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A B S T R A C T  

In this paper we compare rum functions for two risk processes with respect to sto- 
chastic ordering, stop-loss ordering and ordering of  adjustment coefficients. The 
risk processes are as follows, m the Markov-modulated envtronment and the asso- 
ciated averaged compound Po~s~on model. In the latter case the arrival rate ts obtm- 
ned by averagmg over ttme the arnval rate m the Markov modulated model and 
the dtstnbutton of  the claim size is obtained by averaging the ones over consecu- 
tive claim s i z e s  
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1. INTRODUCTION 

This paper is concerned with ordering of  risks, more prectsely with comparing the 
ruin functtons 

(1.1) ~(u)=P(InfR(t)<O]R(O)=u), Ilt*(u)=~(,nfR*(t)<O R*(0)=u)  
\ t > 0  kt_>0 

of two related risk processes { R(t) }, { R'~(t) } This topic is of  obvious actuarial rote- 
rest and has been studied, for example, ,n Goovaerts et al. (1990), van Heerwar- 
den (1991), KIuppelberg (1993) and Asmussen (1994) 

Much of  the hterature concentrates on assessmg whether a given clatm stze d~s- 
tnbutzon B ~s more dangerous than another one B* m the sense that 

(1.2) ~*(u) < ~(u), for every u >- 0 

when B, B" are the claim size distr,butlons of  two standard compound Potsson risk 
processes {R(t)}, {R'(t)} with the same arrival intensity 13= 13" and the same pre- 
mmm rate p = p*, the ordering (1 2) ts referred to as stochasttc ordering and we 
write ~* < o  ~ ( m o r e  generally, the ordermg relattons studted m thts paper are deft- 
ned for functions m ~ ,  the class of  monotone functions defined on [0, oo), decreas- 
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ing to zero at mflmty and assum,ng values between zero and one). In the com- 
pound Polsson setting, ~t is easy to show that ,f B ~s s tochast ical ly  larger than B ~ 
(that is, if B * <  o/~ where B(x) = 1 - B(x) is the tad),  then (1 2) holds. This fol- 
lows immedia te ly  from the fact that in thts case one can assume that the trajecto- 
ries of  the risk processes {R(t)}, {R*(t)} satisfy the inequahty R'( t )  _> R(t) for every 
t >_ 0. A somewhat  more substantlal  result which can be found in Daley and Rolskl  
(1984), see also Makowskl  (1994), states that ( I .2)  remains true if B * < o  B is 
weakened to B° < j B  where, for any two functions ~ / ) ,  ~t2; e ~ ,  the stop-loss 
ordering ~ / )  <~l ~2 )  Is defined by 

(1.3) ST~°)(u)du_<S;V(2)(u)du,  forevery,~ _>0 

This paper concentrates  on the study of  the role of  dewat~ons from the Po~sson 
arrival pattern Rather than looking at renewal processes which are mathemauca l -  
ly race but hard to motivate practically,  our f ramework is that of  Markov-modu-  
lated Polsson arrivals,  see Janssen (1980), Reinhard (1984), Janssen and Remhard 
(1985), Asmussen  (1989), Asmussen  and Rolskl (1991, 1994), Gr lgehoms  (1993) 
and Asmussen  et al. (1994) for some relevant references.  Roughly,  the model  sta- 
tes that there is an underlying Markov process  {J(t)} with p < oo states, such that 
arr ivals  occur  as m a Polsson process with r a t e /3  when J(t) = t, and that the cor- 
responding claims have distr ibut ions B with means u (the premium rate may also 
depend on t but by an operat ional  t ,me argument  we may and shall assume that ~t 
~s 1 m all environmental  states) The corresponding risk process ts denoted by 
{R(t)} m the fol lowing The mouvat ,on  for this type of  modehng ~s m part descr lp-  
Uve because  of  the flex~bdity, a l lowing m part icular  to model  arrival streams which 
are more bursty than any renewal process,  but in part also that at least m some 
cases, one can interpret the model  m a natural way. E g Asmussen (1989, 1994) 
discusses car  insurance where the states of  {J(t)} descr ibe weather  condit ions.  The 
model  of  Janssen and Relnhard (1985) is mathemat ica l ly  sl ightly different  but has 
a s lm,lar  f lavour from the modehng point of  view, 

If the fl, and B, do not fluctuate too much around some average values fl*, B °, 
one can see the model  as a perturbat ion of  a classical  compound Po~sson risk pro- 
cess {R*(t)} with arrival  rate fl* and cla ,m size distr ibution B*. The r igorous defini-  
tion of  i f ,  B* (which also makes sense and is interesting if the Markov-modula -  
tion is more clear-cut)  is as fol lows:  We assume that {J(t)} is i r reducible and 
t ime-homogeneous  with intensity matrix A = (A~) and stat ionary m~ual dtstr ibu- 
Uon n" = (n~ . . . . .  ~p), l.e g A  = 0 Then, 

P 
fl*(X) = h m  U(t_~ = Z n ~ , f l ,  ' 

t.-->~ t ~=1 

B * ( x ) =  h m  I ( U  k _ < x ) =  lr, fl~B~(x), x_>0 
n--~ y/ k=l 

where I (D)  denotes the indicator  of  the set D, N(t) is the number of  arrivals befo- 
re t for {R(t)} and U r U z, . the corresponding claim sizes so that 

