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ABSTRACT

In this paper we compare ruin functions for two risk processes with respect to sto-
chastic ordering, stop-loss ordering and ordering of adjustment coefficients. The
risk processes are as follows. 1n the Markov-modulated environment and the asso-
ciated averaged compound Poisson model. In the latter case the arrival rate 1s obtai-
ned by averaging over time the arrival rate 1n the Markov modulated model and
the distribution of the claim size is obtained by averaging the ones over consecu-
tive claim sizes
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1. INTRODUCTION

This paper 1s concerned with ordering of risks, more precisely with comparing the
ruin functions

) ww= P(;gg R(1)< 0| R(0)= u), v )= P(;gg R*(1)<0| R*(0)= u)

of two related risk processes {R(1)}, {R"(r)} This topic 1s of obvious actuarial inte-
rest and has been studied, for example, 1n Goovaerts et al. (1990), van Heerwar-
den (1991), Kluppelberg (1993) and Asmussen (1994}

Much of the literature concentrates on assessing whether a given claim size dis-
tribution B 1s more dangerous than another one B* in the sense that

(1.2) v ()< w(u), foreveryu=0
when B, B” are the claim size distributions of two standard compound Poisson risk

processes {R(N}, {R*(r)} with the same arnval intensity 8= 8" and the same pre-
mium rate p = p*, the ordering (1 2) 1s referred to as stochastic ordering and we

write y™ <__w (more generally, the ordering relations studied in this paper are defi-
ned for functions in R, the class of monotone functions defined on [0, o), decreas-
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ing to zero at infinity and assuming values between zero and one). In the com-
pound Poisson setting, 1t 1s easy to show that if B is stochastically larger than B*
(that 1s, 1if B*<__ B where B(x) = 1 — B(x) 1s the tail), then (1 2) holds. This fol-
lows immediately from the fact that 1n this case one can assume that the trajecto-
ries of the nisk processes {R(1)}, {R"(r)} satisfy the inequality R™(¢) = R(r) for every
t 2 0. A somewhat more substantial result which can be found in Daley and Rolsk:
(1984), see also Makowski (1994), states that (1.2) remains true if B* <, B 1S
weakened to B* < B where, for any two functions y(/), y'? e R, the srop loss
ordering y' < t;/m 15 defined by

(1.3) '[‘ P (u)du < L v P (u)du, foreveryx 20

This paper concentrates on the study of the role of deviations from the Poisson
arrival pattern Rather than looking at renewal processes which are mathematical-
ly mice but hard to motivate practically, our framework 1s that of Markov-modu-
lated Poisson arrivals, see Janssen (1980), Reinhard (1984), Janssen and Reinhard
(1985), Asmussen (1989), Asmussen and Rolski (1991, 1994), Grigehionis (1993)
and Asmussen er al. (1994) for some relevant references. Roughly, the model sta-
tes that there is an underlying Markov process {J(1)} with p < oo states, such that
arrivals occur as 1n a Poisson process with rate 8 when J(1) = 1, and that the cor-
responding claims have distribuuons B, with means 4, (the premium rate may also
depend on ¢ but by an operational time argument we may and shall assume that 1t
1s 1 1n all environmental states) The corresponding nisk process 1s denoted by
{R(1)} 1n the following The motivation for this type of modeling 1s 1n part descrip-
tive because of the flexibility, allowing in particular to model arrival streams which
are more bursty than any renewal process, but in part also that at least 1n some
cases, one can interpret the model 1n a natural way. E g Asmussen (1989, 1994)
discusses car insurance where the states of {J(t)} describe weather conditions. The
model of Janssen and Reinhard (1985) 1s mathematically slightly different but has
a similar flavour from the modeling point of view,

If the B and B, do not fluctuate too much around some average values B, B,
one can see the model as a perturbation of a classical compound Poisson risk pro-
cess {R*(1)} with arrival rate 8" and claim size distribution B*. The rigorous defini-
tion of §°, B* (which also makes sense and 1s interesting if the Markov-modula-
tion 1s more clear-cut) 1s as follows: We assume that {J(r)} 1s trreducible and
time- homogeneous with ntensity matrix A = G and stationary 1nitial distribu-
tion T = (7, 71') Le 7|:A 0 Then,

ﬂ(r)—llm —Znﬂ

p

B*(x)= hm — 21 (Upy Sx)=— Zn,ﬁ,B,(x), x20
n—es g £ =1

where 1(D) denotes the indicator of the set D, N(r) is the number of arnvals befo-

re f for {R(1)} and U, U,, . the corresponding claim sizes so that
N{1) N(1)

(1.4) RO=u+1- Y U;, S)= Y U;-1,
k=1 A=l

where S(r) = R(0) — R(t) = u — R(1) 1s the clatm surplus at ume ¢ Simularly,
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N(I N(I

