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ABSTRACT 

Two approaches used to model interest randomness are presented. They are the 
modeling of the force of interest accumulation function and the modeling of the 
force of interest. The expected value, standard deviation and coefficient of skewness 
of the present value of annuities-immediate are presented as illustrations. The 
implicit behavior of the force of interest under the two approaches is investigated by 
looking at a particular conditional expectation of the force of interest accumulation 
function. 
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I. INTRODUCTION 

A wide variety of stochastic processes have been used to model interest randomness 
in the present value function and other actuarial functions. Not only are different 
processes used but they are also used in different ways. Two approaches that are 
used in existing literature are, firstly, the modeling of the force of interest 
accumulation function (see, for example, DEVOLDER (1986), BEEKMAN and FUEL- 
LING (1990, 1991, 1993), DE SCHEPPER et al. (1992a, 1992b), DE SCHEPPER and 
GOOVAERTS (1992)), and secondly, the modeling of the force of interest (see, for 
example, PANJER and BELLHOUSE (1980), DHAENE (1989), FREES (1990), PARKER 
(1992, 1993a, 1993b, 1994), NORBERG (1993)). The particular assumption that the 
forces of interest are independent and identically distributed (i.e. a White Noise 
process) will be seen to have an equivalent process for the force of interest 
accumulation function. IID interest notes have been used by WATERS (1978, 1990), 
DUFRESNE (1990) and PAPACHRISTOU and WATERS (1991) among others. 

Although in the deterministic situation the two approaches are equivalent, they 
are truly different in the stochastic situation. 

In this paper, we compare these two approaches for some simple Gaussian 
processes (see PARKER (1993C) for an earlier version presented at the XXIV ASTIN 
Colloquium). In Section 2, we define the random present value function and give an 
expression for its moments about the origin. 

ASTIN BULLETIN, Vol. 24. No. 2. 1994 



168 GARY PARKER 

In Section 3, we present two stochastic processes, namely, the Wiener process 
and the Ornstein-Uhlenbeck process, for the force of interest accumulation function. 
The following section presents three stochastic processes, the White Noise, Wiener 
and Ornstein-Uhlenbeck processes, for modeling the force of  interest. 

In Section 5, we find the first three moments about the origin of  the random 
present value of  a n-year annuity-immediate of  equal payments of  I. Some 
illustrations are presented in Section 6. Section 7 takes a closer look at an implicit 
difference between the two approaches. Finally, Section 8 summarizes the find- 
ings. 

2. PRESENT VALUE FUNCTION 

Let 6~ denote the force of interest at time s and let y(t) denote the force of interest 
accumulation function at time t. We then have 

I' 
(1) y(t) = d.,. ds. 

0 

The random present value at time 0 of  a payment of  1 at time t is given by 
-y ( t )  

e 

Assuming that y(t) is Gaussian, then the present value function is log-normally 
distributed with parameters E[-y ( t ) ]  and V[y(t)], and its ruth moment about the 
origin is : 

(2) E[(e-Y~t))"]=E[e ..... Y~')] = exp { - m .  E[y(t)]+.5m 2. V[y(t)]} 

(see, for example, AITCHISON and BROWN (1963, p. 8)). 
In the next section we will use two Gaussian stochastic processes to model the 

force of  interest accumulation function. And, in the following section, Section 4, we 
will look at three Gaussian stochastic processes to model the force of  interest. 

3. MODELING THE FORCE OF INTEREST ACCUMULATION FUNCTION 

A first approach to consider interest randomness is to model y(t) ,  the force of  
interest accumulation function. Here we present a Wiener process with deterministic 
drift 6 and an Ornstein-Uhlenbeck process also with deterministic drift 6. 

3.1. Wiener process 

Let y(t) be the sum of a deterministic drift of  slope 6 and a perturbation modeled 
by a Wiener process. That is 

(3) y ( t ) = 6 . t + o .  W~, 

where o - >  0 and W t is the standardized Wiener process. 
It can be shown that the expected value and autocovariance function of  y( t )  are 

given by 

(4) E[y(t)] = 6. t, 
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and 

(5) cov [ y ( s ) , y ( t ) ]  = 02 .  min (s, t ) .  

(see ARNOLD (1974, Section 3.2)). 