N(t) N(t) 
(1.4) R ( t ) = u + t -  ~ U ~ ,  S( t )=  Y~U k - t ,  

k=l /,=1 
where S(t) = R(O) - R(t) = u - R(t) ~s the clatm surplus at t t m e t  S~mdarly, 
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N°( t )  * N*(t)  * 

(1 5) e * ( t ) = u + t -  ~ Uk, S ( t ) :  ~ U~- t ,  
k=l k=l 

where {N*(t)} ts Polsson with rate fl* and U I , U 2 , . .  are i.i.d, with distribution B* 
The fact that the averages fl* and B°(s) are well-defined and a.s. constant follows 
from the ergodlcity of  the environmental process {J(t)} which is reflected in 
corresponding ergodlclty properties of  the Cox process {N(t)} and the sequence 
{U~} of  clama sizes, see e.g. Chapter 8 of  Konig and Schlmdt (1992). More- 
over, the risk processes {R(t)} and {R*(t)} have the same safety loading 
1// r/* P = = (~,=l ~,/3,/-t,) - I - I ,  which is assumed to be posmve.  

The initial purpose of  the present research was to show that it IS always the case 
that ~* <,o ~ where the rum functions ~,  ~" correspond to the Markov-modula-  
ted risk process {R(t)} and its averaged compound Poisson counterpart {R*(t)}, 
respectwely. The conjecture that such a result could be true came m part from 
numerical studies, in part from the folklore principle that any added stochasttc 
variatmn increases the risk, and finally in part from queuemg theory, where it has 
been observed repeatedly that Markov modulation increases several queuelng char- 
actensUcs, see e.g. Ross (1978), Rolskl (1981, 1989), Chang et al. (1991), Chang 
and Nelson (1993). In fact, in the present paper we give a pamal solutmn to our 
original conjecture showing that ~* <so ~ holds under an additional monotonlmty 
condmon on the Markov-modulated enwronment,  but also counterexamples 
showing that at least some conditions are needed. 

W~thout loss of  generality we can enumerate the p states of  the environment 
such that 
(I .6) fl, _</3 2 < . .  <_/3p. 

The monotonlmty conditions which play an ~mportant role m our paper are the fol- 
lowing: Assume that, for the numbering of  environmental states gwen by (I 6), 
we have 

(1.7) B ~ <,o B 2 <,,o . .<,oBp, 

and stochastic monotonlclty of  the underlying Markov process (cf. Stoyan (1983)) 
whmh with finitely many states can be stated as 

(1 8) ~ Aj,, _< ~ Ax,, for all j, k, I with j _< k, and 1 _< j or I > k 
n~l n_>l 

To avoid trlvlalmes, we also assume that there exist i ~:j such that either 13 < flj 
or B ¢: B .  Occasmnally we strengthen (1.7) to 

(1 9) B=- B,, 

i e B does not depend on i Note that the monotonlmty condition (1 8) is auto- 
matically fulfilled m some simple examples hke bmh-death  processes or p = 2. 

The mare result of  the paper is the following 

T h e o r e m  1.1 Assume that condlttons (1 6), (I .7)  and (1.8) hold Then Vt ~ '<so I//. 

The proof of  Theorem 1.1 ~s given m Section 2; the key tools are a recent result 
of  Asmussen and Schmldt (1995) on ladder height distributions and a well-known 
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assoclat)on inequality. In that sect)on we also g)ve a counterexample showing that 
I/t*< o ~  may fall if (1.7) Is violated. In Section 3 we discuss the role of  (1.8) 
Computational results indicate that (1 8) might be not necessary for ug' < , o ~  
From a result of  Rolsk) (1981) it follows that the weaker ordering ~* <~l ~ always 
holds when claim sizes are ).i.d.; we g)ve a self-contained proof in Sect)on 4 

The rest of  the paper then deals with the adJustment coeff)clents We say that a 
function ~ ~ qft admits an exponential tad with adjustment coefficient y if, for 
/~ ~ oo, we have ~(u)  ~ Cexp(-TU) for some C > 0 In the subset of  functions 
~¢~), ~(2) ~ ~ adm)ttmg an exponential tall we define ~:t) <~t ~(2) iff ~l)  > ~2); 
this ordering criterion )s used in a more or less exphclt  way in much of  the actu- 
arial hterature (see e g. Kluppelberg (1993)). Section 5 studies the problem of 
~* <~t ~ We show that th)s ordering holds at least in the cases when p = 2 or 
when (I 6), (1.7) and (1 8) are fulfilled. Section 6 then g)ves some perturbat)on 
analysis for the adjustment coeff)c)ent. For example, we compute the first error 
term in the approximation y ~ y* which is valid when the degree of  Markov-modu-  
lahon is small. 

