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A B S T R A C T  

GOOVAERTS and KAAS (1991) present a recursive scheme, involving Panjer's 
recursion, to compute the compound generalized Poisson distribution (CGPD). In 
the present paper, we study the CGPD in detail. First, we express the generating 
functions in terms of Lambert 's W function. An integral equation is derived for the 
pdf of CGPD, when the claim severities are absolutely continuous, from the basic 
principles. Also we derive the asymptotic formula for CGPD when.the distribution 
of claim severity satisfies certain conditions. Then we present a recursive formula 
somewhat different and easier to implement than the recursive scheme of GOOV- 
AERTS and KAAS (1991), when the distribution of claim severity follows an 
arithmetic distribution, which can be used to evaluate the CGPD. We illustrate the 
usage of this formula with a numerical example. 
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] .  INTRODUCTION 

Modelling the claim frequency data is one of the most important areas in risk 
theory. Traditionally, the Poissot~ distribution, when the mean number of claims is 
equal to its variance, and the negative binomial distribution, when the variance of 
the number of claims exceeds its mean, have been used because of their convenient 
mathematical properties. Several authors including GOSStAUX and LEMAIRE (1981), 
SEAL (1982) and WmLMOT (1987) have considered alternatives to Poisson and 
negative binomial distributions for this purpose. CONSUL (1990) has compared the 
Generalized Poisson distribution (GPD) suggested by CONSUL and JAIN (1973) with 
several well known distributions and concluded that GPD is a plausible model for 
claim frequency data. GOOVAZRTS and KAAS (1991) presented a recursive scheme 
to compute the total claim distribution under the assumptions that the claims are 
independently and identically distributed integer random variables with the GPD 
claim frequency. 

In this paper, we discuss the compound generalized Poisson distribution (CGPD) 
in detail and derive a somewhat easy to programmable recursive relation than one 
given by GOOVAERTS and KAAS (1991). In Section 2, we present a brief summary 
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of the properties of the generalized Poisson distribution. In Section 3, we express 
the generating functions of CGPD in terms of Lambert's W function and illustrate 
the derivation of moments. In Section 4, we present an integral equation similar to 
Volterra's integral equation of second kind for the density function of CGPD when 
the distribution of claim severity is absolutely continuous. In addition, we discuss 
the tail behaviour of CGPD when the claim severity is non arithmetic. In Section 5, 
we present a recursive formula for the probability function of CGPD when the 
distribution of claim severity is arithmetic. We illustrate the usage of this formula 
through an example. 

2. GENERALIZED POISSON DISTRIBUTION (GPD) 

CONSUL and JAIN (1973) proposed a new generalization of the discrete Poisson 
distribution which was modified by CONSUL and SHOUKRI (1985) tO: A discrete 
random variable N is said to have a generalized Poisson distribution (GPD) if its 
probability mass function is given by 

(2.1) Pr(N=n)=p,O,O)= 120"+n0) ' -~exp ( -2 -n 0 )n !  for n=0,1,2. . .  

L0 for n > m  when 0 < 0  

and zero otherwise, where 2 > 0, max ( -  1, -Mm) --< 0 < 1 and m(--> 4) is the 
largest positive integer for which 3. + Om > 0 when 0 is negative. This generaliza- 
tion of the Poisson probability model in the sense that is probability generating 
function (pgf) is given by the Lagrange expansion of any pgf under a suitable 
transformation (CoNsuL and SnENTON (1972)). The GPD reduces to the Poisson 
distribution when 0 = 0 and it possesses the twin properties of over-dispersion and 
under-dispersion according as 0 > 0 or 0 < 0. The GPD gets truncated for negative 
values of 0 but the truncation error is always less than 0.07%. A recent book by 
CONSUL (1989) discusses various properties, inference and numerous applications of 
this model in biology, ecology, and other disciplines. For simplicity, from here on 
we assume the parameter 0 > O. AMBAGASPITIYA and BALAKRISHNAN (1993) has 
recently expressed the moment generating function MN(t) and the probability 
generating function of the GPD in terms of Lambert's W function when 0 > 0 as 
follows : 

(2.2) 
f 

Mu(t) = exp I -  

(2.3) PN(z) = exp { - 

where W is the Lambert's W 

2 [ W ( - 0 e x p ( - 0 + t ) ) + 0 ] l  
0 J 

[ W ( -  Ozexp ( - 0 ) ) +  0] l  
0 J 

function defined as 

W(x) exp (W(x)) = x. 