3.2. Ornstein-Uhlenbeck process 

Let y (t) be the sum of a deterministic drift of  slope 6 and a perturbation modeled 
by an Ornstein-Uhlenbeck process. That is 

(6) y ( t )  = 6 .  t + X ( t ) ,  

where X ( t )  is an Ornstein-Uhlenbeck process with parameters ot _> 0 and a -> 0 and 
with an initial condition X ( 0 ) =  0. Therefore, 

(7) dX (t) = - or. X (t) dt + o dW~. 

Using the results of  ARNOLD (1974, p. 134), one can obtain the expected value 
and autocovariance function of y ( t )  as defined in (6) and they are given by 

(8) E [ y ( t ) ]  = 6 • t ,  

'and 

0 2 
(9) cov [ y ( s ) , y ( t ) ]  = • ( e - ~ ' - " ) -  e - "< '+ ' ° ) ,  s <- t 

2o~ 

o r  

(lo) 

where 

(11) 

cov [ y ( s ) , y ( t ) ]  = O  z .  ( e - ' ~ ( ' - ° -  e-"< '  +")), s -< t 

(7 2 
p2 = 

2o~ 

4. MODELING THE FORCE OF INTEREST 

A second approach to model interest randomness is to model 6.,., the force of  
interest. Here we present a White Noise process, a Wiener process and an 
Ornstein-Uhlenbeck process. Note that the three processes will be defined so that 
they start at 6, not at the origin. 

4.1. White Noise process 

Let the force of interest be a White Noise process with mean 6 and variance o 2. 
That is, for t > 0, 

(12) 6, ~ N ( 6 ,  cr2). 

The forces of  interest are therefore modeled by Gaussian, independent and 
identically distributed random variables. Note that, in continuous time, White Noise 
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is not a physical process but a mathematical abstraction (see KARLIN and TAYLOR 
(1981, p. 343)). 

One may consider, in some sense, that the White Noise process is the derivative 
of  the Wiener process (see, for example, ARNOLD (1974, p. 53) of  KARLIN and 
TAYLOR (1981, p. 342)). (This indicates that assuming a stochastic process for y ( t )  
does not necessarily imply that a meaningful physical process for 6, exist). 

Then, y( t ) ,  as defined in (1), is a Wiener process with expected value 

(13) E[y( t )]  = 6 .  t, 

and autocovariance function 

(14) cov [ y ( s ) , y ( t ) ]  = 02 .  min (s, t ) .  

(see, for example, ARNOLD (1974, Section 3.2)). 
Therefore, the model presented above is merely an alternative description of the 

Wiener process for the force of interest accumulation function presented in 3.1. 

4.2. Wiener process 

A second model for the force of  interest is the Wiener process. Let the force of 
interest be defined as 

(15) 6 , = 6 + 0 .  W,, o_>0.  

Adapting the results in Section 3.1 we find that the expected value and 
autocovariance function of this process are 

(16) El6,] = 6,  

and 

(17) cov [6s,  6,11 = 0 2. min (s, t ) .  

Then, from the definition of y( t )  (see (1)), it follows that y( t )  is normally 
distributed with expected value 

(~8) 

and autocovariance function 

(19) covly(s),y(t)l=ISy 
0 0 

which gives 

(20) 

Ely ( t ) ]  = 6 .  t, 

cov [6.,  6v] du dr, 

coy [y (s), 3' (t)] = 0 2 • (s 2 t/2 - s3/6), s --< t. 

4.3. Ornstein-Uhlenbeck process 

As a third model for the force of  interest we consider an Ornstein-Uhlenbeck 
process. Let the force of  interest be defined by the following stochastic differential 
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equation 

(21) d 6 , =  - O / ( 6 t - 6 ) . d t + a . d W t  o ~ O ,  a - > O ,  

with initial value 60 = 6 (see, for example, ARNOLD (1974, p. 134)). 
Then, it can be shown that the expected value of 6, is 

(22) E 16,] = 6 ,  

and that its autocovariance function is 

0 2 
(23) cov [6s,  6,] = • ( e -  ' ~ ' -  s)_ e -  '~ '  + "+)), s -< t. 

2O/ 

Again, we will denote a2/2o~ by 0 z. 
The force of interest accumulation function, y (t), is therefore a Gaussian process 

with expected value 

(24) 

and autocovariance function 

0 2 
(25) c o v [ y ( s ) , y ( t ) ] = - -  

E l y ( t ) ]  = 6 .  t ,  

min (s, t) + 
O/2 

G 2 
+ - -  [ _ 2 + 2 e - ~ ' S + 2 e  -~ ' ' _  e - ,~ l , - . , ~_e -~O+s) ] .  