2 .  STOCHASTIC ORDERING 

Consider the irreducible Markov process {J(t) } described in the preceding section 
Let {J(t)} be the Markov process with the same intensity matrix A as {J(t)}, but 
starting in state t, l.e J(O) = t, and {N(t)} be the counting process with intens)ty 

[ v N , ( t )  U __ process {,Bj(1)} As before, define {S,(t)}t->o =[~k=l  ,,~ t} as the associated 
t~O 

surplus process with arrival process {N(t)} and clalm slzes U, k, respectively, and 

w)th the ruln funct)on ~,(u) = P (supt ~ S(t) > u) 

L e m m a  2.1 Assume that condmons (1.6), (I 7) and (1 8) are fulfilled. Then, for 
t < j, tt holds that ~t "<to I/~ 

Proof Let t < j .  Because of  (1.8), using Theorem 4 2.8 and Proposition I 10 4 of  
Stoyan (1983), we can assume that J ( t )  < J ( t )  for all t > 0, which implies that the 
mtensmes of  N and N are pathwise ordered Therefore, we can assume that any J 
jump epoch, say the kth occurring at t)me t, for N is also a jump epoch for N ,  

,k' I J 
say the lth, where we use the notation / = / Since J (t) < J (t) it follows from 

k i k - j k ' 

(I .7) that the claim sizes can be chosen in such a way that Utk <_ Uj i  k with proba- 
blhty one and hence 

s~(t)_> Z uj.t,-t>- Zu,.~-t=s,(t). 
L t t ,  <t I~ t x <_t 

From this the ordering ~, <,o ~: easily follows. 

Let L be the first ladder epoch of  the surplus process {S(t)}, ).e. ~+ = inf{t > 0 
S(t) > 0} Furthermore, we consider the ladder height Z+=llml$~+ S t prov)ded that 
"r+ < oo Speclahzmg Corollary 1 of  Asmussen and Schm)dt (1995), we have the 
following result. 
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L e m m a  2.2 For the Markov-modulated surplua process {S(t)}, 
(a) P (r+ < o~) = p = Zr t  fi,12,; 
(b) the condmonal  d t s tnbunon  oJ J(T+) given l:+< oo ts obtained by the probabili- 
t i e s  

zr, fl, 
where . , , ,h  - Z 

typical j ump  epoch o f  [N(/)}); 

z _ ( p )  , 
ns pj 

ts the (Pahn) mtttal distribution o f  (J(t)} (at a 

(c) the conditional distribution o f  the ladder height Z+ given z+< 0% J('r+) = t has 
the density B (x)ll d, ; 
(d) the condmonal  dtstrlbut:on G o f  the ladder height Z+ given z'+< 0% has the den- 
slty B*(x)lp 
Note m particular that the rum probability IP (r+< oo) and the ladder height distri- 
bution are the same for the Markov-modulated model and the averaged compound 
Potsson one 

In the proof of Theorem 1.1 we wdl use, besides Lemma 2.1 and Lemma 2 2, 
the following standard result going back to Chebyshev and appearing, for instan- 
ce, m Mitrmovl6 et al. (1993), see also Esary et al. (1967) 

. . . . . . . . .  ~,=1 ~t = I then L e m m a  2.3 I f  a I < < at,, b I < < bp and zr > 0 (t 1 . . . . .  p), P 

P P P 

Z ~,~,,b, >_ Z Jr,~,, Z lSb ~, 
t=l t=l j=l  

where the equahty holds i f  and only t f  a I = = ap or b I = = bp. 

Proof  of  Theorem I 1 Condmonmg upon the first ladder epoch, from Lemma 2 2 
we obtain 

I t  

(2 I) ~*(u) = pG(u)+ 13"~gt*(u-.t)B*(x)dx 
0 

p u  

: o 

- -  I t  p - -  

(2 2) = pG(u)+ !,~,~,~,B, (.O~,(u - x)rb,: 

__  u p _ p 

¢1 

= pG(u)+ ]f~gt(u - x)B* (x)c&, 

where the mequahty in (2 2) follows by considering the increasing functions 
f iB(a )  and ~ , (u -x )  of i and using Lemlna 2 3 Comparing (2.2) and (2.1), it fol- 
lows by a standard argument from renewal theory that ~ dominates the solution 
~* of the renewal equauon (2. I ). []  



54 BY SOREN ASMUSSEN, ANDREAS FREY, TOMASZ ROLSKI AND VOLKER SCHMIDT 

The following result shows that V* <~o V may fail if ( 1 . 7 )  is violated 

Proposition 2.1 Assume that tiff.z < 1 for all i, that 
P P P 

(2 3) X,~r,/3~, < X, Jr, P, Z~,P,~,, 
t=l t=l i=l 

and that A has the form eA  o for some fixed intensity matrix A o. 
fads for all suffictently small E> O. 

Then V* <so I/t 

Proof From the defmlng equations (11)  it follows that the ruin functions V(u) 
and V*(u) are right continuous at u = 0 Since the tad functions B'  and /~ also 
possess this property, from (2.1) and (22 )  we get that the right derwauves  

d+N~ (0) and d + ~  (0) exist and are given by 
du du 

P P [3" ,  ( 2 . 4 )  d+J_~_(O)=_p/p*+fl-vf(O)=Zzr, fl, Zjr, fl, p,_ 
du ,=1 ,=1 

d+v(0) = ~ , /3 ,~ , (0 ) -  
du ~=I 

dd~u d+ v* Since v(O) = v*(O), it is sufficient to show that (0) < - - - ~ - - ( 0 )  for e small 

enough From a well-known continuity property of  stationary single-server queu- 
es (see e.g. Theorem 3.2 l of  Franken et al (1982)) It follows that I/t (u) conver-  
ges to the corresponding rum probabili ty for the compound Polsson model with 
parameters  fl,, B as e $ 0. For u = 0, this hmi tmg rum probabdl ty  is fl~fl, Conse- 
quently, by (2.3) and (2.4) we get that 

+ * d+~lr ~ P P P 

e.l.o du ) ,=1 ,=l ,=1 e~.)gt'(0) > 0 

This finishes the proof. []  

