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ABSTRACT 

This paper is devoted to the study of the mltml reserve, as a function of the 
retention hm~t, needed to assure that the probablhty of ruin, at the end of a certain 
period of ume, is not higher than an agreed value, for an excess of loss treaty To 
assess the probability of rum, the normal and the normal power approxHnat~on are 
used It ts shown that the m~tml reserve ~ not in general an increasing function of 

the retenuon, having a minimum under fair assumptions. 
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I INTRODUCTION 

Consider a risk for which an excess of loss reinsurance treaty ts sought Let M 
be the retention hmlt,  S = YN=0x ,, with X0-0 ,  the m~urer's aggregate gross 
(of reinsurance) clamls, ,n some fixed time interval, where N is the numbel of 
claims and {X,},=~. . ,v  are the m&vldual claims; P is the insurer 's gross (of 
reinsurance) premium income with respect to the same risk. 

Assume that the following assumptions are fulfil led'  

H~: N Is a mixed Polsson random variable, with 

I ~ e-~q (2q)t. 
Pr { N = k } = dH (q) 

0 k~ 

where 2 is the expected value of N and H(q) denotes the distribution function of a 
random variable Q with expected value equal to one, standard deviation Oo and 
skewness coefficient VO, where aQ>--0 and VQ > - O. 
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H~ {X,},=i .u are i i d non-negative random variables, independent of  N, with 
cominon distribution function G ( ) ,  absolutely continuous and such that 

G(x) = 0  .~--<0 

0 < G ( x ) < l  x > 0  

H~ The expected value of  X, exists and is denoted by E[XI 

H 4 The excess of  loss reinsurance prelmUln is calculated according to the expected 
value principle with loading coefficient o~, i e the loading is 

( I ) C (M) = o~2 (x - M ) d G  (x), 
M 

with o~>0 

For an excess o |  loss relnsnrance arrangement Beard, PenUkalnen and Pesonen 
(1984), p 146, .state the retention problem as the ascertainment of  the Inaxunum 
vahie of  M in such a way that  it is granted, with probability I - e, thai the retained 
iisk wdl not consume the initial reserve U during the period under consideration 
For the effect they have used the Normal Power approximation An alternative 
reference to this problem is chapter 6 of  Daykln, Penlikainen and Pesonen 
(1994) 

In the example given by them, with the data used thlough their book. the initial 
reserve is an increasing function with the retention hmlt 

It will be proved that this funcnon is not always increasing, that under some fair  

assumptions it will have a iniiumum, which rends feasible the forrnulation of the 
problem as the determination of the retention Intuit m such a way that the mmal 
reserve necessary to assure with probability I - e  that is not absorbed during the 
period undel consideration is reduced to a mlnmmln 

2 THE INITIAL RESERVE AS ;% FUNCTION OF THE RETENTION LIMIT 

Using the Normal Power approximation to the retained risk, with z >  1. one gets 
(see, for instance, Beard, Pentikalnen and Pesonen (1984), p. 129) 

I ( ,  
(2) U ( M )  = z o o ( M ) + -  ~ - l ) o s ( M ) y ~ ( M )  - 

6 

- ( P - E I S I - C ( M ) ) ,  M > 0  

with O(c)  = l - e ,  where q5 is the distribution function of  a standard norlnal 
variable, and o s ( M )  and y s ( M )  denote respectively the standard deviation and the 
skewness coetficlent of the retained risk S ( M ) ,  

N 

S ( M )  = 2 mm(X~,M).  
~=0 
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Let at (M)  be the k-th moment w,th respect to the origin of  the retained claim 
amount, i e 

F (3) at (M)  = x~dG(x)  + M ~ ( I - G ( M ) )  
0 

Then, having m mind that S(M)  follows a mixed compound Polsson distribution, 
the variance and the third central molnent ot S(M)  can be easily calculated 

(condmonmg on N) They are 

(4) O2s(M) = 2.az(M) + 2 . 2 a ~ ( M ) ¢ ~  

and 

(5) Z~ s(M)  = 2.a3(M) + 3 2.2 o~a,  (M)a2(M) + 2. ~a~ (M) Yoc;~), 

respectively, and hence the skewness coefflcicnt 7 s ( M )  ts, 

~3 s(M) 
7s(M) - 

o~(M) 

It ~s possible to prove the result that follows 

Result 1: If 

• the loading coefficient ot satisfies 

O N 1 0 g 
(6) o ~ > z - -  + - ( z  2 - 1 ) 7 N - ,  

2. 6 2. 