For more details about Lambert's W function see CORLESS et al. (1994). 
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2.1. Central moments of GPD 

We can obtain the central moments of  GPD by differentiating (2.2) with respect to t 
as illustrated by AMBAGASPITIYA and BALAKRISHNAN (1993), or from the basic 
principles as described by CONSUL (1989), or by using the method suggested by 
GOOVAERTS and KAAS (1991). The resulting expressions for first four central 
moments are as fol lows:  

(2.4) 

where M = (1 - 0 ) - i  

U I =`1M 

kt2 = `1M 3 

,u3 =`1 (3 M -  2 )M 4 

/u4= 3`12M6 + ̀ 1(15M2-20M +6)M 5 

2.2. Maximum likelihood estimators of 2 and 0 

Let a random sample of  n items be taken from the GPD model and let x~, x 2 . . . . .  x,, 
be their corresponding values. If the sample values are classified into 
class frequencies and ni denotes the frequency of  the ith class 
(ni = # { x j : l  --<j--< n, xj = i}), the ML estimate 0 as described in CONSUL and 
SHOUKRI (1984) is given by the unique root of  0 given by the equation 

k i ( i -  1) 
(2.5) ~ n, , ~  = o 

i=0 ~ + ( i - ~ ) O  

where k ( -< 2) is the number of classes, n = ~..,~= i ni and 2 is the sample mean. Note 
that (2.5) does not give a value for 0 when k = 0 or 1. The ML estimate J. is then 
given by 

(2.6) ~. = .~(I - 0) 

2.3. Tail behaviour of GPD 

Lemma 2.1 : For fixed `1, 0 and n ---~ 

`1 [~ , t )  - 3~2 
(2.7) Pr(N=n)= o - - ~ e x  p ,-`1 + -~)n . ( O e x p ( l - O ) ) "  

Proof: 

For large n, using the Stirling approximation to n! we can write the pmf  in (2.1) as 

`1 (`1 + nO)n - I exp ( - `1 - nO) 
(2.8) Pr (N = n) = / 0) 2 ~ n  n+l/2 e x p  - n  + 
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where 0~ = 0~ (n) satisfies 0 < 0~ < 1. After some rearrangement, we have 

{ 2 I + 2 I n - '  (exp 0 /}n 3/2(0exp(i 0)).; (2.9) Pr(N=n)= ~ I ~ j  - 2 -  12in - - 

Note that the term inside the { } tends to the required constant as n--~ w and 
hence the proof. 

3. COMPOUND GENERALIZED POISSON DISTRIBUTION (CGPD) 

Let N denote the number of claims produced by a portfolio of policies in a given 
time period. Let X i denote the amount of the ith claim. Then 

(3.1) S = X t + X 2 +  .. .  +XN 

represents the aggregate claims generated by the portfolio for the period under 
study. In order to make the model tractable, two fundamental assumptions are made 
in risk theory and they are 

1. X~, X2 . . . .  are identically distributed random variables with the distribution 
function F(x). 

2. The random variables N, X~, X z . . . .  are mutually independent. 

When a GPD is chosen for N, the distribution of S is called a compund 
generalized Poisson distribution. In terms of the convolution operation, we can 
write the distribution function of S as: 

Fs (x) = ~ F*"  (x) 2 (2 + nO)"- i exp ( - 2 - tl0) 
n=0 t//! 

The moment generating function of S is given by 

(3.2) M s (t) = M N (log M x (t)), 

where MN( t )  is the moment generating function (mgf) of the GPD and M x ( t )  is the 
mgf of the claim amount distribution. By using the expression given in (2.2), we 
can write the mgf of S as 

(3.3) M s ( t ) = e x p  - - - [ W ( - 0 e x p ( - 0 )  Mx(t) )+0]  . 
0 

Similarly, the probability generating function (pgf) of S, when the distribution of 
claim severity is arithmetic, can be written as 

(3.4) P s ( z )  =exp - - - [ W ( - 0 e x p ( - 0 )  Px(z))+0]  , 
0 

where P x ( z )  is the pgf of claim amount distribution. 