To see that the condmon of Proposmon 2. I is not vacuous, we briefly mention 
an example  for which (2 3) ts fulfilled. Let 

p = 2, ~ =  (1/2, 1/2), fll = 10-3' f12 = 1, ~l = 102 '  ,//2 = 10-4' 

Then the left s~de of  (2 3) ~s of  order 10 -4, whereas the right s~de of (2.3) is of  
order IO-I 

We finally remark that, besides Theorem 1. I, a further related result holds Con- 
sider the sequence of consecutwe ladder epochs ~ ) ,  r+ ~z), of  the surplus process 
{S(t)} Note that r+ ~l) = r+ 
Propos i t ion  2.2 Assume that condmons ( 1.6), (1.7) and (1.8) hold. Then, for every 
k =  1,2,  , 

(2.s  p, < o o ,  
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Proof  Proceeding analogously as in the proof of  Lemma 2 I we get that, for each 
i = 1  . . . .  p, 

and, equivalently, 

(2.6) IP(J(O) _> t) _<IP(J(O)_> t 1:(+ ') <o~, ....  r(+ ') <oo). 

On the other hand, from Lemma 2.2 we obtain 

= p( i ') < J(O) = , )  

Observe that 13i ,ttl -< 132~2 -< " -< 13p/.tp Thus, from (2.6) and from Theorem 1 2 2 
of  Stoyan (1983), we have 

P P ( t -(~-') <~) 
p= Z13,u,P(J(o)=,)_< ~fl, u,~ J(O)= r~'~<-, ..,,+ 

t=] /=1 

Consequently, 

and (2 5) follows by reduction [ ]  

Note that, by using a corresponding result of  queuelng theory, still another type 
of  conditions can be given for the validity of  (I 2) These conditions are formula- 
ted m terms of  aging properties of  the lnteramval time distribution. Such aging 
properties were introduced in reliability theory, see e.g. Barlow and Proschan 
(1975) If interarrlval times are 1 I d . ,  if their distribution function F with mean 

(iT) -I has the property NWUE (that is J ' / f f ( x )dx>  (13')-I if(t) for all t >_ 0) and 

if claim sizes are also l i d and independent of  arrivals, then V* <~o ~ holds with 
V* defined by the Poisson compound model with arrival rate 13" and the same claim 
s~zes, see e g. Remark 4 6 13 in Franken et al. (1982) In this way, the validity of  
the ordering V" <,o V can be verified for a further model with special doubly sto- 
chastic Polsson arrival process and l.l.d, claim sizes This ms when the stochastic 
arrival-intensity process is assuming only two values, zero and one positive. It is 
well-known that, m this model, lnterarrlval times are i i.d. provided that the con- 
secutive sojourn times of  the environment process in its two states form an alter- 
natlng renewal process and that the sojourn times in the state with positive arrival 
intensity are exponentially distributed. Furthermore, it is easy to see that then the 
distribution of  interarrlval tunes has the property NWUE. Thus, from the remark 
above, V* <,o ~ follows. In Rolskl (1981) this was noticed under the additional 
assumption that the distribution of  sojourn umes m the zero state has the stronger 
aging property DFR. 
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3. E X P O N E N T I A L  C L A I M  SIZES 

Now we &scuss  the role of  the monotonlc l ty  condmon  (1 8) consider ing the spe- 
cial case (I .9) ,  i.e. the d~stnbutmn funchon B of c laim sizes does not depend on 
the actual state of  the environmental  process {J(t)}. Moreover,  we assume that the 
claim sizes are exponent ia l ly  distr ibuted with expectat ion one, ~ e. 

(3 I) B(x) = I - e - '  for every x _> 0. 

Note that, in this case, a different  proof  of  Theorem 1 1 can be given by using Pro- 
pontoon 2 2. This fol lows from the fact that, for clmm sizes with the standard expo-  
nential d~stribut~on, the rum functmn V(u) can be represented m the form 

: < = ,  <=) 
/,.=l 

(32) :e-" 2 , 

&=l K 

where f , ( k ) = P  M r > u  f o r a  fixed u_>0 ,  and M I, M 2 . . . .  are i.Ld random 

variables whose &~tnbutlon tunctlon is given by (3.1). Clearly, f,,(k) - f , ( k  - 1) _> 0. 
Thus, assuming that (I 6), ( I .8) ,  (l 9) and (3.1) hold, from Proposmon 2 2 we 
obtain 

(3 3) ~(u) _> ~(ff,(k)- £,(k -l))p k = ~ '(u). 
/~=I 

Moreover ,  because the ruin probabi l i ty  ~ (u )  Is equal to Bz(V > u), where V is the 
s ta tmnary virtual wait ing tm~e in a s ingle-server  queue with the same, but t ime- 
reversed input (see e.g Asmussen (I 989)), from Theorem 6.2. I of  Neuts (I 98 I) 
we get that, under (1.9) and (3.1), 

(3.4) ~(u)  = ~ ( f , ( k ) - f , ( k -  1)) g R % ,  
k=l 

where R ~s the mlmmal  nonnegat lve solution of  the matrix equation 

(3.5) R ~ - + R ( C - I - A )  + A=O, 

A l s t h e p × p d l a g o n a l m a t r l X w l t h d l a g o n a l e l e m e n t s / 3 ,  /3 l = ( 6 ) t h e p x p  
identity matrix,  e the p-dimensional  column vector  of ones, and C the intensity 
matrix of  the stat ionary Markov process {J (t)} obtained,  after reversion of  , m e ,  
from the stat ionary Markov process {J(t)} governed by A, Le. if( t)  = J(-t) From 
(3 2) and (3.4) we have 

