurance polioes Suppose each 
pohcy to have an amount  at risk i ~ l =  {1 . . . .  a} and a mortahty rate qj with 
j E J  = {1, . . ,  b}. Let m,j denote the number of all pohcles with amount  at risk 
and mor tahty  rate qj. 

In the individual risk model the total amount  of  claims, S, is the sum 
S =  X t +  ... +.X'm of  the m individual claims X~ . . . . .  X,,, produced by the 
pohcies. The distribution of  S, f ( s )  = P(S  = s), referred to as the aggregate 
claims distribution, can be obtained by successively convoluting the m two- 
point distributions of  the mdw~dual claims. Since the numerical calculauon of 
an m-fold convolution is usually very t~me-consummg, numerous approxima-  
tions can be found m the literature. See, e .g ,  BEARD, PENT1KAINEN and 
PESONEN (1984) for more details. The method derived m DE PRIL (1986) ~S a 
remarkable progress m computing the distribution of  S exactly. Compared  with 
Panjer 's  (1981) recurslon formula, however, which can be thought of  as the 
counterpart  within the collectwe risk model, the computing time remains large 
(cf KUON, REICH and REIMERS (1987), DE PRIL (1988), REIMERS (1988)) 

In the present paper  we shall reformulate the ~teratmn scheme underlying the 
method of DE PRIL (1986). A (much) more efficient orgamzaUon of  the data 
will considerably reduce both the number of  an thmehc  operations to be carried 
out and the number  of  data to be kept at each step of lnteration. Further,  we 
shall stabilize the algorithm by introducing a statable scahng function. Thxs 
scaling function will enable us to apply the algorithm to a portfolio wIth an 
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essentially larger number  of  policies. Finally, some numerical results will be 
dnsplayed to demonstrate  the efficiency of the method 

2. T H E  A G G R E G A T E  C L A I M S  D I S T R I B U T I O N  

F o r j ~ J ,  we setpj  = l - q j ,  zj = qj/pj, mj = Z,~lm,j, and c = Zt~lZj~sim v. 
Further,  we use Ix] to denote the greatest integer less than or equal to x. 

It has been shown in DE PRIL (1986) that the aggregate claims dnstnbutlon 
can be computed recurswely via 

b 

(1) f(O) = I--I (pj).t, 
j = l  

and for s =  I, 

(2) 

where 

(3) 

. . ~  C 

I m m ( a , s )  [s#] 

f ( s ) =  Z Z g(t,k)f(s-kt) 
S t = l  k = l  

b 

g(i'k)=(--l)k+lt 2 mYzJ k 
.1~1 

Theorem 1: Equation (2) can be written as 

l mm (a, ~) b 

(4) f ( s ) = -  2 Z imvr(s'z,J) 
S t=l  J--I 

where, for all i~I,j~J, l<s 
(5) r(s, i,)) = zj{J (s- t ) -r(s- i ,  l,j)} 

and r(s, i,j) = 0 otherwise. 

Proof:  Let 
lq,] 

r(s, i,j) = Z 
k ~ l  

Then, utdlzing 

( _  l)k +l z~f(s-- kt) 

r(s, i,j) = zj { f  ( s - i ) -  
ls#] 
2 (--1)Ck-I)+tz~ - ' f ( s - i - ( k - 1 ) t ) }  

k = 2  

[(~-,)#1 
=zj { f ( s - t ) -  k~,2 (--l)k+l zJ k f (s - i -k i )  } 

= z j{ f (s-O-r(s- t ,  l,j)} 

the assertion immediately follows from (2) [] 
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Equations (4) and (5) can be thought of as an efficient reformulation of 
equation (2). The superiority results from 

(a) a lower number of arithmetic operations to be carried out at each step of 
iteration 

(b) arrays of smaller size to keep the data needed for further iterations 

To specify (a), we first study equation (2). Fix (s, t, k). Then, having already 
computed g(~, k - 1 ) ,  .q(i, k) can be obtained as the result of 

b 

{1(- I )  k} ~ ( - z j ) { m , z : - ' }  
j = I  

which can be managed by b + I multiphcatlons and b addltlons. Two addJt)onal 
multiplicahons and one subtraction are necessary to compute g(t, k ) f ( s - k i ) .  
Summing over k there is a need of (b+3) [s/t] multlphcahons and (b+ I) [s/i] 
addmons/subtractlons. 