(15) R(t)=u+i- 2 U S(H= 2 Ui -1,

where {N"(1)} is Poisson with rate 8’ and U, Uz,. . are 1.1.d. with distribution B*
The fact that the averages f* and B*(s) are well-defined and a.s. constant follows
from the ergodicity of the environmental process {J(f)} which 1s reflected in
corresponding ergodicity properties of the Cox process {N(s)} and the sequence
{U;} of claim sizes, see e.g. Chapter 8 of Konig and Schmidt (1992). More-
over, the risk processes {R(f)} and {R*()} have the same safety loading
n=n"=x"., n Bu)"' -1, which 1s assumed to be positive.

The initial purpose of the present research was to show that 1t 1s always the case
that y* <_ » ¥ where the ruin functions v, w"* correspond to the Markov-modula-
ted nisk process (R(r)} and 1its averaged compound Poisson counterpart {R*(1)},
respectively. The conjecture that such a result could be true came 1n part from
numerical studies, n part from the folklore principle that any added stochastic
variation increases the risk, and finally in part from queueing theory, where it has
been observed repeatedly that Markov modulation increases several queueing char-
acteristics, see e.g. Ross (1978), Rolsk1 (1981, 1989), Chang et al. (1991), Chang
and Nelson (1993). In fact, in the present paper we give a partial solution to our
original conjecture showing that y* <, W holds under an additional monotonicity
condition on the Markov-modulated environment, but also counterexamples
showing that at least some conditions are needed.

Without loss of generality we can enumerate the p states of the environment
such that

(1.6) B <P, <. .<B,.

The monotonicity conditions which play an important role in our paper are the fol-
lowing: Assume that, for the numbering of environmental states given by (1 6),
we have

(1.7) B <,B,<,..<,B,

and stochastic monotonicity of the underiying Markov process (cf. Stoyan (1983))
which with finitely many states can be stated as
(18 ZAJ,,<ZAM forall j,k,1 withj<k, and 1< jori >k

nz! n2l
To avoid trivialities, we also assume that there exist { #j such that either ,/3, < B,
or B # BJ. Occasionally we strengthen (1.7) to

(19) B=8,

1e B, does not depend on i Note that the monotonicity condition (1 8) is auto-
matically fulfilled in some simple examples like birth-death processes or p = 2.
The main result of the paper 1s the following

Theorem 1.1 Assume that conditions (1 6), (1.7) and (1.8) hold Then y°* <o ¥

The proof of Theorem 1.1 1s given in Section 2; the key tools are a recent result
of Asmussen and Schmudt (1995) on ladder height distributions and a well-known
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association inequality. In that section we also give a counterexample showing that
l//“<SO w may fail f (1.7) 1s violated. In Section 3 we discuss the role of (1.8)
Computational results indicate that (1 8) might be not necessary for y* <L V¥
From a result of Rolski (1981) 1t follows that the weaker ordering y” < w always
holds when claim sizes are 1.1.d.; we give a self-contained proof in Section 4

The rest of the paper then deals with the adjustment coefficients We say that a
funcuon v € R admuts an exponential rail with adjustment coefficient yf, for
it — oo, we have w(u) ~ C exp(—yu) for some C > 0 In the subset of functions
),y e R admitting an exponential tail we define y/') <_ @ iff ¥ > p2;
this ordering criterion 1s used 1n a more or less explicit way in much of the actu-
arial literature (see e g. Kluppelberg (1993)). Section 5 studies the problem of
w* <, ¥ We show that this ordering holds at least in the cases when p =2 or
when (1 6), (1.7) and (1 8) are fulfilled. Section 6 then gives some perturbation
analysis for the adjustment coefficient. For example, we compute the first error
term in the approximation y = y* which is valid when the degree of Markov-modu-
lation 1s small.

2. STOCHASTIC ORDERING

Consider the irreducible Markov process {J(r)} described in the preceding section

Let {J (1} be the Markov process with the same intensity matrix A as {J(r}}, but

starting in state 1, 1.e J(0) =, and {N (1)} be the counting process with intensity

process {f; )} As before, define {S,(1)},5 = {ZII:I;(]I)UI.K —t} as the associated
i 120

surplus process with arrival process {N (1)} and claim sizes U, ,, respectively, and

with the ruin function y (u) = P (sup,5y S,(1) > u)

Lemma 2.1 Assume that conditions (1.6), (1 7) and (1 8) are fulfilled. Then, for
1 <j, it holds that w <_ v,

Proof. Let 1 < ;. Because of (1.8), using Theorem 4 2.8 and Proposition | 10 4 of
Stoyan (1983), we can assume that J (1) < J (1) for all 1 2 0, which implies that the
intensities of N, and N are pathwise ordered Therefore, we can assume that any
Jump epoch, say the kth occurring at time ¢,, for N, is also a jump epoch for N,
say the /th, where we use the notation [ =/ Since J (1)) < Jj(tk), it follows from
(1.7) that the claim s1zes can be chosen 1n such a way that U:,k < U”k with proba-
bility one and hence
SW2 Y U, ~12 YU, ~1=5(0.