< = ,  , e '  < oo) 
In the fol lowlng we want to discuss the questlon whether the monotomc~ty con- 

dmon (1.8) is necessary for ~*  <,o ~ One of the posslble approaches to verify 
thls ~s to pa rametenze  A m the fol lowing way Let A(x) be the p x p &agonal  
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matrix with the t th diagonal element, ]3, (x) = ]3* + c a  where the constants c are 
such that ~P=l rr, c, = 0 Furthermore, let R(x) be the corresponding minimal solu- 
non of  (3.5) Clearly x = 0 yields the compound Po~sson case. The goal IS to prove 
the mequahty 

(3.6) ~rR~e > p ~ f o r a l l k > O  

without using assumpt,on (I 8), t e. to show that 

(37)  mm ~rR~(x)e=~rR~(O)e=(]3*) ~ for all k >0.  
{~ fl,(~)->OVd 

Computauons as m the following example even leads to the conjecture that ~R~(x)e 
~s a convex funcuon o f x  taking Its mimmum at x = O. 

Example  3.1 Let ]3~'= 0.5, 

: - 20  0 20 

C = 20 -40  20 

30 30 -60  

and 
'/3° + x  0 0 1 

A ( x )  = 0 ]3" - 0 5 x  0 

0 0 ]3" - 1 875x 

7 ~ = ( 9  3 4 / 
Then, i-6' 1 6 ' i 6  and the intenstty matrtx A of  the corresponding ttme- 

reversed Markov proceys ta gtven by (see e g Theorem 1.12 of Kelly (1979)) 12ooo 
A = 0 --40 40 

45 15 -60  

whtch does not sattafy (1.8)• However; from numertcal computattons one gets the 
following picture for  k = 2 (see Ftgure 3.1) 

7r R2(z )  e 

0.253 

0.252 

0.251 

0.250 . . . . . . . . . . . . . .  . . °  

t 
-0.4 

I I 
-0.2 0.0 

FIGURE 3.1 

I 
0.2 

• X 
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One possibility to prove (3 7) is to investigate the first two derlvatwes g~(x) and 
g~'(x) of  gk(X) = ~Rk(x)e with respect to x A first step into this direction is the fol- 
lowing result. However, it seems to be impossible to evaluate the second deriva- 
tive of  gt(a) explicitly. 

Propos i t ion  3.1 For every k = 1. 2 . . . .  we have 

(3.8) g~ (0) = 0 

# 

,:, t , / 3 )  
Proof The assertion follows by induction with respect to k using the facts that 

(3 10) tlR(0) =/3"~,  A(0)e =/3*e,A"(O)e = 0 
and 
(3.11) R(x)e = A(x)e 

hold (see S e c t i o n 6 2 o f N e u t s ( 1 9 8 1 ) )  In particular, from (3 l l ) a n d ( 3  10) wege t  

g,~ (0) = ( g R  t-I  (x)a(x)e)' I <=o 
= g (R  ~'-I )'(O)fl*e + (fl*)~-I ~rA'(O)e 

= ~ g~-I (0), 

because /irA'(0) = ~tP=l ~,c, = 0. Thus, by induction, 

g;, (0)  = (/3")~-I g{(0)  = (/3")~-J u A ' ( 0 )  = 0 

In order to prove (3 9) we can proceed similarly Namely, 

#rio\ gxt I ( n R ~ - I ( x ) A ( x ) e )  " 

= tc(R ~-j )"(0)/3 ;e + 2 g ( R  k-I )'(O)A'(O)e + x R  t~-I (O)A"(O)e 
¢~ I t  =/3 gk-I (0) + 2tc(R k-I ) ' (0)A'(0)e 

= 2 . .  ) , - ,  [ ]  

Another possible way to verify whether the monotomclty  condition (1 8) Is neces- 
sary could be to use a result from queueing theory, i.e to utilize Theorem 4 I from 
Chang and Nelson (1993), ,n particular their formula (32), where they considered 
a single-server queue with a doubly stochastic Polsson arrival process {N(t)} with 
intensity process {flej(r)} and showed that for large e the second-order approxi- 

marion for the expected stationary queue length is given by 

(3 12) [EL(O)= + e  i 19/3" I rSAe+O(e-2) '  

where S is a certain p × p matrix which is determined by C and A (or, equivalently, 
by A and A) The question is whether it is possible to find an example such that 

/3" trSAe < 0. In that case, EL(0 )<  z - -~ , ,  for sufficiently large e and hence (3.6) 
l - p  
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would not be true. Moreover, from L~ttle's and Takacs' formulas (see (4.4)), it 

would follow that then ~ V ( u ) d u  < ~ V * ( u ) d u .  Thus, also V* <~o V would not 

be true m general. Chang and Nelson (1993) proved that g S A e  _> 0 provMed that 
{J(t)} is dynamically reversible, where a stationary Markov process wtth intensi- 
ty matrix A is dynammally reversible if there exists a permutation of { 1,2 . . . . .  m}, 
denoted b y j  ~ j + , j  = 1,2 ... .  m, such that 0) ~. = Jr.+, (u) A. = A.+.+ and (M) 
zcA = zr+A + +. Therefore, we trmd to find an ~xam~ple such ~hat gJS~e < 0 for 
neither {J(t)} stochastically monotone nor {J (t)} dynamically reversible but we 
could not get it m none of the 20 mdhon different configuratmns which we cal- 
culated numerically. Moreover, our computatmns (see also Example 3.2) yield the 
conjecture that the expected queue length IE L(0) is always strictly decreasing m e, 
at least for suffmmntly large e where no add~uonal assumptions are needed (like 
dynammal reversibility of {d (t)} or stochasuc monotonlclty of {J(t)}) 