ON THE COMPOUND GENERALIZED POISSON DISTRIBUTIONS 259 

3.1. Central moments  of  S 

The moments of S can be obtained by directly differentiating the mgf of S given in 
(3.3). For this differentiation, one may use the following identity, involving 
Lamberts W functions : 

d W  (x ) W (x ) 

dx x ( l  + W(x) )  " 

After some lengthy algebra, we obtain the following expressions for the first 
three central moment of S: 

E (S) = 2p~ M 
Var (S) =2p2M3+2(p2-p])M 
E((S - E(S)) 3) = 2 ( 3 M -  2) p~M 4 + 32p, (P2 -P]) M3 + (P3 - 3pzpt + 2p])2M 

where M = (1 - 0) -  1 and Pi, i = 1,2, 3 are the ith non-central moments of claim 
severity. 

4. PROPERTIES OF CGPD- ABSOLUTELY CONTINUOUS SEVERITIES 

Theorem 4,1: If the claim sizes are absolutely continuous with pdf f(x) for 
x > 0, then the pdf g(2, 0; x) of CGPD satisfy the integral equation 

(4.1) g(2,0;x)=pl(2,0)f(x) + - -  0 + 2  g(A+O,O;x-y)f(y)dy 
2 + 0  o 

where Pt (2, 0 )=  Pr(N= I) in the GPD with parameters 2 and 0. 

Proof:  

Consider 

(4.2) g(2, O;x) = y_~ pi(2, O)f*i(x) 
i=1 

(4.3) =Pl(2, O)f(x) + ~ pi(2,0)f*i(x) 
i=2  

By using the following identity of GPD, 

2 Opi_t(2+O,O) +-pi_l(2+O,O) (4.4) 
(2, 0) = 2 + 0 t Pi 

we have 
oo 

__2 (0 ~ Pi_l(2+O,O)f*i(X)+ (4.5) ~ pi(2,0)f*i(X)=2+ 0 
i=2  i=2  

i = 1 , 2  . . . .  

+ A 2 Pi-I(A+O'O) f 
i=2  l 
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Using the identities 

(4.6) f * i ( x )  = I x 

0 
f , o -  I) (x -  y ) f ( y )  dy 

and 

(4.7) 

we have 

(4.8) 

f * '  (x) _ ~ f , ( i _ , ) ( x _ y ) f ( y ) d y  
i o x 

2 P,(2'O)f *i(x)= 2 0 p,_l(2+O,O) f*(i-I)(x-y)f(y)dy 
i=2 2 + 0  i=_ 0 

ix ) + ~. ~ pi_l(l+O,O) -Yf*( i -] ) (x-y) f (y)dy  
t=2 0 X 

By interchanging the order of summation and the integration and realizing the 
fact 

(4.9) 

(4. I 0) 

we have 

(4.11) 

Substitution 
theorem. 

2 Pi-"(J'+O,O)f*(i-"(x-Y) = 2 
i = 2  i=I  

pi(2 + O, O) f *i (x - y) 

=9(Z +O,O;x- y) 

p , O . , O ) f * i ( x ) = - -  0 + 2  g(X+O,x -y ) f ( y )dy  
i=2 2 + 0  0 

of (4.11) in (4.3) yields the required result and hence the 

One has to solve the integral equation (4.1) numerically. Although, there are 
many algorithms and implementations available to solve Volterra integral equations 
of  the second kind, one has to modify them to solve (4.1). We are currently 
investigating the problem of finding the best algorithm and we hope to report this 
finding in a future article. 

4.1. Tail behaviour  of  C G P D  

T h e o r e m  4.2 : 

(4.12) 

If there exists a number n > 0 satisfying 

exp (0) 
- -  - L x ( -  K )  

e0 
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for X non-arithmetic and if - .L,~ ( - K) < oo, then 

(4.13) I - -  F s ( X  ) ~ Cx  -312 exp ( - nx), 

where C is given by 

* / exp.°-'' ] 
C - - - e x p  - 4  + n 4 ' , ( - g )  

0 5  0 

P r o o f :  

The Proof of this theorem directly follows from the Lemma 2.1 and from the 
theorem of EMBRECHTS, MAEIIMA, and TEUGELS (1982). 