Aty st Ayt
From this the orderning w, < v, easily follows. 0
Let 7, be the first ladder epoch of the surplus process {S(1)}, 1.e. T, = mf{r>0
S(1) > 0} Furthermore, we consider the ladder height Z =lIm,l., S, provided that

T, <o Specializing Corollary 1 of Asmussen and Schmidt (1995), we have the
following result.
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Lemma 2.2 For the Markov-modulated surplus process {S(1)},

(@P(r, <oo)=p=3%nBu.:

(b) the conditional distribution of J(1,) given T,<oo 1s obtained by the probabili-
ties

w__mo,
! zn,‘(’P)’uJ
P Py _ B, .
where {m] }with T, 2 3 ts the (Palm) wnitial distribution of {J(t)} (ar a
n
JF

rypical jump epoch of {N(1))});
(c) the conditional distribution of the ladder height Z_ given T < =, J(T,) =1 has
the density B (O
(d) the condmonal distribution G of the ladder height Z, given T,< e, has the den-
sty B*(xolu
Note 1n particular that the ruin probabihty P (7,< ) and the ladder height distri-
bution are the same for the Markov-modulated model and the averaged compound
Poisson one

In the proof of Theorem 1.1 we will use, besides Lemma 2.1 and Lemma 2 2,
the following standard result going back to Chebyshev and appearing, for instan-
ce, in Mitrinovié et al. (1993), see also Esary er al. (1967)

Lemma23/fa <. <a,b <..$b and 7 >0 (= 1,..,p), S =1 then
p I7 I
S ma,b, ZZ a Y mb,,
=1 (=1 J=l

where the equality holds if and only if a; = = a, or b= = bp.

Proof of Theorem | 1 Conditioning upon the first ladder epoch, from Lemma 2 2
we obtain

"
"

@n v ) =pG )+ B [ (u=2)B (x)dx
0

ww) =pGuy+pYfy, (- B (1) pdx
0

4
4
14

z B, ()W, (u— x)dx

O;-.E

272) = pG (1) +
)+

> pG(u) +

o'~—.~

Z B (1) iit’ W, (4 — x)dx
1=|

1
=p5(u)+ ]L (Il—A)B(\)(L\
0

where the inequality 1n (2 2) follows by considering the increasing functions
ﬁ,E,().-) and ¥, (u—x) of ¢ and using Lemma 2 3 Comparing (2.2) and (2.1), 1t fol-
lows by a standard argument from renewal theory that ¥ dominates the solution
v of the renewal equation (2.1). =
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* . .
The following result shows that y* <_ y may fail if (1.7) 1s violated

Proposition 2.1 Assume that B u < 1 for all i, that
I 14 14
(23) 2B < 2m B 2B,

and that A has the form €A, for some fixed intensity matrix Ay, Then y™ <_ y
fails for all sufficiently small €> 0.

Proof. From the defining equations (1 1) 1t follows that the ruin functions w(u)
and w"(u) are right continuous at # = 0 Since the tail functions B* and B also
possess this property, from (2.1) and (2 2) we get that the right derivauves

d+ (©)an d+w

(0) exist and are given by

dry” . e x 4 P .
(2.4) d'l’l' ) =—p/u*+B7y (0)=§ﬂ,ﬁ, Z}ﬂ,ﬁ,#,—ﬂ ,

P
= ;”,ﬁ.w,(o)—ﬁg-

o dty dty”®
Since w(0) = w"(0), it 1s sufficient to show that " M)< ” (0) for & small
u u

enough From a well-known continuity property of stationary single-server queu-
es (see e.g. Theorem 3.2 1 of Franken er al (1982)) 1t follows that ¥, (u) conver-
ges to the corresponding ruin probability for the compound Poisson model with
parameters 3, B, as € L 0. For u = 0, this imiting ruin probability is B, u, Conse-
quently, by (2.3) and (2.4) we get that

+
him [d jd
elo d

* dty I i P
(0)_-—(0) = znlﬁxznlﬁuul “anﬂl“mu/|(0)>0
u du = = = elo
This finishes the proof. O

To see that the condition of Proposition 2.1 1s not vacuous, we briefly mention
an example for which (2 3) 1s fulfilled. Let

p=2,m=(1/2,1/2). B, =103, B, =1, u, = 102, y, = 104,

Then the left side of (2 3) 1s of order 104, whereas the right side of (2.3) 1s of
order 107!