/ /°! ° 06 o 0 0° / 
Note that the Markov proces,~ {J(t)} with tiny intensity matrix C ts not dynamically 
reversible, because there ts no permutatron winch fulfills condmons  (i)-On) above. 
Also, the corresponding tmze-reversed process {J(t)} ts not stochastically mono- 
tone (~'ee Example 3 1) But, numertcal computations show (see Figure 3 2 ) that 
~R2(e)e ts monotonously decreasing m e, where R(E) ts the m m . n a l  solution o f  
R2(e) + R ( e ) ( e C -  I - A)  + A = O. 

~" RE(E) e 

0.254 

0.253 

0.252 

0.251 

0.250 

I I I I 
10 30 

FICU~E 3 2 

50 70 
E 



60 BY SOREN ASMUSSEN, ANDREAS FREY, TOMASZ ROLSKI AND VOLKER SCHMIDT 

4 STOP-LOSS ORDERING 

In this section we consider the case that claims arrive according to a doubly sto- 
chastic Po~sson process {N(t)} with an arbitrary stationary ergodlc intensity pro- 
cess {/3(t)} such that 13' = ~/3(0) < oo. In particular, we do not assume that {/3(t)} 
is generated by a Markov process as it was assumed in the preceding sections. By 
some authors, such a more general counting process {N(t)} ts called a Cox pro- 
cess. Let the sequence {U~} of  consecutive claim sizes consist of  ll .d. random 
variables with distribution function B and assume that they are also independent 
of  arrivals and that/3*EU k < I. Under these assumptions an interesting compara- 
bdRy property was derived in Rolskl (1981) concerning convex ordering of virtu- 
al waiting times in single-server queues We restate this result here, but now in the 
risk theoretical setting, and we give a self-contained proof. Like in Sections I to 
3, by V(u) we denote the ruin probability defined in (I .1) and (I 4) and by V*(u) 
the corresponding rum probability for the associated averaged compound Potsson 
model, that is with Poisson arrivals with rate 13" and with the same claim sizes U~. 

T h e o r e m  4.1 Let the claim arrival process {N(t)} be an arbitrary Cox process 
with stationary ergodlc intenst O, process {/3(t)}, let the claim sizes U~ be i t  d and 
independent of {N(t)}, and Eft(t) fgU~ < I Then, 

(4.1) V '<~J ~. 

In the proof of Theorem 4 I we use the following lemma, which seems to be 
also of  independent interest and where the ruin function V(u) appearing In (4.1) 
is replaced by a Palm-type analogue. By V°(u) we denote the ruin function given 

by NO(t ) 
gt°(u)=P(supS°(t)>u), S°(t)= ~ .U~- t ,  

\ t>0 / ~=i 

where {N°(t)} IS the (reduced) Palm version of  the stationary Cox process {N(t)}. 
It ~s well-known that {N°(t)} again ~s a Cox process. Its intensity process we deno- 
te by {ff'(t)}. Moreover, it holds 

t 
(4.2) [E F'(t) = ~ -  for every t > O, 

where F(t) = inf{u > O. j'~'/3°(s)ds > t}, see Chapter 5 of  Komg and Schmldt (1992). 

L e m m a  4.1 Under the assumptions of Theorem 4 1, the rum functions V°(u) and 
Ill*(u ) are related by 

(4 3) V*<~Nt ° 

Ptvof It is easy to see that the jump epochs of  {N°(t)} can be represented by the 
sequence F(Mi). F'(M I + M z) .... where M I, M 2, .. are i 1 d. random variables which 
are independent of  {]3°(t)} and whose distribution function is given by (3.1) Thus, 
from Jensen's  inequahty for conditional expectations and from (4 2) we get 
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~,, ~°(u)du = J~'°P(sup,~0 so(t) > u)du 

= J:[P(max 0,ui  - F(Mi), Ui +U2 - F ( M i  + M2), ) >u)du 

= [E[max(0,U I - 1-'(Mi),U I + U 2 - F ( M  I + M 2 ), .) - x ] +  

= E[[E([max(0,Ul - F(M I ),Ui + U2 - F ( M j  + m2) . . . .  ) -  x]+ ]{Uk, Mt })] 

_> IE[max(O,U~ -IE[V(M~)IIM, II, Ut + u~ -E[V(M~ + M2)IIM , I], ) -x ]+ 

---- (lt ) du ,  

where lxl+ = max(O,x). 

Proof of Theorem 4 I 
the relationship 

(4 4) 

which is known as 
Thus, 

[ ]  

Observe that the ruin functions ~(u)  and ~°(u)  satisfy 

~(u) = l~ jo ~ ( " -  v)(I - B(O)dv 

Takacs'  formula (see Corollary 4 5.4 of  Franken et al (1982)). 