2o/3 

(see, for example, PARKER (1994, Section 6)). 
Note that the two models considered in Section 3 and the three models 

considered in this section have all been defined such that their expected values of  
the force of interest accumulation function are the same (i.e. E [ y ( t ) ]  = 6 • t) .  What 
varies over the models is the variance o f y ( t )  and the expected response in a given 
situation. This will be discussed further in Section 7. 

5. ANNUITY-IMMEDIATE 

We now consider a n-year annuity-immediate contract. Let aT be the present value 
of n equal payments of  1 made at the end of each of the next n years. Then, we 
have 

(26) a T =  ~ e -~'~') 
t= l  

We now consider the first three moments of  aT using its assumed true probability 
distribution so that all moments have their usual interpretations. Note however that 
the expected value will be different than the market price of  the annuity which 
requires that such price be in equilibrium for any purchasing strategy (see 
BUHLMANN (1992)). 
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The expected value of  aT may be obtained in the following way:  

(27) E[a~l = E e -Y(') = E[e -Y(')I, 
t t = l  

where from equation (2), 

(28) E[e-YI'I] = e x p  { - E[y(t)]  +.5.  V[y(t)J} . 

The particular values for EI.y(t)] and V[y(t)] were given in Sections 3 and 4 for 
different modeling approaches and different stochastic processes. 

The second moment about the origin of  aT may be shown to be equal to 

n t l  

(29) E[ (a~ - l )2 ]  = ~., ~ E[e-Y(')-Y('°]. 
t = l  s = l  

Similarly, the third moment about the origin of  a,,n is given by 

(30) E[(a,,~)3.] = E E E[e- ' ( ° -Y~S- , , ( r ) ] .  
t = l  s = l  r = l  

In order to evaluate the expected values to be summed in (29) and (30), one 
simply notes that the exponential random variables involved are log-normally 
distributed. For example, 

e - y~'~ -Y~")-Y~ - A (u, fl), (31) 

where 

(32) 

and 
(33) 

u = - E [ y ( t ) ] -  E [ y ( s ) ] -  E ly ( r ) ] ,  

fl = V[y(t)] + V[y(s ) ]  + V[y(r)] + 2  cov [ y ( t ) , y ( s ) ]  + 

+ 2 cov [ y ( t ) , y ( r ) ]  + 2  cov [ y ( s ) , y ( r ) ] .  

Therefore, from (2), we have: 

(34) E[e - Y(')- ~'(~)-Y~r).l = exp {p + .5 • fl}. 

6. ILLUSTRATIONS 

As a way to illustrate the different approaches and the different stochastic processes 
considered in this paper, we will evaluate their expected values, standard deviations 
and coefficients of skewness (see, for example, MOOD, GRAYBILL and BOES (1974, 
pp. 68, 76)) of  aT,  for certain values of  the parameters. 

Some expected values are found in Table 1. Results are presented for values of  
the parameters 6 set at .06 and .1 in each process. For the White Noise and Wiener 
processes, we let the parameter a take the values .01 and .02. For the Ornstein- 
Uhlenbeck process, the parameter oe is chosen to be .17 (this is the value obtained 
by BEEKMAN and FUELLING (1990, p. 186) from certain U.S. Treasury bill returns). 
We let the parameter p take the values .01 and .02 which correspond to cr equal 
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.01 • ( .34) .5 and  .02 • ( .34) ~ respec t ive ly .  Th i s  is cons i s t en t  wi th  s o m e  o f  the va lues  

used by BEEKMAN and FUELLING (1990,  T a b l e s  1 and  2). 

It shou ld  be po in ted  out  tha t  an e s t ima t ion  p rocedu re  for  f i nd ing  the va lues  o f  the  

d i f fe ren t  pa rame te r s  f rom a data  set o f  past  in teres t  rates wou ld  genera l ly  p roduce  

d i f f e ren t  va lues  o f  the  e s t ima tes  o f  the p a r a m e t e r s  o,  ot or p d e p e n d i n g  on  the 

m o d e l i n g  app roach  used and  on  the s tochas t i c  p rocess  chosen .  T h e  es t ima to r s  o f  the 

p a r a m e t e r  6,  however , ,  are l ikely to be rough ly  the s ame  in all cases  c o n s i d e r e d  

here.  U s i n g  the s ame  p a r a m e t e r s  unde r  bo th  a p p r o a c h e s  is be l i eved  to be  

appropr i a t e  to i l lustrate  cer ta in  d i f f e rences  b e t w e e n  these  two approaches .  