We finally remark that, besides Theorem 1.1, a further related result holds Con-
sider the sequence of consecutive ladder epochs 79, 1), of the surplus process
{S(n} Note that 7{V = T
Proposition 2.2 Assume that conditions (1.6), (1.7) and (1.8) hold. Then, for every
k=1,2, ,

(2.5) pr <P () <oo,.. T < oo
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Proof. Proceeding analogously as 1n the proof of Lemma 2 | we get that, for each
i=1..,p,
,P(ri” <oo,...,TH < oo) S[P’(ri') <o, T <o J(0)2 r)

and, equivalently,
(2.6) P02 ) <P(J0) 21|t <oo,..., T <o)
On the other hand, from Lemma 2.2 we obtain
[p( 0 <o, 70 < )
= Z,”:lp(rf) <°<>,J(‘:L")=:)P(rf) <oo,..., T <oo)ri" <oo,J(rf’)=:)
= le=l7tlﬁl:l1r IP(T'(FI) <oo,. -(I-A b < °°l ‘,(0) = l)
=[P’(T(+') <oo,.,., THD <oo) > BuP (J(O)—z' ARIPRSRI Sy <o<>).

Observe that f, 4, < B, u, < .. < ﬂp #, Thus, from (2.6) and from Theorem 12 2
of Stoyan (1983) we have

p= Zﬂ,y,ﬂﬂ’(um— H< 2/3/1 P(1(0) =]t <oo, ., 70D <on).
Consequently,
[P’(ti”<oo, ”‘)<oo)>p[]3’( ,ri""”<oo)
and (2 5) follows by induction d

Note that, by using a corresponding result of queueing theory, still another type
of conditions can be given for the validity of (1 2) These conditions are formula-
ted 1n terms of aging properties of the interarrival time distribution. Such aging
properties were 1ntroduced 1n rehiability theory, see e.g. Barlow and Proschan
(1975) If interarnival times are 11d., 1f their distribution function F with mean
()" has the property NWUE (that s Jlmf(x)ct\‘Z(B*)“ F(r) for all 1 > 0) and

if claim sizes are also 1 1 d and independent of arrivals, then ™ <, ¥ holds with
w” defined by the Poisson compound model with arrival rate 8* and the same c¢laim
sizes, see € g. Remark 4 6 13 tn Franken er al. (1982) In this way, the validity of
the ordering w" <y can be venified for a further model with special doubly sto-
chastic Poisson arrival process and 1.1.d. claim sizes This 1s when the stochastic
arrival-intensity process 1s assuming only two values. zero and one positive. It 1s
well-known that, in this model, interarrival times are 1 1.d. provided that the con-
secutive sojourn times of the environment process 1n its two states form an alter-
nating renewal process and that the sojourn times tn the state with positive arrival
intensity are exponentially distributed. Furthermore, tt is easy to see that then the
distribution of interarrival times has the property NWUE. Thus, from the remark
above, y" <., ¥ follows. In Rolski (1981) this was noticed under the additional
assumption that the distribution of sojourn times 1n the zero state has the stronger
aging property DFR.
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3. EXPONENTIAL CLAIM SIZES

Now we discuss the role of the monotonicity condition (1 8) considering the spe-
cial case (1.9), r.e. the distribution function B of claim sizes does nor depend on
the actual state of the environmental process {J(7)}. Moreover, we assume that the
claim sizes are exponentially distributed with expectation one, 1 e.

31 Bx)=1-¢e forevery x 2 Q.

Note that, in this case, a different proof of Theorem 1 1 can be given by using Pro-
position 2 2. This follows from the fact that, for claim sizes with the standard expo-
nential distribution, the ruin function y(u) can be represented in the form

v = i(fu(k)—f,,(k —P(r <o, 1) <o0)

e ut
(32) EIT (i')<oo, ,ri“<oo)

k
where f“(k):lp(z M, >u) for a fixed ¥ 2 0, and M|, M,, ... are 1.1.d random
1=| -

variables whose distribution funcuon 1s given by (3.1). Clearly, f (k) - f (k- 1) 2 0.
Thus, assuming that (1 6), (1.8), (1 9) and (3.1) hold, from Proposition 2 2 we
obtain

(33) w(u)zki(fuu\-)— £k =1)p* =y ().
=1

Moreover, because the ruin probability y(u) 1s equal to P(V > u), where V is the
statronary virtual waiting time 1n a single-server queue with the same, but time-
reversed mput (see e.g Asmussen (1989)), from Theorem 6.2.1 of Neuts (1981)
we get that, under (1.9) and (3.1),

