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ABSTRACT 

The present paper considers the present value, Z(t), of a series of  cashflows up to 
some time t. More specifically, the cashflows and the interest rate process will often 
be stochastic and not necessarily independent of  one another or through time. We 
discuss under what circumstances Z(t) will converge almost surely to some finite 
value as t--4o~. This problem has previously been considered by DUFRESNE (1990) 
who provided a sufficient condition for almost sure convergence of  Z(t) (the Root 
Test) and then proceeded to consider some specific examples of  such processes. 
Here, we develop Dufresne 's  work and show that the sufficient condition for 
convergence can be proved to hold for quite a general class of model which 
includes the growing number of  Office Models with stochastic cashflows. 
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[. INTRODUCTION 

Suppose d(t)  is the constant force of  interest during the period I t -  I, t), so that an 
investment of I at time t - I will accumulate to exp d (t) at time t. The present value 
at time 0 of  1 due at time t is then 

V(t) = exp - . , : ,  = ,=, 

where v, = exp ( - 6 (s)) is the discount factor for year s. 
The present value of a series of  cashflows C ( I )  at time 1, C(2) at time 2 . . . . .  C(t) 

at time t is therefore 

Z(t) = ~ V(s) C(s) = ~ v; ... v ,C(s)  
.s=l s = l  
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Such a process has been considered by DUFRESNE (1990) and AEBI et al. (1994) 
from the financial point of view and by VERVAAT (1979) and BRANDT (1986) from 
the mathematical point of view. All of these works consider the special case where 
{6(t)}~=l and {C(t)}~=l are independent and identically distributed and indepen- 
dent of one another. DUFRESNE (1990) considers the convergence of Z(t) as t tends 
to infinity and its limiting distribution when the distributions of 6(t) and C(t) are 
known. AEBI et al. (1994) show how Bootstrap methodology can be used to 
estimate the limiting distribution when a limited number of past observations of 
6(t) and C(t) are available. 

DUeRESNE (1990) also considers more general models and provides sufficient 
conditions for almost sure convergence of Z(t). In this paper we consider a number 
of specific examples for the process Z(t) and it is demonstrated that Dufresne's 
conditions hold for quite a wide class of models. 

In this paper we will restrict ourselves to discrete time models. However, the 
results described here also hold for the continuous time models for 6 (0  described 
by PARKER (1993, 1994d) and NORBERG and MOLLER (1994). 

DE SCHEPPER, TUENEN and GOOVAERTS (1994) consider the present value of 
annuities and of a perpetuity payable continuously. Using Laplace transforms they 
show that the perpetuity has an inverse Gamma distribution, matching the results of 
DUFRESNE (1990). 

2 .  C O N D I T I O N S  F O R  C O N V E R G E N C E  O F  Z(t) 

The principal result provided by DUFRESNE (1990) giving a sufficient condition for 
the almost sure convergence of Z(t) is the Root Test" 

Theorem 1 (Root Test, for example, see DUFRESNE, 1990) 

gf 
lira sup IV(t) C(t) l m < I ahnost surely 

then Z(t) converges almost surely to some finite limit as t tends to infinio,. 
Now, trivially, this is equivalent to the condition 

lira s u p -  log ]C(t) ] + log vs < 0 ahnost surely 
I ---~ ~ l .~= ] 

~ l i m s u p -  Iog lC(OI  - 6(s) < 0  almost surely 
t--.-~ c~ t s =  I 

We therefore have the following 
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C o r o l l a r y  2 

1 i 

If  the force o f  interest process { c~ (t) },~ i is ergodic with - ~ 6 (s) ----~ 6 = E [6 (.)] 
I s= l  

almost  surely, and  i f  

I 
l i m s u p - l o g l C ( t )  l = 19 ~ [ - ~ ,  + ~ )  

t ,....> zc t 

where p - di < 0 then Z(t)  converges almost  surely to some f ini te  limit as t tends to 
infinity. 
[The condition that p < 6  means that the cashflow process, C(t), must grow more 
slowly than the accumulation process l /V(t) .  Consider the trivial case of  a 
perpetuity where C(t)  = exp pt and V(t) = exp - 6 t  are both deterministic. Then 
Z(t)  converges if and only if p < 6.11 