TABLE I 

EXPECTED VALUE OF a~" 1 

Modeling the force of interest accumulation function 

5 10 20 30 40 

Wiener : 

O-U: 6 
.06 
.06 
.10 
.lO 

• 06 .01 4.1920 7.2983 1 1 . 3 0 5 7  1 3 . 5 0 6 1  14.7143 
.06 .02 4.1938 7.3038 1 1 . 3 2 0 2  1 3 . 5 2 8 9  14.7435 
• 10 .01 3.7418 6.0118 8.2246 9.0390 9.3387 
.10 .02 3.7433 6.0161 8.2337 9.0511 9.3524 

P 
.17 .01 4.1915 7.2967 1 1 . 3 0 1 3  1 3 . 4 9 9 1  14.7052 
.17 .02 4.1919 7.2975 1 1 . 3 0 2 7  1 3 . 5 0 0 8  14.7071 
.17 .01 3.7413 6.0106 8.2218 9.0353 9.3346 
.17 .02 3.7417 6.0113 8.2228 9.0364 9.3357 

Modeling the force of interest 

I1 

5 10 20 30 40 

Wiener: 

O-U: 6 
.06 
.06 
.10 
.10 

.06 .0 I 

.06 .02 

.10 .01 

.10 .02 

P 
.17 .01 
.17 .02 
.17 .01 
.17 .02 

4.1943 7.3273 1 1 . 5 9 2 5  1 4 . 4 8 6 3  17.0285 
4.2030 7.4217 1 2 . 6 1 4 0  1 9 . 5 8 8 0  48.6888 
3.7437 6.0327 8.3788 9.4388 10.0567 
3.7510 6.1008 8.9232 1 1 . 3 9 4 8  18.0414 

4.1920 7.3007 1 1 . 3 2 2 1  1 3 . 5 4 1 0  14.7658 
4.1938 7.3135 1 1 . 3 8 6 2  1 3 . 6 7 0 2  14.9531 
3.7417 6.0135 8.2336 9.0548 9.3586 
3.7432 6.0229 8.2703 9.1151 9.4331 

O-U: Ornstein-Uhlenbeck 

F r o m  T a b l e  I, one  can  see that  the expec t ed  va lue  of  a ~  does  not  d e p e n d  very  

m u c h  on  the  m o d e l i n g  app roach  used nor  does  it d e p e n d  on  the  p a r a m e t e r s  of  the  

process ,  excep t  for  the  p a r a m e t e r  6, o f  course.  T h e  W i e n e r  process ,  for  n larger  than  

say 20,  w h e n  used to mode l  the force  o f  interest ,  is ano the r  excep t ion .  
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Table  2 presents some  standard devia t ions  o f  a,,q. It indicates that for a g iven  

stochastic process  and a g iven  mode l ing  approach,  the standard deviat ion is more or  
less proport ional  to the parameter  a (or P). It would  appear  that adjust ing the 

parameters  o f  a model  cannot  produce s imilar  standard deviat ions  to those o f  a 

different  model  for all n since the standard deviat ion exhibits  s ignif icant ly  different  
patterns depending  on the mode l ing  approach and/or  stochastic process selected. 

TABLE 2 

STANDARD DEVIATION OF O~ 

Modeling the force of interest accumulation function 

5 10 20 30 40 

Wiener: 

O-U: 

.06 .01 .0605 .1342 .2623 .3503 .4053 

.06 .02 .1211 .2687 .5258 .7028 .8137 

.10 .0l .0530 .1058 .1734 .2037 .2160 

.10 .02 .1061 .2118 .3476 .4085 .4332 

b ~ p 
.06 .17 .01 .0258 .0457 .0645 .0705 .0724 
.06 .17 .02 .0517 .0913 .[291 .1411 .1448 
.10 .17 .01 .0228 .0368 .0463 .0479 .0482 
.10 .17 .02 .0456 .0736 .0926 .0959 .0964 

Modeling the force of interest 

tl 

5 l0 20 30 40 

Wiener: 

