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ABSTRACT

This paper 1s devoted to the study of the miual reserve, as a function of the
retention limit, needed to assure that the probability of ruin, at the end of a certain
period of time, 1s not higher than an agreed value, for an excess of loss treaty To
assess the probability of ruin, the normal and the normal power approximation arc
used It 1s shown that the mitial reserve 1s not 1n general an increasing function of
the retention, having a minimum under fair assumptions,

KEYWORDS

Risk reserve; excess of loss; normal power approximation, normal approxima-
tion

| INTRODUCTION

Consider a nisk for which an excess of loss reinsurance treaty 1s sought Let M
be the retenuion limit, S = I X,, with X,=0, the nsurer’s aggregate gross
(of reinsurance) claims, in some fixed time interval, where N 1s the number of
claims and {X,},_, n are the individual claims; P 1s the insurer’s gross (of
reinsurance) premium ncome with respect to the same nisk.

Assume that the following assumptions are fulfilled:

H: N s a mixed Poisson random variable, with

»z  -Aq A
Pr{Nzk}zj Y i
k!

0

where 4 1s the expected value of N and H (¢) denotes the distribution function of a
random vanable Q with expected value equal to one, standard deviation o, and
skewness coefficient y,, where ;=0 and y,=0.
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H, {X,},-, . nare11d non-negative random variables, independent ot N, with
common distribution function G ( ), absolutely continuous and such that

{ G=0 A=<0
0<G)<l x>0
H; The expected value of X, exists and 1s denoted by E[X]

H, The excess of loss remsurance premium 1s calculated according to the expected
value principle with loading coefficient «, 1 e the loading 1s

E3

(H C(M)=al J (x=M)dG (x),

M
with >0

For an excess of loss remsurance arrangement Beard, Pentikainen and Pesonen
(1984), p 146, state the retention problem as the ascertainment of the maximum
value of M 1n such a way that it 1s granted, with probability 1 - &, that the retained
1isk will not consume the initial reserve U during the pertod under constderation
For the effect they have used the Normal Power approximation An alternative
reference to this problem 1s chapter 6 of Daykm, Penukainen and Pesonen
(1994)

In the example given by them, with the data used thiough their book. the mual
reserve 18 an increasing function with the retention himit

It will be proved that this function s not always increasing, that under some fair
assumptions 1t will have a mimimum, which rends feasible the formulation of the
problem as the determination of the retention imit m such a way that the imual
reserve necessary to assure with probability 1 — ¢ that 1s not absorbed during the
period under consideration 1s reduced to a nunmimum

2 THE INITIAL RESERVE AS A FUNCTION OF THE RETENTION LIMIT

Using the Normal Power approximation to the retained risk, with 2> 1. one gets
(see, for mstance, Beard, Pentikainen and Pesonen (1984), p. 129)

r,
2) UM) = :Uq(M)+g(:'—l)Os(M))’s(M)—

— (P-EIS]-CM)). M>0

with @ (2) = | —¢, where & 15 the distribution function of a standard normal
variable, and os(M) and y (M) denote respectively the standard deviation and the
skewness coetficient of the retained risk S(M).
N
S(M) = 2 min(X,, M).

=0
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Let a, (M) be the k-th moment with respect to the origin of the retained claim
amount, 1e

M
3) a M) = I £ dG(x) + MH(1 -G (M))
0

Then, having in mind that S (M) follows a mixed compound Poisson distribution,
the variance and the third central moment of S(M) can be casily calculated
(conditioning on N) They are

(4) 0k (M) = Aay (M) + A2 ai (M) 0%
and
(5) Uy s(M) = Aay(M)+3 A% 0ha,(M)a, (M) + 1" a} (M) y,0),

respectively, and hence the skewness coefficient ys(M) 18,

It 1s posstble to prove the result that follows

Result 1: If

e the loading cocfficient e sausfies

by,
(6) a>z@+—(2'—l)y~ﬂ,
A 6

whete gy and y denote the standard deviation and the skewness coeffictent

of N,

¢ and the mixing distribution Q has a skewness coefficient which 15 at most three
times 1ts vanation coefficient, 1 e (having 1n mind that the mean of Q 15 1)

(7 300270,
then /(M) given by (2) has a minimum

Proof : Differentiating o (M), a¢(M)y, (M) and C(M) one gets

(8) os(M) = o5 ' (M)(1 -G M)y H(M),

(9) (os(M)ys(M))' = (1 =G (M))os *(M)P (M)
and

(10) C'(M) = —ad(l -GM)),

where

(1) HM) =M+ 2 a,(M)o},
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and

(12) PM) = 1*(3M?ay(M) - 2 May(M)) +
+A705(3a3 (M) + 3M*al (M) - 2a,(M)ay(M)) +
+ Aty yedi (M)ay (M) + 32* 0hai (M)ay (M) + Aoy ypa| (M) +
+(3ay—y) oA (2 Mai (M) - 24t (M) ay(M)).