3.4) v = Y (f (k) - f(k=1) aR%e,

k=
where R 1s the minimal nonnegative solution of the matrix equation
(3.5) RR+R(C-I1-A)+A4=0,

4 1s the p x p diagonal matrix with diagonal elements J,, [3 I= (5 Ythe px p
identity matrix, e the p-dimensional column vector of ones, and C the intensity
matrix of the stationary Markov process {J (1)} obtained, after reversion of time,
from the stationary Markov process {J(r)} governed by A, 1.e. J~(r) = J(-1) From
(3 2) and (3.4) we have

nR'e =[P’( M oo, M < oo)
In the following we want to discuss the question whether the monotonicity con-

dition (1.8) 1s necessary for y* <., ¥ One of the possible approaches to venfy
this 1s to parameterize A in the following way Let A(x) be the p X p diagonal
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matrix with the /th diagonal element, 8 (x) = B + ¢,» where the constants ¢ are
such that Zp m,c, =0 Furthermore, let R(x) be the corresponding minimal solu-

1=t
tion of (3.5) Clearly x = 0 yields the compound Poisson case. The goal 1s to prove

the inequality
(3.6) nR'e>p* forallk=0
without using assumption (1 8), 1 e. to show that

A — A — (R*HA Al k>
37 [\ﬁ,l(n(l)gov:)”R (x)e=mR"(D)e =(B") for all k 20.

Computations as 1n the following example even leads to the conjecture that £ R*(x)e
15 a convex function of x taking 1ts mimmum at x = 0.

Example 3.1 Ler 7 = 0.5,

=20 0 20 B +x 0 0
C=|20 —-40 20 and  Ax)=| 0 B -05x 0
30 30 -60 0 0 B —1875x
9 3 .
Then, m= 16'16° 16 and the intensity matrix A of the corresponding tune-

reversed Markov process 1s given by (see e g Theorem 1.12 of Kelly (1979))
20 20 40

3 3
A= 0 —40 40
45 15 -60

which does not satisfy (1.8). However, from numerical computations one gels the
Jollowing picture for k = 2 (see Figure 3.1)

m R (1) e
0.253 +
0.252 +
0251 +
0.250 1 e e
} } } + x
-0.4 -0.2 0.0 0.2

FIGURE 3.1
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One possibility to prove (3 7) 1s to investigate the first two derivatives g,(x) and
g, (x) of g x) = RMx)e with respect to x A first step into this direction s the fol-
lowing result. However, 1t seems to be impossible to evaluate the second deriva-
uve of g,(x) explicitly.

Proposition 3.1 For every k = 1, 2, .., we have

(3.8 8 (0)=0

2 A |I\_I R’ ’ ’
(3.9) SO =2F)" 27| 7 | 0410

1=1

Proof The assertion follows by induction with respect to k using the facts that
(3 10) 7R(0)= B*r, A(0)e = B’e, A"(0)e =0
and
(3.11) R(x)e = A(x)e

hold (see Section 6 2 of Neuts (1981)) In particular. from (3 11} and (3 10) we get
8 (0) = (R () AeY'|
= 2Ry (0)B e+ (B") ' A (0)e
=P gi1(0),
because wA'(0)= zlp:Iir,c, = 0. Thus, by induction,
£ (0)=(B")*"g[(0)=(B")'mA(0)=0
In order to prove (3 9) we can proceed similarly Namely,
g/(0) = (xR (x) A(x)e)”
= m(R*1)"(0)B’e + 2n(R*~"')(0)A’(0)e + wR*~' (0)A”(0)e
= B"g/_1(0)+ 2m(R*'Y(0)4(0)e

=273, (B) (R )(0))4 (e O

Another possible way to verify whether the monotonicity condition (1 8) 1s neces-
sary could be to use a result from queueing theory, 1.e to utilize Theorem 4 | from
Chang and Nelson (1993), in particular their formula (32), where they considered
a single-server queue with a doubly stochastic Poisson arrival process {N(f)} with
ntensity process {ﬁE](,)} and showed that for large &€ the second-order approxi-

mation for the expected stationary queue length 15 given by

. 1
312) EL(O)= B ~+e! —nSAe +0(£72),
1-8 1-5
where S 15 a certain p x p matrix which 1s determined by C and A (or, equivalently,
by A and 4) The question 1s whether* 1t 1s possible to find an example such that

nSAe < 0. In that case, EL(0)<

5 for sufficiently large € and hence (3.6)
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would not be true. Moreover, from Little’s and Takacs® formulas (see (4.4)), it
would follow that then [ “w(u)du < ["w*(u)du. Thus, also y* <_ w would not