Corollary 2 extends Dufresne's subsequent development by allowing the process 
C (t) : 
- -  to depend on the force of  interest process; 
- -  to be non-ergodic and, in particular, to include inflationary growth and growth 

in the underlying number of  policies. 
[A rigorous definition of  ergodicity is given by KARLJN and TAYLOR (1975). If a 
process X(t)  is known to be ergodic then the following results hold: 

l n 

lira - Y_~ X(t)  = # 
t l . . - . -~ n l =  I 

l " = 0 2  I n lim ~ - 9 = - [ X ( t ) - X , , ] -  where X,, - ~ X(t)  
n-..->oc n t = l  n t = l  

1 i f a < x - < b  
and if I , .b(x) = 0 otherwise 

' i  
lim - l . , i ,[X(t)] = F ( b ) - F ( a )  

n . - - ~  n ¢= I 

where ju and o 2 are the unconditional mean and variance of  X(t )  and F(x)  is the 
unconditional cumulative distribution function of  X(t).] 

3. THE INTEREST RATE PROCESS 

Before we concentrate on the cashflow process, it is worth discussing briefly some 
interest rate processes. 

The ergodic condition for the force of  interest process is not particularly onerous, 
and encompasses most of  the widely used stochastic investment models. 
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- -  Independent and identically distributed returns: for example, WATERS (1978), 
DUFRESNE (1990), PAPACHRISTOU and WATERS (1991), PARKER (1993, 1994d) 
and AEBI et al. (1994) give but a few examples. 

- -  Simple autoregressive models for the rate of return, such as the AR(I)  time 
series model, and the Ornstein-Uhlenbeck process: for example, DHAENE (1989, 
1992), PARKER (1993, 1994a,b,c,d) and NORBERG and MOLLER (1994). 

- -  Models with several asset classes: for example, WILKIE (1986, 1987, 1992, 
1994, 1995). 

- -  Models for the term structure of interest rates: for example, BOYLE (1978, 
1980), BRENNAN and SCHWARZ (1979), ALBRECHT (1985), COX, INGERSOLL and 
ROSS (1985), BEECKMAN and SHIU (1988), HEATH, JARROW and MORTON (1990, 
1992), SERCU (1991) and LONGSTAFF and SCHWARZ (1992). 

- -  Autoregressive Conditionally Heteroscedastic (ARCH) models: for example, 
see WILKIE (1995, Appendix D). 

Some non-ergodic models may still admit convergence but it is worth discussing 
some special cases which may be considered to be inappropriate. 

First, DUFRESNE (1990, Proposition 3.2. I) shows that Z(t) will converge if {us} is 
stationary and ergodic and Pr(v.,.= 0 ) > 0 .  This second condition is equivalent to 
Pr(6 (s) = oo) > 0 which does not seem appropriate. 

Second, some authors (for example, DHAENE, 1989, 1992; DUFRESNE, 1990, and 
PARKER, 1993) consider non-stationary models for the force of interest process. One 
of two things may happen. 
- -  The process may have positive drift, so that 6(0 tends to infinity almost surely 

(again unrealistic). 
- -  The process may have no drift but unbounded variance. Examples of this are 

random walk models of  the form 6(t+ I) = 6(0 + e(t+ I) where the e are 
independent and identically distributed zero mean random variables, and, more 
generally, ARIMA(p, d, q) models (d--  > 1). With such processes it is often easy 
to show (for example, see DUFRESNE, 1990, Proposition 4.4.4) that 

lira sup [ Z ( t )  ] = .~. 
i ---~ oe 

Figures I and 2 demonstrate the problem. For many years d(t) may remain 
positive (Figure I). The process Z(t) (Figure 2) may then give one the 
impression that it is converging and that it is safe to use Z(50) or Z(100), say, 
as an approximation to Z(oo). After a while, though, 6(t) takes a long excursion 
below zero and Z(t) shoots off upwards. 