whele ON and YN denote the standa,d deviation and the skewness coefficmnt 
of N, 

• and the mixing distribution Q has a ~kewness coeffic,ent which IS at most three 
times ,is variation coefficient, , e (having in mind that the mean of  Q ~s I) 

(7) 30Q ~ ) tQ ,  

then U(M) given by (2) has a minimum 

Proof: Dlfferentmting o s (M ), o~(M)y~(M)  and C(M) one gets 

(8) 

(9) 
and 

(lO) 

where 

(I]) 

cry(M) = O ¢ ' ( M ) ( I - G ( M ) ) H ( M ) ,  

( a s ( M ) y s ( M ) ) '  = (I - G ( M ) ) G ~ 4 ( M ) P ( M )  

C' (M) = - o~2. ( I - G (M )), 

H ( M )  = 2M + 22a, (M)o~, 
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and 

M A R I A  D E  L O U R D E S  C E N T E N O  

(12) 

Then, 

P ( M )  = 2 2 ( 3 M 2 a 2 ( M )  - 2 M a 3 ( M ) )  + 

+ 2 ~ o ~ ( 3 a ~ ( M )  + 3M2 a~(M) - 2a ,  ( M ) a 3 ( M ) )  + 
4 ~ _ ~5c i~yQa~(M)  + + J . a o ~ y o a ~ ( M ) a 2 ( M )  + 3)~4crQai(M)a.~ (M) + 

+ (3 cr o - YQ) o~ 2 4 (2 Ma{ (M) - 2 a] (M) a 2 (M)). 

(13) U ' ( M )  = ( l - G ( M ) ) D ( M ) ,  

with 

(14) 
1 

D ( M )  = ZO's' (M) H ( M )  + - -  ( Z  2 - I ) o ~ 2 ( M ) P ( M )  - olJ. 
6 

Noting that (13) and (14) are of  the same sign, then given H2, it can be concluded 
that (13) takes the value zero, for fimte M, if and only if (14) ~s zero. 

Hence the result will be proved by showing that if (6) holds then 

(15) hm D(M)<O 
M--> (I ÷ 

and that (7) irnphes that 

(16) hm D ( M )  = + ~  
M ~ + 7 -  

Let 

Considering that 

then 

(18) 

whmh imphes that 

0_< 

a ~ (M) 
~ (M) - 

M ~ 
- - - ,  k =  1 , 2 , 3  

f M r~ J ~ d G ( x ) - - <  G ( M ) ,  VM>O,  
o M 

I 
M X/~ 

hm M ~ d G ( x ) = O ,  
M' -~  O" 0 

(19) hm ~ ( M ) =  I 
M - . ~ O  • 
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Multiplying and dividing the first term of the right hand side of  (14) by M and the 
second by M'* and taking the hm|t using (19), one obtains 

~ 9  99 ~ 
2 , 1 2+3A 'a~2+ACrQYO a2, 

(20) hm D ( M )  = z~12 + ). o b + -  (z 2 -  1) 
,u+0. 6 2 + .22 or~_) 

which shows that (6) imphes (15). 
On the other hand, ~t is obwous that, if G(x )  has a fimte second moment, the first 

term of  D ( M ) ,  with D ( M )  given by (14), tends to +oc when M--->+oa It will be 
shown that this still happens when the second moment does not exist. 

Indeed, given the assumptions about G(x) and using |ntegratlon by parts 

= x a -  t (1 - G ( x ) )  al l ,  ~,(M) ~Z ,, 

SO, 

(2~) 2 S" 0 -< 42  ( M )  --< - -  

M o 
(i - G(x)) (L,-. 

As 

f 
31 

hm (I - G ( x ) ) d r = E I X I  
M-.-) + ~ 0 

which exists by H 3, then 

h m  ~ 2 ( M )  = 0 
M-.-> + ~ 

and 

hm ~t(M)=0, 
M--) + ~ 

which proves that 

(22) J i l l ]  
M ----~ + ~ 

cr£ - I ( M )  H ( M )  = +o~. 