be true 1n general. Chang and Nelson (1993) proved that #SAe 2 0 provided that
{f(t)} 1s dynamicalily reversible, where a stationary Markov process with intensi-
ty matrix A 1s dynamcally reversible 1f there exists a permutation of {1,2,...,m},
denoted by y — y*, 3 = 1.2,.. ,m, such that (1) T =T+ (1) A, = A,*,* and (i)
TA, = T+A 4+ Therefore, we tried to find an example such that #54e < 0 for
neltfler {J(1)} stochastically monotone nor {J (1)} dynamically reversible but we
could not get 1t in none of the 20 nullion different configurations which we cal-
culated numerically. Moreover, our computations (see also Example 3.2) yield the
conjecture that the expected queue length E L(0) 15 always strictly decreasing in &g,
at least for sufficiently large £ where no additional assumptions are needed (like
dynamical reversibility of {.7(1)] or stochastic monotonicity of {J()})

Example 3.2 Let

-2 0 2 03 0O 0
C=|{2 4 2| A= 0 06 O
3 3 -6 0 0O 087

Note that the Markov process {J(D)) with this trensity matrix C is not dynanucally
reversible, because there 1s no permutation which fulfills conditions (i)-(1m1) above.
Also, the corresponding time-reversed process {J(1)} 1s nor stochastically mono-
tone (see Example 3 1) Bui, numerical computations show (see Figure 3 2 ) that
wR*(e)e 1s monotonously decreasing in € where R(€) 1s the minimal solution of
R(e) + R(e)(eC-1~-A)+A=0.

T R%() e
0.254 4+
0.253 +
0.252
0.251 +
0.250 ﬂ—
—- i 3 ; €
10 30 50 70

FiGURE 3 2
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4 STOP-LOSS ORDERING

In this section we consider the case that claims arrive according to a doubly sto-
chastic Poisson process {N(r)} with an arbitrary stationary ergodic intenstty pro-
cess {B(r)} such that 8 = ESB(0) < oo. In particular, we do not assume that { (1)}
1s generated by a Markov process as 1t was assumed in the preceding sections. By
some authors, such a more general counting process {N(t)} 1s called a Cox pro-
cess. Let the sequence {U,} of consecuttve claim sizes consist of 11.d. random
variables with distribution function B and assume that they are also independent
of arrivals and that ,B”IEUA < 1. Under these assumptions an interesting compara-
bility property was derived 1n Rolskt (1981) concerning convex ordering of virtu-
al waiting times 1n single-server queues We restate this result here, but now 1n the
risk theoretical setting, and we give a self-contained proof. Like in Sections 1 to
3, by w(u) we denote the ruin probability defined in (I.1) and (1 4) and by ¥’ ()
the corresponding ruin probability for the associated averaged compound Poisson
model, that 1s with Poisson arrivals with rate §* and with the same claim sizes U,.

Theorem 4.1 Ler the claim arrival process {N(t)} be an arbirrary Cox process

with stationary ergodic intensity process { (1)}, let the claim sizes U, be i 1 d and
ndependent of {N(1)}, and EB(r) EU, < | Then,

.1 v <gy.

In the proof of Theorem 4 | we use the following lemma, which seems to be
also of independent interest and where the ruin function y(u) appearing n (4.1)

1s replaced by a Palm-type analogue. By w°(«) we denote the ruin function given

by N°(1)

u/°(u)=[F°[supS°(r)>u), S°(r) = ZUA—t,
120 A=l

where {N°(#)} 1s the (reduced) Palm version of the stationary Cox process {N(r)}.
It 1s well-known that { N°(r)} again 1s a Cox process. Its intensity process we deno-
te by {B°(t)}. Moreover, 1t holds

(4.2) ET(r)= - forevery 120,
B
where T'(r)=mnf{u=0. J(;I,B°(.s)ds =1}, see Chapter 5 of Komig and Schimidt (1992).

Lemma 4.1 Under the assumptions of Theorem 4 1, the ruin functions w°(u) and
() are related by

(43) Y pe

Proof. 1t 1s easy to see that the jump epochs of {N°(r)} can be represented by the
sequence l"(M,). (M, +M,), ... where M|, M,, .. are11d. random vanables which
are independent of {3°(z)} and whose distribution function 1s given by (3.1) Thus,
from Jensen's inequality for conditional expectations and from (4 2) we get
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[Twotodu = [TP(sup, 5, S°(0) >u)du

= [T P(max 0,U, - T(M\), Uy + Uy =T(M, + My), ) >u)du

= E[max(0,U, —~T(M),U, +U, ~T(M, + M, ), )-x],

= E[E(Imax(0,U, = T(M ), Uy + Uy =T (M, + My),..)= x 1. [{Us, My )]