On the other hand, by applying equations (4) and (5), for fixed (s, i,j), one 
multiplication and two subtractions are necessary to compute r (s, i, j).  Further, 
one addlhonal multlphcahon is needed to obtain (t mv} r(s, t,j) Summing over 
3, there is a need of 2b multiplications and 2b additions/subtractions. 

Now let (,,(s) (resp. (a(s)) denote the number of multlphcatlons (resp. 
additions/subtractions) to be saved by applying equations (4) and (5) m place 
of equation (2) at stage s of iteration. Then it easdy follows that 

mm (a, s) 

~m(S) = ~ { (b+3)[s / i ] -2b}~{ (b+3) log(a+l ) } s -2ab  

mm (a, s) 

~a(s) = ~ { ( b + l ) [ s / i ] - 2 b } ~ { ( b + l ) l o g ( a + l ) } s - 2 a b  
i=1 

where use has been made of log (a + 1) < Eo,-i l/t < 1 + log (a) (cf. e.g., Ross 
(1983)). 

Now let us speofy (b). To apply iteration scheme (2), an array with ac (resp. 
c+  I) elements is needed to keep g(t, k) (resp f ( s - k i ) )  for further iterations. 
On the other hand, utdizlng equations (4) and (5), an efficient Implementation 
of r(s, i,j) ( resp . f ( s - i ) )  needs an array with a(a+ I)b/2 (resp. a +  1) elements 
only 

To illustrate the basic idea underlying the implementatlon of r(s, i,j), 
observe (see Figure 1) that the r(s, i,j) within the upper triangle (sohd hne) 
have to be kept at stage s, while at stage s+  I the r(s, t,j) of the lower triangle 
(dashed hne) have to be retained. 

To manage these data in an efficient way, we rearrange the elements of the 
upper trmngle m an array with a(a+ I)/2 rows and b columns, and, switching 
to the lower triangle, we replace the entries of (S-l ,  l , j )  (not needed any 
longer) by the ones of (s, t,J) (to be kept for further use) and let the other 
entries unchanged. 
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• ) (s-2,2J) (s-3,3j)  ..- (s-a, aO) 

. . . . . . . . . . . . . . .  7 
I 

' 

I 

" 4  

FIGURE I Actuahzatmn of the data 

Formally, we introduce 

v, = t ( i - l ) / 2 + l  

w, = O, t e l  

and actualize w, at each step s(s > 1) of  iteration accordmg to 

w = { ~ , + 1 ,  if w , < t - I  

otherwise 

Then w, coincides with s modulo t and ( v ,+w, , j )  is the position in the array, 
in which the entry of  (s, i , j)  c a n  be found. 

3. STABILIZATION OF THE ALGORITHM WITH RESPECT 

TO U NDERFLOW/OVERFLOW 

Applying the algorithm to a portfolio with a large number of  contracts, the 
initial value f ( 0 )  ts close to zero. This fact may cause an underflow followed by 
an abort  or irregular running of the procedure. 

To discuss this aspect in more detail, let 09 and £2 denote the smallest and 
greatest numbers that can be represented on the computer  to carry out the 
algorithm. Suppose f ( 0 )  < co. Then the algorithm stops with an underflow. On 
the other hand, by formally setting f (0)  equal to zero, the sequence f ( s )  of 
iterates degenerates to a sequence that has all ItS elements equal to zero, whtch 
is not consistent with the property of  being a probabdlty mass function. 

There are a variety of  ways to overcome this dtfficulty. Three methods of 
different effictency and/or apphcabxhty are to be stated as methods 1 to 3. 
There f * ( s ) ,  0 < s  < c, ts used to denote the sequence of  transformed 
iterates 
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Method 1: Suppose 

f *  (s) = i f ( s ) ,  0 _< s < c 

for some constant y with co < i f ( 0 )  < Q, Then the transformed iterates f * ( s )  
can be obtained by formally starting (4) (resp. (2)) with i f (0 )  in place of  
f (0 ) .  [] 

The use of  a constant scaling function is the simplest way to stabihze the 
algorithm. A more refined method is to combine a constant scaling function 
with an exponential scaling function, which has been suggested by PANJER and 
WILLMOT (1986) within the collective risk theory. 