O-U: 

.06 .01 .1251 .5171 1.9640 4.2762 8.6273 

.06 .02 .2515 1.0710 5 . 1 4 5 7  2 7 . 4 2 3 9  1111.8356 

.10 .01 .1073 .3880 1.1483 1.9504 2.9114 

.10 .02 .2157 .8019 2 . 8 9 6 8  1 0 . 1 2 6 6  240.2379 

6 a p 
.06 .17 .01 ,0576 .1968 .5294 .7975 .9767 
.06 .17 .02 ,1152 .3952 1.0736 1.6334 2.0169 
.10 .17 .01 ,0495 .1495 .3263 .4202 .4610 
.10 .17 .02 ,0991 .3001 .6604 .8563 .9433 

O-U: Ornstein-Uhlenbeck 

For example ,  we can compare  the standard deviat ions  o f  a,,-q produced by the 
Orns te in -Uhlenbeck  model  with parameters  d = .06, o~ = .17 and /9 = .02 for the 

force o f  interest accumula t ion  function,  with those produced by the Ornstein-  
Uh lenbeck  model  with parameters  6 = . 0 6 ,  o t = . 1 7  and p = . 0 1  for the force o f  
interest. Then the standard deviat ions  presented for n = 5 are roughly the same 
(.0517 compared  to .0576) while  for n = 40, the latter (.9767) is a lmost  7 t imes 
larger than the fo rmer  (.1448). Mul t ip ly ing  the value o f / 9  in the former  by 7 would  
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produce  s imilar  s tandard devia t ions  for n = 40 but then the s tandard  devia t ion  in the 

fo rmer  model  would  be about  7 t imes  larger than in the latter model  for  n = 5. 

Similar  compar i sons  can be made  be tween  di f ferent  p rocesses  under  the same 

approach or  d i f ferent  approaches .  

This  sugges ts  that it is not poss ib le  to select  d i f ferent  mode l s  that would  be 

equiva len t  in the sense  of  p roduc ing  s imilar  s tandard devia t ions  for all n. 

The coef f ic ien t  o f  skewnes s  of  a ~  for the same four mode l s  are con ta ined  in 

Table  3. 

TABLE 3 

COEFFICIENT OF SKEWNESS OF a~" I 

Modeling the force of interest accumulation function 

5 10 20 30 40 

Wiener : 

O-U: 

.06 .01 .0481 .0640 .0841 .0963 .1040 
• 06 .02 .0963 .1282 .1686 .1932 .2087 
.10 .01 .0530 .0616 .0772 .0844 .0876 
.10 .02 .0946 .1233 .1547 .1693 .1757 

6 e p 
.06 .17 .01 .0197 .0202 .0185 .0171 .0165 
.06 .17 .02 .0394 .0404 .0370 .0343 .0330 
.10 .17 .01 .0194 .0198 .0183 .0176 .0175 
.10 .17 .02 .0389 .0395 .0366 .0353 .0349 

Modeling the force of interest 

I1 

5 10 20 30 40 

Wiener: 

O-U: b 
.06 
.06 
.10 
.10 

o 
.06 .01 .1338 .3488 .9732 2.1347 6.5145 
.06 .02 .2690 .7266 2.8689 56.9320 1.3 x 105 
.10 .01 .1311 .3336 .8718 1.7175 4.0382 
.10 .02 .2636 .6940 2.5013 41.5591 1.2 x l0 s 

a 0 
.17 .01 .0585 .1205 .2157 .2773 .3166 
.17 .02 .1172 .2421 .4379 .5693 .6564 
.17 .01 .0573 .1154 .1961 .2383 .2580 
.17 .02 .1148 .2318 .3977 .4874 .5311 

o-u  : Ornstein-Uhlenbeck 

The  coef f ic ien t  o f  skewnes s  also exhibi t s  s ignif icant ly  d i f fe rent  pat terns  depend-  

ing on the model  cons idered .  This  suppor ts  the observa t ion  made  earl ier  that no two 

mode l s  can be seen as equivalent .  
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7. IMPLICIT BEHAVIOR OF THE FORCE OF INTEREST 

Clearly, modeling the force of interest accumulation function has quite different 
implications on the random present value function and other actuarial functions than 
modeling the force of interest. Basically, when modeling the force of interest, it is 
6~ that varies according to the chosen stochastic process. When modeling y(t),  then 
6s varies so that y (t) follows the chosen stochastic process. Those differences have 
already been illustrated by the standard deviation and coefficient of skewness of 
a,,-q. Another useful way of illustrating the differences between the two approaches 
is to look at the conditional expected value of y( t )  given y(s) and 6.,. for s < t. This 
conditional expectation will provide some insight into the implicit behavior of each 
process. 