>_ ~* ~ ?  ~* (u - v)du(l - B(v))dv 

=fT  Io , ' 8(,,))d,, d,, 

= ~ ( u ) d u ,  

where Lemma 4 I and the well-known fact has been used that Iff*(u) satisfies the 
integral equation Ig*(u) = fl*Solff*(u- v)(I - B(v))dv. [] 

5. ORDERING OF ADJUSTMENT COEFFICIENTS 

We now consider the subset of  ruin functions admitting an exponential tall, I.e. 
rum funchons Iff(u) such that there exBts a y6  (0,oo) with 0 < limu~ ~ ~(u)e 7" < oo 
The constant y ts called the adjustment coefficient of  ~(u).  It turns out that, for 
such functions, stop-loss ordermg imphes ordering of  their adjustment coefficients. 

Propos i t ion  5.1 A~sume that the functions lifO), 9A2) ~ ~ admit exponential tails 
with adjustment coefficients ~AI), 7(z) > 0, reLwecttvely Then, o/tl) <sl ~(2) tmphes 
~(I) 'Get ~(2) 

Proof Clearly, ~ttl')(u) = C (') exp(-?,( ')u)+ r(')(u) where r(')(u) = o(e -~'('~'') for t = 1,2. 
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Furthermore, because of  ~(~) <s, I]/(2)' w e  have for all x > 0 

= C (2)7(2i e -r '2) '  C (I)7 (I) e -r ' l~ '  + fT(r(2)(u)-rf l )(u))du 

and hence 
> C (I) C(2) e_(y(2)_yo)).~ 

(5.1) e y~')~ J'S (r(2)(u) - r(l)(u))du _ 7(1~ 7(2) 

Observe that from r( ')(x)=o(e - # ' ~ )  it follows that #?r(O(u)du = o(e -#'~'). 

Assume for the moment  that ~ ' )  < 7(2) Then, for x - -+~,  the left side of  (5.1) 
would converge to zero, but the right side to C~I)/~ I) > 0. By this contradiction 
~2~ < ~t)  follows [ ]  

Note that, m general, we do not know whether the rum function induced by a 
Coxlan claim arrival process has an exponentml tad. However,  in some specml 
cases hke periodic enwronment  or Markov modulated environment,  this ~s known 
(see Asmussen (1989), Asmussen and Rolskl (1994)) 

Hence we return to the rum functions qt(u) and W'(u) defined in (1 1) and redu- 
ced by a Markov-modula ted  env,ronment  and by the assocmted averaged comp-  
ound Poisson input, respectively. From Theorem 1.1 and Propos~uon 5.1 we know 
that Y -< T" for the adjustment coefficients T and T ~ of ~ u )  and ttf(u), and we 
prove that even the strict mequahty  is true under the assumption that (1 6), (1.7) 
and (1.8) (or, for p = 2, under some other techmcal assumption) hold Define 

P 
r,(s)=fl,(kk,(s)-l)-s, ~¢~(s)=fl°(b*(s)-l)-s= ~Jr, r,(s), 

t=l 

where t~(s) denotes the moment  generating function of a d~stnbuUon function B. 
Let K(s) be the p × p dmgonal matrix with the diagonal elements ~¢l(s), ., ~ ( s )  
and let, as in Asmussen (1989), ~ s )  be the dominant  elgenvalue of the matrix 
A + K(s) g,ven by the Perron-Froben,us theorem, h(s) the corresponding right 
e~genvector. The solutions of  ~(s)  = 0, tc*(s) = 0, x(s) = 0 are denoted by 7,, 7* 
and 7, respecttvely, where 7" and 7 coincide w~th adjustment coefficients intro- 
duced above. In particular, the adjustment coefficient 7* for the assocmted com- 
pound Poisson model fulfills 

P 
(5.2) 7"= 

t=l 
For s = 7 we write simply h = (h I . . . . .  hp). Note that h is a positive vector. Clear- 
ly 
(5.3) (a  + K(7))h = 0 
and so 

7/= mf  {s > 0.  det(A + K(s)) = 0} 
It ms also clear that 

(5 4) mm 7, <-7 -<7~ -< max 7, 
t=l, ,p t=l, ,p 
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Propos i t ion  5.2 A s s u m e  p = 2 I f  71 ~ 72 then 

mm{Yt, ~'2} < Y<  Y* < max{yi ,  ~2}' 

Proof.  Let 2 = - A ,  then ,rr I = 22/(21 + 22), ~2 = 21/(21 + 22)" Thus 

(-2, + ~ q ( s ) 2 , )  
det(A + K(s))  = det 22 -22  + t¢ 2 (s) 

( 5 . 5 )  = K" I (S)K" 2 ( S )  --  ~1K'2 ( S )  --  & K "  I ( S )  

= r I ( s ) r 2 ( s ) -  (21 + 12)r*(s)  

W~thout loss of  generahty assume that yj < Y2 Now distmgmsh two cases. 

Case 0 < Yt < Y2- Then ~(s) < 0, 0 < s < Y,, re(s) > 0, s > T,, and hence we get 
the following table of  the sign variation 

s~ (0,Yt) ('YI,Y*) (Y*,Y2) 

K I K 2 -'1- -- -- 

--(21 + 22)K* + + -- 

whsch shows that the first zero ~ of  (5.5) is m (Yi, Y*) 

Case Yl < 0 < 72- Then ~)(s) < 0, 0 < s < 72, ~'t(s) > O, s > Yl, and the sign vana- 
tmn becomes 

5~ (0, y*) (7*,72) 

K I K 2 -- _ 

--(21 + ~2 )r* + - 

so that the first zero ts m (0, ~*). 
The cases where one of  the mequalmes ~s an equality are easily treated in a simi- 
lar way [ ]  

We now turn to the ordenng of  the adjustment coefficients l f p  > 2. 