Method 2: Suppose 

f *  (s) = y e - ~ ' + P ) f ( s ) ,  0 _< s < c 

where ~, fl, ~, are constants with 0 ~ ~ _< 0.5, y > O, and 

(6) fl = 2 my log (pj) 
t = l  J = |  

To compute f *  (s), iteration scheme (4) has to be reformulated as 

f *  (0) = ye 0 -~)~ 

I mln (a, s) h 

= -  X X im, 
S t = l  j = l  

where, for all i ~ l ,  j e J  

t ( i , j )  = z je  -~' 

r* (s, t , j )  = tO, j )  { f *  (s - l )  - r* ( s -  i, l, j)}, 

and r*(s ,  i , j )  --- 0 otherwise. 

1 < s < _ c  

t<_s 

[] 

Method 2 starts with a larger initial value as well as method 1 and addmonally 
reduces the increase of the Iterates. For  large s, however, things may change 
and the transformation may lead to an ealier abort on account of  an 
underflow. Our third method is one way to overcome this principal difficulty. 
It again starts with a larger initial value, reduces the increase of the iterates 
for s < E ( S ) ,  and, additionally, reduces the decrease of  the iterates for 
s > E ( S ) .  

Method 3: Suppose 

f *  (s) = ye~(S-~): f ( s ) ,  O ~ s ~ c  
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where 

(X = - -  j ~ / ] J  2 

b 

= E(S)= ~ mj% 
./=1 

and fl as in (6) To compute f *  (s), the modified iteration scheme reads 

f *  (0) = y 
I mm (a .s )  b 

f * ( s )  = -  Z Z tmvr*(s , i , j ) ,  l <_s<_c 
S t = l  j = l  

where, for all iel,  j e J  

{ zje ~'(2(s-t')-'), l _< s < 2 a -  1 
t(s,t,J) = t ( s - t , t , J )  e2a?,  2 a < s < c  

r*(s,i , j)  = t ( s , i , j ) { f * ( s - i ) - r * ( s - i , i , j ) } ,  t<s<_c 

and r*(s, t , j )= 0 otherwise. [] 

It ~s not surprising that the last scaling function is superior to the other ones, 
since it ~s stimulated by the central hmtt theorem and thus best utilizes the 
asymptotic  behavior of  S as m --, ~ .  Some numerical results to be given in the 
next section will illustrate the efficiency. We finally remark that t(s, i j )  and 
r*(s, i,j) can be implemented in the same way as r(s, l,j). 

4. NUMERICAL RESULTS AND DISCUSSION 

We consider as a starting point the portfoho dtscussed m GERBER (1979), 
p. 53. 

ql mq 

0 03 2 3 I 2 - -  
0 0 4  - -  1 2 2 1 
0 05 - -  2 4 2 2 
0 06  - -  2 2 2 1 

Since the portfoho consists of  31 pohc~es only, there Is no need for a 
reformulation or stabilization of  the algorithm We therefore expand the 
portfoho by considering krn~ pohcles in place of  m. (for all i e l  and jeJ) .  

Let k = 5000 (corresponding to 155 000 policies) to xllustrate the numerical 
progress resulting from the application of  equations (4) and (5) in place of  
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equation (2). Then, being interested m computing the aggregate claims 
distribution up to the smallest c* with P(S  > c*) _< 10 -4, there is a saving of  
more than 4 .4 .109 multiplications and a saving of  more than 3.1.109 
additons/subtractions. Moreover, the arrays to be kept at each step of iteration 
can be reduced by 140 851 elements 

The maximal k ~mplymg a stable algorithm has been deterrmned on the basis 
of extended numbers ( ie  co= 1.9 .10 -4951, I 2 =  1 . 1 .  104932). There stable 
means that the algorithm does not stop with an underflow or overflow and that 
both I E' (S) - E" (S)I/E" (S) _< 10-5 and IVar' (S) ~ - Var" (S) '/'[/Var" (S) ~ <_ 
10 -5 hold, where E' (S), Vat' (S) are determined with help of  the probability 
mass function of  S and E"(S) ,  Var"(S)  result from the moments of  the 
individual claims and the properties of  expectation and variance. The maximal 
k and the associated number of  policies to be obtained in this way for 
y = 104500 are displayed m Table 1. 

TABLE 1 

STABILITY OF THE ALGORITHMS UNDER CONSIDERATION (~ = 1045°°) 

Method maximal k number of policies 

Equations (4) and (5) 7 900 244 900 
Method I 15 100 468 100 
Method 2 (ct = 0 31) 22 100 685 100 
Method 3 80 100 2483 100 

Stability of  our numerical results thus means stability with respect to the first 
two moments. For a more theoretml treatment of  the numerical stabihty of  
recurswe formulae the reader is referred to PANJER and WANG (1993). 
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