4. THE CASHFLOW PROCESS 

Corollary 2 provided us with a condition for the behaviour of C(t) as t tends to 
infinity. We now consider this in more detail and provide the following lemma 
which will allow us to satisfy the conditions in Corollary 2. 
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FIGURE I. Sample path of a random walk interest rate process, ~(t). 
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L e m m a  3 

Suppose that there exists a deterministic sequence 
to infinity such that 

Then 

a (t) converging to zero as t tends 

~ P r  log C(t) l > - o + a ( t )  <o~. 
t = l  

1 
lim sup - log [ C(t) [ <-- 0 ahnost surely. 

,.-,~o t 

P r o o f  

Let E t = {t- i log ] C(t) I o + a(t)}. Then 

I = 1  

Pr(lim sup E,) = 0 by the first BoreI-Cantelli Lemma 
l -..., oc 

(for example, see W~I.UlAmS, 1991, Section 2.7) 

1 
lim sup -- log ] C(t) [ --< 0 almost surely. 

t-..~ :0 t 

Lemma 3 provides quite a weak condition on the cashflow process: cashflows 
need not be independent; and the tails of  the cashflow distributions can be quite fat. 
In particular if we suppose that /.t(t) = E [ C(t) I then we are able to prove the 
following theorem which provides us with a relatively easy method for proving the 
convergence of  t - l  log [ C(t) 1. 

T h e o r e m  4 

Let O0 = inf {0 

1 
lim sup -- log 

I--.-> ~ t 

lim supe -P tk t ( t )  < ~}. Then 
f -.-~ c¢ 

C(t) ] <- P0 almost surely. 

P r o o f  See Appendix A. 

This result covers many cases, some discussed previously by other authors: 
- -  C(t) independent and identically distributed (DUFRESNE, 1990; AEBI, et al., 

1994) ; 
- -  C(t) an ergodic stochastic process and hence with u(t)  constant, giving P0=O 

(DUFRESNE, 1990); 
- -  closed funds (for which u(t)  tends to zero in finite time) (PAPACHRISTOU and 

WATERS, 1991; PARKER, 1993, 1994a,b,c,d; FREES, 1990); 



THE PRESENT VALUE OF A SERIES OF CASHFLOWS 87 

- -  deterministic processes with exponential ly bounded growth (for example,  an 
office model with an assumed new business growth rate). 

Theorem 4 gives a stronger condition for convergence than Lemma 3. For 
example,  suppose C(t) has a Log-Pareto distribution with drift :  that is, 

constant 
Pr [log C( t ) -a t  > x] - for x>x  o and 6 > 0 .  

X 6 

Then EIC(t) I = ~  for all t so that {C(t)} does not satisfy the conditions for 
Theorem 4. Nevertheless, {C(t)} does satisfy the conditions for Lemma 3, implying 
that lim supt~o= t -  i log [ C(t)/ is still less than infinity. Theorem 4 does, however,  
provide us with a condition for convergence which is often easier to verify, as will 
be demonstrated in the next section. 

5.  A STOCHASTIC OFFICE MODEL 

We now develop the last of these examples to include office models in which 
cashflows are stochastic. The off ice 's  portfolio is assumed to consist only of  
policies which do not participate in the profits of  the company. The model 
described includes stochastic mortality, stochastic growth of  new business volumes, 
stochastic inflation in the size of  individual policies and conditionally independent 
and identically distributed policy sizes at a given time of  inception. 