7.1. Modeling the force of interest accumulation function 

The conditional expected value of y( t )  given y(s)  and 6., for s < t when y(t)  
follows an Ornstein-Uhlenbeck process may be obtained in the following way. 

Using (6), we have 

(35) E[y( t )  l y ( s )=X,  6 s = e l = E [ 6 . t + X ( t )  1 6 . s +  X ( s )= x ,  6.~=e] 

(36) = 6 .  t+ E[X(t)  l X(s )= x - 6 .  s, ds=~],  

since X(t) lX(s)  is independent of 6~ for s < t from the Markovian property of X(t),  
then 

(37) E[y( t ) ly(s)  = x, 6,.= e] = 6 • t + E[X(t)IX(s)  = x -  6 • s], 

which is [see, for example, BEEKMAN and FUELLING (1990, Section 2)] 

(38) E[y( t ) l y ( s )=x ,  6 . , = e ] = 6 . t + ( x - 6 . s ) . e  - '~'- '1, s < t .  

One can proceed in a similar way to find the corresponding result when the lbrce 
of interest accumulation function is modeled by a Wiener process. 

7.2. Modeling the force of interest 

The conditional expected value of y ( 0  given y(s)  and 6~ for s < t when b.~ follows 
an Omstein-Uhlenbeck process may be obtained in the following way. 

Using (I), we have 

If 1 (39) E[.y(t) l y ( s ) = x , b . , = e ] = E  brdrJ 6rdr=x ,b . , .=e  
0 0 

(40) = E d,. dr + dr dr J dr dr - x, 6.,. = e 
0 s 0 
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and conditioning on y(s)=x, (40) becomes 

[I I ] (41) E[y(t) ly(s)=x,d,=e]--x+E drdr I d,,du=x,d.~.=e 
.~, 0 

I [ I  ] (42) =x  + E cSrl d , , du=x ,  dr =e dr. 
s 0 

From the Markovian property of the process, ~r I 6, with r > s is independent of all 
values of d, for u < s, we then have 

I' 
(43) E[y(t) ly(s)=x,d~=e]-x + E[drld~-eldr. 

s 

Finally, adapting the result for the conditional expectation of an Ornstein- 
Uhlenbeck process found in ARNOLD (1974, p. 134), we may write (43) as 

I' (44) E[y(t)fy(s)=x, 6~=e]--x + 6+(e-6).e-~(r-')dr. 
s 

(45) = x + d ( t - s ) + ( e - d ) . t l -  e-~( ' -s)  / 

We can proceed similarly to find the corresponding conditional expectations 
when the force of interest is modeled by a White Noise or a Wiener process. 

Table 4 summarizes these results and those obtained earlier in this paper. 

TABLE 4 

SUMMARY OF RESULTS ABOUT y ( t )  

Process E l y ( t ) ]  V l y ( t ) l  E [ ) , ( t ) l ) , ( s )  =.r. O, = el 

Modeling the force of interest accumulation function 

Wiener ~ • t ~r 2.  t x + 6 ( t - s )  

O-U 6 . t p2 . ( I - e -  2"') b . t + ( x -  b . s ) . e - ' ' ( ' - ' ~  

Modeling the force of interest 

Wiener 6 .  t a 2. t313 x + e ( t - s )  

( 1  e - ' ~ l ' - ' ~ )  2 0 2 t  02 e _ 2,:,,) 
O-U . 6 . t  - -  + - - ( - 3 + 4 e - " ' -  x + 6 ( t - s ) + ( e - 6 )  - - - -  

a 2 a  
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We note from Table 4, as mentioned earlier, that the expected value o f y ( t )  is the 
same for all four models presented. Also, as noted earlier, the variances are quite 
different from one model to another. The salient feature of Table 4, however, is the 
fact that when modeling the force of  interest accumulation function, the conditional 
expectation of  y ( t )  given y ( s )  and di s does not depend on the values of  6.,. But 
when modeling the force of  interest, this conditional expectation does depend on the 
value of  65 . 