Then,

(13) UMy =(1-G@M))D#M),

with

(14) D(M)=ZOE'(M)H(M)+%(zz—l)ag‘2(M)P(M)—al

Noting that (13) and (14) are of the same sign, then given H,, it can be concluded
that (13) takes the value zero, for fimite M, 1f and only 1f (14) 1s zero.
Hence the result will be proved by showing that if (6) holds then

(15) Im D (M) <0

Moo

and that (7) imphes that

(16) Im DWM) = +c
Mo+
Let
1, (M
E (M) = ”(‘), k=1,273
M

Constdering that

M A
OSJ deG(,r)SG(M), VM >0,

then
Mok
(18) lim J —A(IG(.X'):O,
m-o0 oM
which 1imphes that
(19) im & M) =1
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Multiplying and dividing the first term of the right hand side of (14) by M and the
second by M* and taking the Limit using (19), one obtains

1 A+3020%+ 470}
200 lim D(M) = z\A + 220 +— (2= 1) M Bl 24 Y

M=o 6 A+ Aoy

which shows that (6) implies (15).

On the other hand, 1t 1s obvious that, 1f G (x) has a finite second moment, the first
term of D (M), with D (M) given by (14), tends to +9% when M — +0o0 It wiil be
shown that this still happens when the second moment does not exist.

Indeed, given the assumptions about G (x) and using integration by parts

k M
EM) = — J AT =G () dy,
YL

0

s0,

M
2D 0=& M) = J (1 =G () dx.

0

RN

As

M
lim J (1 -Gx)dx=E[X]
0

Mo+

which exists by H;, then

hm & M)=0

M- +x
and

hm & (M)=0,
M= +x

which proves that

(22) Iim o] ' (MYH(M) = +w.
M+
As the first term on the right hand side of (14) tends to + % when M — + o,

it 18 sufficient to show that, 1if (7) holds, the second term can not tend to -, to
prove (16) For that purpose, note that

23) Ma,(M)>a, ., , (M), YM>O0,
which proves that, if (7) 1s fulfilled, P(M) given by (12) is positive for all

M>0
To finish the proof 1t 1s enough to remind that, by assumption, z> |
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Note that (7) holds when N 15 Poisson (Q 1s degenerate), but also when N 1s
Negative Binomial (Q 1s Gamma and y,/o,=2) and even when Q 15 Inverse
Gaussian (then y,/0,=3) But condinon (7) 1s far from being a necessary
condition If, for instance, G has a finite third moment, the himit of (12) when
M — +oc 15+ independently of the sign of 30, - ¥.

Result 2: Using the Normal approximation to the retained nisk, U(M) with M >0,
has a global minimum 1t and only 1f

(24) a>=
)

The nunimum is attained at the point M*, where M* 1s the unique solution to the
equation

(25) 205 " (MY[M+2Aa,(M)ohl=a

Proof of Result 2:
If the approximation to the Normal distribution 1s used (2) simplifies to

(26) UM) = zo5(M)-(P-E[S] - C(M))
and (14) to
(27) D(M) = zoJ"(MYH (M) - a4,

with H (M) given by (11).
It will be shown that the second derivative of U(M) 1s positive whenever the first
denvative of UM) 15 zero for 0<M < + o Indeed,

M

@8) UMY ypgyeo = {zas'J(M)[XZJ‘ d\-zdc(.\-)+,1-‘a2Q/(M)H(1 -G(M))
0

where

(29) I(M) = ai(M) + ay(M)(1 =G (M)) = 2a, (MM (1 —G(M))

To show that (28) 1s positive for 0 <M < + o, 1t 1s enough to show that (29) 1s
not negative
As 1{0)=0 then

M
(30) (M) = J‘ I"(w)dw,
0

which 15 equivalent to

M
(31 (M) = j (2 wa, (W) —a,(w)) dG (w)

[\
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As (31) 1s non-negauve for all w=0 the same happens to (30), which shows
that
(32) UMY yray=0>0, YM>0
which tmplies that there exists at most one finite root of
(33) U'my=0,

and that when 1t exists 1t 1s an absolute mimmum of U(M).

It 1s a consequence of the proof of Result 1 that such a root exists 1f and only if
(24) holds (note that (7) was only used to show that the second term on the right
hand side of (14) can not be negative).

Note that if N 15 Poisson distributed, (6) and (24) are equivalent respectively to

2
z z°-1
(34) a>— +
Vi 64
and
Z
35) a> —
VA
1E+085
] Al =
] « NP
* Normal
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o 1E+08 -
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M

Figure 1 The minal reserve as a tunction ot M Mon Unnt 1000 Pounds
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3. AN EXAMPLE
Figure | shows U(M) when the Normal Power and the Normal approximation are

used, for the data used by Beard, Pentitkainen and Pesonen (1984), with the
exception of the loading coefficient, which 1s here taking the value 0.25, 1.e for

¢ =000!

A =10000

P =1.042E{X]

0p=0038

‘}’Q=025
=025

and G according to Table 3.5.1. of Bcard, Pentikainen and Pesonen (1984),
pp 62-63 (columns 2 and 4) The minimum of U(M) when the NP approximation
1s used 1s attamed at M* =100 thousand pounds, and it is shightly higher when the
Normal approximation 1s used

Note that one does not expect big changes on the behaviour of the function U (M)
when each of the approximations 1s used, since for reasonable values of M, the
second term on the nght hand side of equation (2) 1s relatively small, becoming
signitficant only for large values of M

Having in mind the results obtained one can conclude that the formulation of the
retention problem 1 such a way that the mitial reserve necessary to assure with
probability | —¢ that 1t 1s not absorbed during the period under consideration 1s
reduced to a mimimum, makes sense

Conditions (6) and (24) are not fulfilled only when the loading coefficient used
by the rewnsurer 1s very small or when the required probability 1s very high

As M* 1s a function of the required probability, 1t would be advisable, in a
practical situation, to study M* as a function of z
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