The generality of  the model, here, means that the notation may appear to be quite 
heavy going, but the reader should concentrate on:  

- -  the total premium income at t ime t, P( t ) ;  
- -  the total benefit outgo at t ime t, B(t), which consists of  benefits payable on 

death during the year ( t -  I, t], and on survival to duration t for t = 1, 2 . . . .  
Suppose that A = {2(t)}~=_~, 2(t) = (21(t), 22(t)), is the process with 

determines the volume of new business (21 (t)) and the individual policy size index 
(;t2(t)). 

Let (X)t,j represent the life corresponding to policy j taken out at t ime t. All 
policyholders are aged x at entry. Then, using standard notation, we have 
sP.,. = probabili ty that an individual now aged x survives to age x + s  

= 0 for all s > w - x  for some limiting age w < ~  
and s-  i ] q.,. = the probabili ty that an individual now aged x dies between ages 

x + s - I  a n d x + s  
= 0 for all s > w - x  

First we consider the total premium income at time t. This is 

N ( t  - s) 

P(t) = ~ ~ Kf  a .... (j) I, s ........ ( j )  
s=O j =  I 

= P l ( t ) +  P2(t) 

oQ N ( t  - s) 

where Pi(t) Z ~ K~A,_.,.(j) s . = 1, ...... ( j )  
s = t  ] = 1  

= premium income in respect of  policies issued at or before 
time 0 
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t -  I N ( t -  s) 

P2(t) ~ ~ K~A,_ , ( j )  s • = . / ,  . . . . . .  ( j )  

s = 0  ./=1 

= premium income in respect of policies issued after time 0 
N(s) = number of new policies taken out at time s 
N(s) 12.1(s) ~ Po(21(s)), ( s > 0 )  and, given A, N(I) ,  N(2) . . . .  are indepen- 

dent 
K P,,. = premium at duration s per unit of  benefit 
At(j)  = number of units of benefit for policy j taken out at time t 
F,(x) = Pr(a , ( j )  <- x) 

with A,(I),  A,(2) . . . .  independent and identically distributed and 
independent of  the N(t) 
and A,( j )  and A.,(k) are independent whenever t ~ s 

IS = t 1 if(x),  .... j is still alive at time t 
' ...... (J) t 0 otherwise 

By leaving K.[', K~ s and K~ (defined below) as essentially arbitrary functions of 
duration, we maintain a high degree of  flexibility. In particular, this covers a wide 
variety of  policy types including annuities and assurances. 

Given these assumptions we can then say that P2(0 [ A has the Compound 
Poisson distribution 

P2(t) ]A - CPo(Ap(t), F, P) 
t - I  

where A j, (t) = Y~ 2. i (t - s).,.p., 
s=O 

t - I  
I 

F,P(x) - ~ 2., (t -s).,.p.,.F, _.,.(x/K~ ) 
Ap(t) .,=o 

If we assume that the history of the office is known up to and including time 0 
then P~ (t) is subject to rnuch less uncertainty because the numbers and sizes of the 
existing policies are known. In any event Pl(t) is equal to zero for all t -> 
(.0 --  X. 

Turning now to the benefits process, B(t), we can proceed in a similar, but 
slightly more complex, way:  

oc N (t - s)  

B(t) Z Z {K.~A,-.,(J) Is s(j)+KsOa, - " o = , . . . . . .  . ( j ) l ,  . . . . . .  ( j ) }  
s=l  j = l  

= B I ( t )+B2( t  ) 
N(t-.~) 

K D A  . . . i  D where B,(t) = Z ~ {K.,.SA,-.,.(J)lrS-.,..,(J) + .,. ,-.AJ) t-.,...,.(J)} 
S = l  J=  I 

t -  I N ( t -  s) 

= Z  Z 
s = l  j = l  

B z(t) {K.SA,_ • s ,.(J) I,-.,.. s(J) + K., r-)A .... (j)l~_ ...... (j)} 
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K s = 