As the first term on the right hand side of (14) tends to +o~ when M---+ +oo, 
it is sufficmnt to show that, if (7) holds, the second term can not tend to -oo, to 
prove (16) For that purpose, note that 

(23) M a ~ ( M ) > a ~ + i ( M ) ,  V M > 0 ,  

whtch proves that, if (7) is fulfilled, P ( M )  gwen by (12) is positive for all 
M > 0  

To fimsh the proof it ~s enough to remind that, by assumption, z >  I 
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Note that (7) holds when N is Poisson (Q ts degenerate), but also when N is 
Negative Binomial (Q is Gamma and y(2/CYq=2) and even when Q is Inverse 
Gaussmn (then yO/OO=3) But condmon (7) ~s far from being a necessary 
condmon If, for instance, G has a finite thtrd moment, the hmlt of  (12) when 
M ~ + ~ is + oo independently of the s~gn of  3 o o -  Yo" 

R e s u l t  2 :  Using the Normal approxlmauon to the retained nsk, U(M) wtth M > 0 ,  
has a global mmtmum ff and only tf 

O" N 
(24) o r >  = z - -  • 

The nummum is attained at the point M*, where M* is the umque solution to the 
equation 

- i ( M )  [ M  + 2 a  j ( M )  cr~ l = a (25) zo~ 

P r o o f  o f  R e s u l t  2 : 
If the approximation to the Normal distribution is used (2) simplifies to 

(26) U(M) = ZOs(M)- ( P -  EIS]  - C(M)) 

and (I 4) to 

(2.7) D(M) = zo~~ (M)H(M) - o~2, 

with H(M) given by (11). 
It w,ll be shown that the second denvauve  of  U(M) is posmve whenever the first 

denvanve  of U(M) is zero for 0 < M <  + ~  Indeed, 

(28) U"(M)[v.iM}=o= {z6r~3(M)[22 I~x2dG(.r)+23o~I(M)I}( I -G(M) ) 

where 

(29) I(M) = a t ( M )  + a 2 ( M ) ( I - G ( M ) )  - 2a , (M)M(I -G(M))  

To show that (28) ~s posmve for 0 < M <  +~z it ~s enough to show that (29) Is 
not negative 

A~ / ( 0 )  = 0 then 

(30) 

which I,, equivalent to 

(31) I(M) = 

f 
M 

I (M) = I' (w) dw, 
~0 

I M (2 wa, (w) - a2 (w)) dG (w) 
B 
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As (31) Is non-negative for all w->0 the same happens to (30), which shows 
that 

(32) U " ( M ) I  U'(M)=O > 0, V M > 0  

which lmphes that thele exists at most one finite root of  

(33) U'(M) = O, 

and that when it exists it is an absolute ram)mum of  U(M). 
It is a consequence of the proof of  Result 1 that such a root exists ff and only ff 

(24) holds (note that (7) was only used to show that the second term on the right 
hand side of  (14) can not be negauve). 

Note that if N is Polsson distributed, (6) and (24) are eqmvalent  respecuvely to 

z z 2 -  l 
~ >  + - -  (34) 

and 

(35) 
Z 

1E+08. 

1E+O; 

1E+06 

1E+05 

1E+04 
I E-02 

m 

I I l I H I  I ) = U l l n  • ! I ! ! I 

1E-01 

. N P  

m m 

Normal 

1E+O0 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 

M 

FIGU~L I The mmal  re~e)ve a~ u lunct~on ol M Mort Uml  I000 Pounds 
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3. AN EXAMPLE 

Figure 1 shows U(M) when the Normal Power and the Normal approxlmanon are 
used, for the data used by Beard, Pent~kalnen and Pesonen (1984), with the 
exception of  the loading coefficient, which zs here taking the value 0.25, l.e for 

e = 0 0 0 1  
2 = 10 000 
P : 1 . 0 4 2 E I X ]  
a o = 0 038 
Yo = 0 25 
a = 0 2 5  

and G according to Table 3.5.1. of  Beard, Pennkamen and Pesonen (1984), 
pp 62-63 (columns 2 and 4) The minimum of  U ( M )  when the NP approxtmauon 
is used is attained at M * =  100 thousand pounds, and it is shghtly higher when the 
Normal approximation is used 

Note that one does not expect big changes on the behav~our of  the funcnon U(M)  
when each of the approx~matmns is used, since for reasonable values of  M, the 
second terrn on the right hand side of equation (2) is relatwely small, becoming 
significant only for large values of M 

Having m mind the results obtained one can conclude that the formulanon of  the 
retention problem m such a way that the mmal reserve necessary to assure with 
probablhty I - e  that it is not absorbed during the period under consideration is 
reduced to a minimum, makes sense 

Condmons (6) and (24) are not fulfilled only when the loading coeffficmnt used 
by the reinsurer is very small or when the reqmred probabd~ty is very high 

As M* Is a funcnon of  the reqmred probabdlty,  it would be advisable, m a 
practical sstuanon, to study M* as a funcnon of z 
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