> E[max(0,U, ~E[T(M))[{M, }].U, + U, —E[T(M, + M,)|{M, 1), )-x],

= IE[max(O,UI —%,Ul +U2_M_';_‘M_2,_ .]—x:l
+

= f y/* (u)du,

where [x], = max(0,x). 2

Proof of Theorem 4 1 Observe that the ruin functions y(u) and w°(u) sausfy
the relationship

(4 4) W) =" [T yo=v)(1 - B))dv

which 1s known as Takacs’ formula (see Corollary 4 5.4 of Franken er al (1982)).
Thus,

J.:ow(u)du = ﬁ* I:o J: wou—v)(I = B(v))dv du
=B [T [T wotu—v)du(l - B dv
> B [0 [T v w—v)du(l - B dv
=[7B [T (u=v)(1 - B(v))dv du

= J’\mtyr(u) du,
where Lemma 4 1 and the well-known fact has been used that y*(u) sansfies the
integral equation y”(u)= ﬁ*jo v (u=-v)(1 = B(v))dv. O

5. ORDERING OF ADJUSTMENT COEFFICIENTS
We now consider the subset of ruin functions admitting an exponential tail, t.e.
ruin functions y (i) such that there exists a ye (0,00) with 0 <lim,_,_, w(u)e”" < oo,

The constant y1s called the adjustment coefficient of w(u). It turns out that, for
such functions, stop-loss ordering implies ordering of their adjustment coefficients.

Proposition 5.1 Assume that the functions w", Y@ e R admit exponential tails
with adjustment coefficients ¥V, y@ > 0, respectively Then, yV < y@ implies

u/(” <el W(z)

Proof Clearly, y)(u)=C" exp(=yu)+ r®(u) where r(u) = o(e™?"") for 1=1,2.
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Furthermore, because of y" < w2, we have for all x 2 0

0 =< J':cl/f(z)(u)du—‘[:oy/(”(u)du

c® o, CY iy, e
e - U T [T P )= rO ) du
and hence
o () (2)
6D [P O ) = POz S E Py
8 y 4@

Observe that from r(x)=0(e™"’") 1t follows that er(’)(u)duzo(e'ym‘).
Assume for the moment that 7! < ¥ Then, for x — oo, the left side of (5.1)

would converge to zero, but the right side to C{V/yM > 0. By this contradiction
7@ < ¥V follows O

Note that, in general, we do not know whether the rutn function induced by a
Coxian claim arrival process has an exponential tail. However, in some special
cases hke pernodic environment or Markov modulated environment, this 1s known
(see Asmussen (1989), Asmussen and Rolski (1994))

Hence we return to the ruin functions y(u) and y*(u«) defined in (1 1) and indu-
ced by a Markov-modulated environment and by the assoctated averaged comp-
ound Poisson mput, respectively. From Theorem 1.1 and Proposition 5.1 we know
that y < ¥ for the adjustment coefficients ¥ and y" of w(u) and y*(u), and we
prove that even the strict inequality is true under the assumption that (1 6), (1.7)
and (1.8) (or, for p = 2, under some other technical assumption) hold Define

- o A P
K,(8)=B(B(s)-D=s, Kk ()=F (B (5)-D=s=Y mx,(5),
=1

where B(s) denotes the moment generating function of a distribution function B.
Let K(s) be the p x p diagonal matrix with the diagonal elements k,(s), .. Kp(s)
and let, as 1in Asmussen (1989), x(s) be the dominant eigenvalue of the matrix
A + K(s) given by the Perron-Frobenius theorem, h(s) the corresponding right
eigenvector. The solutions of k(s) = 0, K*(s) = 0, x(s) = 0 are denoted by Y Y
and v, respectively, where y” and ¥ coincide with adjustment coefficients intro-
duced above. In particular, the adjustment coefficient y* for the associated com-
pound Poisson model fulfills

L 5 *
(5.2) ¥ =217r,ﬁ,(B,(y )-1).
1=
For s = y we write ssmply h = (h, ..., hp). Note that k 15 a positive vector. Clear-
ly
(5.3 A+ K(y))h =0
and so

y=1nf {s > 0. det(A + K(s)) = 0}
It 15 also clear that

54 min ¥, <y<y’ < max ¥,
. =L
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Proposition 5.2 Assume p =2 If y, # v, then

mm{yl, Vb <Y<y < max{7,, ¥,}
Proof. Let A =-A,, then m, = A,/(A, + A), m,= A /A, + 4,). Thus
A +x(s) A J
Ay —Ay + Ko (5)
(5.5) =K (9K (5) = A1K5(8) = Aok (5)
=K, (K2 (5)— (A, + Ak (5)

Without loss of generahty assume that ¥, < y, Now distinguish two cases.