K~ ° = 

O • / ,  ...... (./) = 

and note that 
S • D • 

L_,. . . , .( j)  + 1, . . . . .  ( J )  = 

As with the premium 
Poisson distribution 

B2(t) [A ~ CPo(AB(t ), 
t - I  

where Ae(t) = y=~ 21(t 
s = l  

amount 
fit 
amount 
benefit 

I {0 

payable on survival to duration s per unit bene- 

payable on death during the year (s - I, s] per unit 

if (x)t-.,.j dies during the year  ( t -  1, t] 
otherwise 

I if (x),_.,..j is alive at t -  1 
0 otherwise 

income we can then see that B2(t ) ] A has the Compound 

F , " )  

- s ) . , . _  IP., 

1 t - I  

Fff(x) - Z 2)(t-s){.,p.,Ft=.,(.r/K.~S)+.,., I q.,F,_.,(x/K.,°)} 
A ,  (t) ., =, 

We can also say that Bi (t) = 0 for all t > oa - x. 
Now suppose that ml(t) = E[A,(j)].  Then for t > a ~ - x  

~ ( 0  = E ( e ( t ) )  

= E [ e ( e ( t ) I A ) ]  

[" 1 = E ~ Z t ( t - s ) ,n t ( t - s ) ( .~p ,K~s+,_ ,  I q.,.K.g) 
S =  I 

u l - . l "  

= ~ E [ ~ l ( t - s ) m ~ ( t - s ) l k l ( s )  
S = I  

where kl(s) = ,p.~K~ + s_l l q.,.K °.,. 

To make further progress we need to make further assumptions about the claim 
size distributions and in the model for new business growth. 

Suppose then we assume that F,(x) = F ( x / t 2 ( 0 ) :  that is, A,(j)H~2(O and 
A,(k)122(s) are identically distributed when s~et and where 22(0 represents the 
benefit inflation index. Then ml (0 = X2(t)ml. 

//) - . i  

It(t) = ~ m , k , ( s ) E [ a , ( t - s ) 2 2 ( t - s ) ]  
s = l  

Suppose also that 

)tl (t) = 21 exp [Pi t+01Wl (t)l 

22(/) = 22 exp [132I + 0 2 W2(t)] 
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where Wi (t) and W2(t) are independent standard Brownian motions. In particular, 
they have the properties for i = 1, 2: 
- -  W i ( 0 )  = O ;  

- -  if tn<t 2 then Wi( t2) -Wi(q)  ~ N(0, t 2 - t j ) ;  
- -  if tn<t2 --< t3<t4 then Wi( t2) -Wi( t l )  and Wi(t4)-Wi(t3) are independent. 

For t < 0  Wl(t) and W2(t) are known. 
Then 

E[2t( t )  2z(t)] = E[2t (t)l E[2z(t)] 

E/o -- 2'12'2exp t + 0 2 +  ~ a ~ + - a %  t 
2 2 

= 2'12.2 exp [Ot] 

1 I 
w h e r e o =  Ot + 0 2 + - o ]  + - - o ~  

2 2 

We therefore have 

(o  - .1" 

/p(t) = 2't2'z ~ m~k~(s) e x p [ p ( t - s ) ]  
s=l  

oo - .q" 

= 2'~ 2. 2 exp (pt) ~ rnl kn (s) exp ( - ps) 
s = l  

= u exp (pt) 

where ,u = 2'12.2 ~ m l k l (s) exp ( - ps). 
, ~ = ]  

Hence, by Theorem 4 we deduce that 

I 
lira s u p -  log I B(t)} -< p almost surely. 

We can prove similarly that 

I 
l i m s u p - - l o g  IP( t )  l -< p. 

t ----~ ~ t 

Hence, if p - 6 < 0 then, by Corollary 2 

z(o = V(s)C(s) = ~ V(s)P(s)- ~ V(s)8(s) 
S = ]  S = I  S = [  

converges almost surely to some finite limit as t tends to infinity. 



THE PRESENT VALUE OF A SERIES OF CASHFLOWS 91 

6. DISCUSSION 

It is possible without great difficulty to relax many of  the assumptions made in 
Section 5. 