5. PROPERTIES OF CGPD: ARITHMETIC SEVERITIES 

T h e o r e m  5.1: If the claim sizes are random variables on the positive integers 
with probability mass function f(x) = Pr (X = x), x = 0, 1, 2 . . . . .  then the probabil- 
ity mass function g(4, 0; x) of CGPD satisfies the recurrence equation 

(5.1) g(2, O;x)= ~ 0 + 2  g(2+O,O;x-y)f(y). 
2 + 0  y=~ 

P r o o f :  

This theorem can be proved following the same line of reasoning as Theorem 4.1 or 
the standard proof of Panjer's recursion (see Theorem 6.6. I and Corollary 6.6.1 in 
PANJER and WILLMOT (1992)). 

A result analogue to Theorem 4.2 can be established for discrete severity case 
using Lemma 2.1 and the theorem given in WILMOT (1989). 

5 .1 .  R e c u r s i v e  e v a l u a t i o n  

The recursive formula given in (5.1) is easily programmable and also simple to use 
for manual calculations. For the latter, one may use the following schematic 
approach : 

g(4, o, o) 
g(4, 0, I) 

g (2, 0, 2) 

g(L 0, 3) 
g (4, 0, 4) 

g (2 + 0, 0, 0) 

g(2+O,O, I) 
g (2 + 0, 0, 2) 

g(4 + 0, 0, 3) 

g(2+20,0,0) 
g(;t  + 20, 0, 1) 

g(2+20,0,2) 

g(4+30,0,0) g(4+40,0,0) 
g(2+30,0, l) 



262 R.S. AMBAGASPITIYA AND N, BALAKRISHNAN 

The first row of  the above scheme is obtained by using the fact that g(2 + iO, O) = 
p0(2 + iO, 0) = exp ( - 2 - i O )  for i = 0, 1 . . . .  To calculate the probability mass 
function given in the (i , j) th location, one has to use the elements in (I,j+ 1) where 
l = 0, 1 . . . . .  i - 1. Since the scheme is of an upper diagonal form, we can carry out 
the computations for each row starting from right to left. For example, if one wishes 
to compute 9 ( 2 , 0 , 4 )  one may start from 9 ( 2 + 4 0 , 0 , 0 )  and move along the 
diagonal from fight to left, i.e. calculate g (2  + (4 - i) O, O, i), i = O, 1, 2, 3, 4 in that 
order. 

E x a m p l e  : 

Suppose  that S has a CGPD with 2 = 0.8,  0 = 0.5 and the distribution of  individual 
c la im amounts  is as fol lows" 

x Pr(X = x) 

I 0.25 
2 0.45 
3 0.30 

Then, by using the recursive method described above, the pmf of  S has been 
tabulated for s = 0(1)59 and these values are presented in Table 1. 

TABLE 1 

THE PROBABILITY MASS FUNCTION OF S 

s Pr (S = s) s Pr (S = s) s Pr (S = s) 

0 .44933 20 .00269 40 .00017 
I ,05451 21 ,00231 41 .00015 
2 .10555 22 .00198 42 .00013 
3 .09329 23 .00171 43 .00012 
4 .04809 24 .00148 44 .00010 
5 .04813 25 .00128 45 .00009 
6 .03595 26 .00111 46 .00008 
7 ,02737 27 ,00096 47 .00007 
8 .02320 28 .00083 48 .00006 
9 .01835 29 .00073 49 .00006 

10 .01505 30 .00063 50 .00005 
11 .01248 31 .00055 51 .00004 
12 .01029 32 .00048 52 .00004 
13 .00860 33 .00042 53 .00003 
14 .00720 34 .00037 54 .00003 
15 .00605 35 .00032 55 .00003 
16 .00512 36 .00028 56 .00002 
17 .00434 37 .00025 57 .00002 
18 .00369 38 .00022 58 .00002 
19 .00315 39 .00019 59 .00002 
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