In order to illustrate the possible implications of  the conditional expected values 
of  y ( t )  presented in Table 4, we now consider the Consumer Price Index (CPI) for 
Canada for the 1960-1992 period (see Canadian Institute of  Actuaries (1993, 
Table IA)). Here, the CPI plays the role of  the force of interest. 

The results presented in Sections 2.2 and 6.4 of  PANDIT and Wu (1983) were 
used to estimate the parameters of  the different models. The estimator for 6 is 
.05335. The estimator of  the parameter ~ when modeling the force of i_nterest 
accumulation function is .01955, and when modeling the force of  interest, it is 
.05389. 

Using these values, the expected values of  y(t) ,  t > 10, given y ( 1 0 ) =  .2771 and 
6~0 =.0131 were computed. The results are presented in Figure 1 where t = 0 
corresponds to 1960. It is difficult to determine from this figure whether the fact 
that some models do not use the value of  6~o makes a significant difference. 

t ' ' ' ' I ' ' ' ' I ' ' r ' t ' ' ' ' I ' ' ' ' t 

3 -  

2 . 5  

2 

1 . 5  

1 

0 . 5  

0 
I . . . .  ! , J i J I I I i i [ i I i i I J i i i I 

0 i0 20 30 40 50 
FIGURE [. Conditional Expected Value oI" ~(t) given y(10) and 0 , , .  

{.v(s)}.l°= 0 with y(10) = .2771 61o= •0131 
b,: W-N 6=.05335  or y ( t ) :  Wiener ,5=.05335 

y( t ) :  O-U 0= .05335  ~ = .01955 
• . .  6,: Wiener 6 = •05335 

- • - 6,: O-U b = •05335 a = •05389 
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Figure 2 presents the expected values of 6,, t > 10, given y ( 1 0 ) =  .2771 and 
6]0 = .0131. This last figure clearly indicates a possible implication resulting from 
modeling the force of interest accumulation function instead of the force of interest. 
That is, an expected value of the force of interest, in the immediate future, which 
can be significantly different from its current value. 

0.06 

0 . 0 5  

0.04 

0.03 

0.02 

0.01 

la,l',°.o 
6, :  W-N 

y( t ) :  O-U 
b,: Wiener 
6, :  O-U 
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/ '  

0 i0 20 30 40 50 
FJt;Ux|~ 2. Condit ional  Expected Vulue of  ~), given .v110) and 0 m .  

with 3' (10) = .2771 b io = .013 I 
= .05335 or y (t) : Wiener b = .05335 

6 = .05335 ~ = .01955 
6 = .05335 

= .05335 ot = .05389 

8. REMARKS AND SUMMARY 

It should be noted that the numerical values presented in Tables 1 and 2 of this 
paper are not entirely comparable with those in BEEKMAN and FUELLING (1990, 
1991). BEEKMAN and FUELLING (1990, 1991) study the continuous annuity, ~ ,  and 
we chose to study the annuity-immediate, aT. The choice of a discrete annuity was 
made in order to avoid errors involved in doing numerical integrations that would 
have been needed for the continuous annuity for some of the models considered. 

In this paper, we have studied different models under two approaches to model 
the interest randomness. An annuity-immediate was used to present some illustra- 
tions. 

As measured by the agreement of the expected values, standard deviations and 
coefficients of skewness, no two models can be seen as equivalent, even if one 
would try to select particular values of the parameters. The one exception to this is 
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that a Whi te  Noise  process  for the force o f  interest is equiva len t  to a Wiener  process 
for the force of  interest accumula t ion  function. 

Further,  when mode l ing  the force o f  interest accumula t ion  function,  def ined as 
y ( t ) ,  the condi t ional  expec ted  value of  y ( t )  given  y ( s )  and 6s ,  s < t, does  not 

depend on the value o f  the force  o f  interest at t ime s. However ,  when mode l ing  the 

force of  interest, the expec ted  value o f  y ( t )  given  y ( s )  and 6~, s < t, does depend 

on the value o f  the force o f  interest at t ime s. 
Finally,  another  advantage  to using one o f  the models  presented for the force o f  

interest is that they are special  cases  o f  one-fac tor  interest  rate term structure 

models .  This  means  that the work  that has already been done in f inance could be 
used by actuaries interested in arbi t rage-free  pricing. 
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