- -  Here we assumed that all new entrants will be of  the same age in an effort to 
contain the already complex notation. Relaxing this to include a spread of  ages 
will result in a sum of conditionally independent Compound Poisson processes 
(given A) which is itself a Compound Poisson process. 

- -  Similarly we could allow for more than one policy type, multiple state models 
(for example, permanent health insurance) and more than one risk group. 

- -  Other forms of  distribution for N(t) J 2z(t) would provide similar results. The 
Poisson assumption was made here for the convenience of  its additive 
properties. 

- -  Inclusion of expenses and reserves. (However, if we discount cashflows at the 
same rate of  interest as that earned on the reserves, then the limiting value of  
Z(t) will be unchanged.) 

It should, therefore, follow that converge can be shown to occur for a wide range 
of  office models, beyond the already general case described here. 

Suppose that N(t)=0 for t--<0. Then, in the context of Section 5, lim,_~= Z(t) 
represents the present value of profit on future new business. The present paper has 
shown that, subject to certain conditions, this quantity is well defined and exists 
almost surely. It is a quantity which is of  genuine practical interest since it allows 
actuaries to assess the underlying value of  a company. 

it is unlikely that the limiting distribution or the moments of Z(t) will be known 
under the majority of  circumstances. (However, where the cashflows in different 
years are independent, the methods of PARKER, 1993, 1994a,b,c can be used to find 
the distribution of  Z(t) for t < ~ .  This then provides, for large t, an approximation to 
the limiting distribution of  Z(t).) It will often, therefore, be necessary to carry out a 
Monte-Carlo study, simulating sample paths of Z(t). The results described in this 
paper indicate that Z(t) will converge to its limit at least as fast as the deterministic 
annuity function 671 with force of  interest 6 - 0  tends to its limiting value. This 
gives us a useful guide as to when the difference between Z(t) and its limit falls 
within the maximum tolerable level of  error. 

Some idea of the limiting distribution of  Z(t) can be obtained by applying the 
results of PAPACHRISTOU and WATERS (1991) and FREES (1990) for large portfolios. 
The analogue here is that the distribution of ) .TIZ( t )  tends to that of 
2 ( I E  [Z(t) [ 6(s), 21(s), )-2(s), = I, 2 . . . . .  t] as ,'1-1 tends to infinity, and similarly 
the distribution of  the limit of Z(t) where this exists almost surely. 
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m 

APPENDIX A 

We make use of the following Corollary to Lemma 3. 

Corol lary  A.1 

If there exists a deterministic sequence a(t) converging to zero as t tends to 

infinity such that ~ exp [ -  p t -  ta(t)] E Jc(t) [ < ~ then 
t = l  

lira sup t - i  log J C(t) ] <-- P ahnost surely. 
[ ---) o~ 

Proof 

As in Lemma 3 let 

= { I c ( t )  l :> exp [pt+ta(t)]} 

Now E[C(t)  J >- cPrl C(t) J> c] for any c > 0  (for example, see WILLIAMS, 
1991, Section 6.4). Hence 

E JC(t) J--> exp [pt+ta(t)]Pr(E,) 

Y, Pr(E,) <-- Y. e x p [ - p t - t a ( t ) ] E J C ( t ) J <  2. 
t = l  t = l  

This is the condition in Lemma 3. 

Proof of Theorem 4 

Take any p2>po and set a(t)=O in Corollary A.I. Choose any Pl such that 
po<pl<p2 and let k = sup {exp( -pz t )~ ( t ) :  t ~ l } .  Since pl>po,  k must be 
finite. Then 

e x p [ - p z t - t a ( t ) ] E I c ( t ) l  = ~ e x p [ - p , t ] E  JC(t) l e x p [ - ( p z - p , ) t l  
t= l  t = l  

< Y~ k e x p [ - ( p 2 - O l ) t ] < 2 .  
t = l  

Hence lira s u p t - i  log J C(t) J < 02 almost surely. 

This is true for all 02 > 00 so the result follows. 
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