det(A+ K(s)) = det(—

Case 0 <y, <y, Then k(s) <0,0<s <7, K(s) >0,s >7, and hence we get
the following table of the sign variation

se O ) {7y " y2)
KKy + - -
_(A’l +2,2)K* + + -

which shows that the first zero ¥ of (5.5) 15 1n (y,, ¥*)

Case y <0<y, Then k,(s) < 0,0 <5 <7,, kK(s) >0,5>7,, and the sign varia-
tion becomes

s€ (O"y*) (y‘5y2)
KK, - -

A+ )T+ -

so that the first zero 1s 1n (0, ¥*).
The cases where one of the inequalities 1s an equality are easily treated in a simi-
lar way |

We now turn to the ordering of the adjustment coefficients i1f p > 2.

Theorem 5.1 Assume that (1 6), (1 7), (1.8) hold. Then
(5.6) >y

We proceed the proof by a lemma of independent interest.

Lemma 5.1 Under the assumptions of Theorem 5.1, not all h (1 = 1, . , p) are
equal.

Proof 1t follows from Theorem 6 | of Asmussen (1989) that there exists a con-
stant C € [0, oo) such that

Yu -
uh_)nle v, (u) = Ch,
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Thus 1t 18 clear by Lemma 2 L that | £ . < hp Assume on the contrary that all
h’s are equal Then Ah =0 and from (5 3) we would have ﬂ (B (y)-1)=yfor
each ¢ = I, . ., p This i1s impossible in view of the assumption that there exist ¢ *J
such that either 8 < B, or B, # B, J

Proof of Theorem 5.1. Multiplying both the sides (5 3) from the left by & we get
14 -
zlnlhlﬁl(Bl (Y)— l) = '}’ﬂ'h

from which we have that the adjustment coefficient for the Markov modulated
model 1s the solution of

(57) i ,31(3 (?’)—1)

By Lemmas 2.3 and 5 1, _

(5.8) y= S mBRE-)> T BB -,

from which we get (5.6). ]

6. PERTURBATION ANALYSIS FOR THE ADIUSTMENT COEFFICIENT

In this section we assume, similar as in Example 3.2, that the intensity matrix for
the Markov environment 1s parameterized as follows: A(g) = Ao/e whereas the B
and B, are fixed. The corresponding adjustment coefficient 1s denoted by y(€). Thus

y(€) 5 v as £ 1 0, and our aim 1s to compute the sensitiviry of y(g) at £ = 0 + 0,
1.e. the night derivative

A dual result deals with the limit € - o« Here we put ¢ = l/g note that
y(¢) = min _, Y and compute
d*y

The basic equation 1s again (5.3) where A, ¥, h depend on the parameter (€ or a)

The following result quantifies the effect on the adjustment coefficient of adding
a small but rapid Markov-modulation to the compound Poisson model Similarly,
Proposition 6.2 below deals with a small but slow Markov-modulation.

Proposition 6.1 In the case € L 0 we have

dy . . PN
i T ZK e K(y YAy —em)™ K(y Je.

Proof. The existence of the right derivative follows by the implicit function theo-
rem and det(A + eK(y(g))) = 0. Multiplying (5.3) by g, we obtain

(6.1)

= (Ay + eK()h.
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Differentiation with respect to € gives

(6.2) 0 = (K(y) + €y’ K'(y)h + (A, + eK(YDR'
Normalizing h by mh = 1, we have wh' =0, h(0) = ¢ Hence lettng € l0n(6.2)
yields

0= K(y")e + Ah'(0 + 0) = K(y%)e + (A, - emh'(0 + 0),

1e.

(6 3) B0 +0)=-(A,-em' K(y*e.

Differentiating (6 2) once more and letting € 1 0 we get

(6.4) 0=2y(0+0)K(y"e + 2K(y"Hh'(0 + 0) + Ah"(0+0).
Muluplying (6 4) by 7 to the left we get

(6.5) 0=2y0+0)mK(y"e + 2xK(y)Hh'(0 + 0)

Inserting (6 3) yields (6.1). (]

Now turn to the case of « We assume that 0 < y, <y, for: =2, , p Then
Yy— v asa 4 0 and we may take h(0) = e, (the first unit vector) We get

0 = (aA, + KlyDh
Differentiation with respect to a gives

(6.6) 0 = (A, + YK (Y)h + (aA, + K(y)h'.

Letting a 4 0 in (6 6) and multiplying by e, to the left we get 0 = 4, + y'(0)k|(¥,)
+ 0 (using x,(7(0)) = 0 to infer that the first component of K(y(0)k'(0 + 0) 15 0),

and we have proved-
+

d }’(0):_ flll
da <i(v1)

Proposition 62 [fO <y, <y, fori=2, |, p, then
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