T h e o r e m  5.1 A~sume that (1 6), (1 7), (1.8) hold. Then 

(5.6) 7* > Y 

We proceed the proof by a lemma of  independent interest. 

L e m m a  5.1 Under  the a s sump t tons  o f  Theorem 5.1, not  all  h (t = I, . , p )  are 
equal.  

P r o o f  It follows from Theorem 6 1 of  Asmussen (1989) that there exists a con- 
stant C ~ [0, oo) such that 

hm erull t, (u) = Ch, 
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Thus lt ~s clear by L e m m a 2  1 that h~ < .  < h .  Assume on the contrary that all 
P ^ 

h ' s  are equal Then A h  = 0 and from (5.3) we would have f l , (B(} ' )  - 1) = },for 
each t = 1,. , p Thxs is impossible in view of  the assumption that there exist t ~:j 
such that either fl, < flj or B ~ Bj [__] 

Proof of Theorem 5.1. Multiplying both the sides (5 3) from the left by ~ we get 

P 
~ ~,h,/3,(~,(r)-l)= }',rh 
t=l 

from which we have that the adjustment coefficmnt for the Markov modulated 
model is the solutmn of  

(57)  y =  ~ Tr, h, f l , (B , (} ' ) - l )  
,=1 g h  

By Lemmas 2.3 and 51 ,  

1 P ^ P 
(5.8) }' = --7 ~zr,  fl, ht(B,(} ')-  1)> Y 7r, fl, (/~, ( r ) - 1 ) ,  

~ n  t=l t=l 

from which we get (5.6). [J 

6. PERTURBATION ANALYSIS FOR THE ADJUSTMENT COEFFICIENT 

In this section we assume, similar as in Example 3.2, that the intensity matrix for 
the Markov env,ronment is parameterized as follows: A(6) = Ao/e, whereas the fl, 
and B are fixed. The corresponding adjustment coefficient is denoted by }'(6). Thus 
}'(6) --4 7 ¢ as 6,1, 0, and our aim IS to compute the sensmvtty of }'(6) at 6 = 0 + 0, 
i.e. the right derivative 

d+}' (0) 
de 

A dual result deals with the limit 6---+ oo Here we put a = l/e, note that 
}'(a) ~ ra in=/  .p }', and compute 

d+}' (0) 
da 

The basra equation is again (5,3) where A, y, h depend on the parameter (e or a) 
The following result quantifies the effect on the adjustment coefficient of  adding 

a small but rapid Markov-modulatmn to the compound Polsson model Similarly, 
Proposition 6.2 below deals with a small but slow Markov-modulatlon. 

Propos i t ion  6.1 In the case g ,1, 0 we have 

(6.1) d+Y (0) = 1 7rK(}'~)(A0 - e , r )  -I K(}'*)e. 
de l r K ' ( y  ~ )e 

Proof The existence of  the right derivative follows by the implicit function theo- 
rem and det(A + eK(}'(6))) = 0. Multiplying (5.3) by e, we obtain 

0 = (A o + eK(y))h,  
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Di f fe ren t ia t ion  with respec t  to e g ives  

(6.2) 0 = (K(1)  + e ¥ '  K ' ( ' / ) )h  + (A~l + eK(y))h' 
N o r m a h z i n g  h by ~ h  = I, we have  ~ h ' =  0. h (0 )  = e Hence  let t ing e,[, 0 in (6.2) 
y te lds  

0 = K(~,*)e + Aoh'(O + O) = K(~,*)e + (Axl - e~ )h ' (O  + 0). 

i.e. 

(6  3)  h ' ( 0  + 0)  = - ( A  o - e/[') - i  K() '* ) e .  

Dif fe ren t ia t ing  (6 2) once  more  and let t ing e ,[, 0 we get  

(6.4) 0 = 2 ) / (0  + O)K'(~*)e + 2K(~*)h ' (0  + 0) + Aoh"(O + 0). 

M u l t i p l y i n g  (6 4) by x t o  the left  we get 

(6.5) 0 = 2 y ' ( 0  + O)lrK'(y")e + 2rcK(y<)h'(O + O) 

Inser t ing  (6 3) yie lds  (6. I). [-~ 

N o w  turn to the case  of  a We a,~surne that  0 < )'i < 7, for  t = 2, , p Then  
Y--> 71 as a ,t, 0 and we may  take h (0)  = e I ( the first  unit  vector.) We get  

0 = ( a A  0 + K l y l ) h  

Di f fe ren t i a t ion  with respec t  to a g ives  

(6.6) 0 = (A~ + y'K'(y))h + (aA o + K(y))h'. 

Let t ing  a $ 0 in (6 6) and m u l t i p l y i n g  by e I to the left  we get 0 = 21I + 7 ' (0 ) r [ (y j )  
+ 0 (us ing t¢](7(0)) = 0 to infer  that  the fir,it c o m p o n e n t  of  K(7(O))h'(O + O) is 0), 
and we have p roved '  

P r o p o s i t i o n 6 2  I fO< YI < Y, f o r t = 2 ,  ,p, then d+7(O)- All 
da r~(y i  
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