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ABSTRACT

Maximum likelthood estimation 1s denived for the Lagrangian Poisson distribution
for a simple and a loglinear model and illustrated with real data
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I INTRODUCTION

The monograph by ConsuL (1989) 1s on a nicc counting distribution known as
Lagrangian Poisson'

(1 pnl6,2)=00+nt)y " exp| (6 +nt)l/n'
n=20,1,2,34,.. >0 0=¢=I

The mean and variance of this probability distribution are finite when £ <1 and are
given by

EIN1=0(1-8)"" var(N) = (1 -¢&) "3

When £ =0 this distribution reduces to the well-known Poisson distribution

ConsuL and SHENTON (1972) derive (1 1) using Lagrange’s cxpansion A
probabilistic derivation of the Lagrangian Poisson distnibution can be found in
Goovaerts and Kaas (1991). Once we know this distnibution it 1s possible to
recognize 1t 1n the literature Browsing in Cox and MILLER (1965), 1 encountered 1t
as a queueing excrcise on page 250. They refer to McMiLLAN and RIORDAN
(1957)

Clearly. the Lagrangian Poisson 1s a useful distribution which belongs to the
statistical toolkit

A generahzation of the loghnear Poisson model using the Lagrangian Poisson
may be useful This allows the vanance to exceed the mean Maximum likelihood

' This adheres 1o the terminology 10 Consul. and SHENTON (1972) The distibution 1 also known as
Generalized Poisson The adjective generalized, being rather umnformatve anyway, applies also 10
arburary mixed and compound Poisson distrtbutions
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analysis for a simple model 1s given in the next section, followed with the
exposttion for a loglinear model!

Evaluation of Information matrices needs the foliowing moments, which can be
found on page 157 in ConsuL (1989)

(12) E alall ,}= o-0)*28 - 672
L(6 +NE)? 6(6+2¢)
E N(N—I)}z 6
L@ +NEE]  6+2¢
E—NZ(N—I)} _ 66 +2)
L@+NE* ] (1-8)(8+20)

A numencal illustration and some final remarks complete the paper.

2 A SIMPLE MODEL

The convolution of two independent Lagrangian Poisson random variables with
parameters (6, £) and (#,, {) 1s Lagrangian Poisson with parameters (6, + 6,, ).
This justifies the replacement of 8 1n (1 1) by m0, where m 1s a known size factor.
This situation may be appropniate for a statistical agency, which collects economy-
wide data on the number of policies and number of claims Let there be R reporting

units numbered r=1, , R Minus the loganthm of the hkelithood function can be
written as:
@1 f=c+02m+E2n +20n,~)Ina,—RIn @

a, = (m0+n)"" c=2ln nt -1Inm,.

where ¥ denotes summation over r The elements of the gradient of f result as

(22) v _ Ym - RO =X mn -a,
06
(23) o dn, -2 nn-a,
ag

Following page 102 in ConsuL (1989), we muluply (22) by 6 and (23) by ¢
Adding together and equating to O results in:

(24) 02 m, =(-8C)2n,
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So, the implied maximum likelthood estimator for the population mean 1s given by
the sample mean. The elements of the Hessian of f can be displayed in partitioned
matrx form as-

@5 wH=—29 RH‘E{I 0} + 2 (- l)af[m’“m’]’
pg

S 9

If we have a pathological sample for which all »,=0, the Hessian will be a
zero-matrix In case also n,=1 are observed, the Hessian will be posiuve
semi-definite. In all other cases the Hessian 1s positive definite, which imphes f to
be convex with a unique stationary point

Searching along the line (2.4) we derive that this stationary point will have { <1
and { >0 depending on the samplc. To this end we substitute (2.4) 1n (2 1) and get a
convex function n .

26)f=@C+2n-RInA)=RIn(1-8) - 2 (n,-Din[mA(-8)+nk

where 4 = *n,/ Y m,, the sample mean, Numerically, f 1s defined on the open
interval (z, 1) where z<0 1s given as-

z=1-min[n,u " |u,>0] u,=n, - m.A
r

At the boundaries of this interval f approaches +c Probabilisticaly, the stationary
point of f should be n the interval {0, 1]. Differentiation of (2 6) results n:

@7 -‘%=R(l O = X~ D, om L+ Eu,)”!
d

Taking the limit of (27) for £ — 1 results in +% So, the search for a stationary
point. starting 1n this hmit pornt, will be 1n the direction of § <1. Next we evaluate
(2.7) for £=0. When this value 1s negative, the stationary point will have £>0.
This condition can be simplified to:

N

When all m, are equal, this condition amounts to the statement that the sample
variance exceeds the sample mean. This agrees with the findings on page 102 m
ConNsuL (1989)

So, there is a possibihity that the stationary point will have {<0. In such cases
we should decide to use the Poisson model by setting £=0
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The Information matrix results as the expectation of (2 5) Using the expectations
in (1.2) and adjusting for m, we get

m(1-8)+2¢0™" m,0 ]

(28) E|H} = Zm,(tn,é)+2§)_'
m,0 (1=8)""'0(n,06+2)

Both the inverse of (2.5) or (2 8) give an esumator for the covarniance matrix of the
maximum likelthood estimator.

Whenever all m, are equal we may normalize m,=1 and the sample data are
conveniently stored in a frequency table Such a situation arises when considering
the number of claims per policy In Table | we find data from BicHSEL (1964)
together with the maximum hkebhood fit

TABLE 1
LIABILITY CLAIMS PER AUTOMOBH k POLICY, SWIL/ERI AND 1961

Number of claims Number of policies Lagrangian Poisson fit
0 103 704 1037222
| 14 075 14003 7
2 1 766 18382
3 255 2485
4 45 346
S 6 49
6 2 07
=7 0 0l

The maximum likelthood estimatcs arc & = 0.14455 and é = 0 06826 with
standard deviations 0.0011 and 0 0028

3 A LOGLINEAR MODEL

We model 6 in the following loghnear way. which reconciles with the loglinear
Poisson model as presented in TER BERG (1980)
3.1 f,=4,(-8)

A, = exp Ix,f1
where X, 15 a vector of explanatory variables and £ a parameter vector with K
elements.

Following the interpretation of the R reporting units with different size given by
m, this model 1s capable ot incorporating differences between reporting umts and
differences between time periods by ntroducing appropriate dummies A more
common interpretation 1s the modelling of claim frequencies as a step towards a

multiplicative rating structure
The R x K matrix X 1s defined as.

X=1[x, x5 .. xgl

and 1s assumed to have full column rank. The first column of X equals 1, a vector
containing the elements 1.
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Minus the logarithm of the likelihood function 1s a function of # and { and can be
wriiten s:

(32 f=zc+(1=-0)2mh +E2n + 2 n,-Dling, - Rin(1-¢) - I'XB

a, = (m,0,+n,t)"!

Differentiation of f with respect to B and  results in the elements of the
gradent g

(3.3) ¥ A=) 2[1 = (n,-Da,Jm,1,x, - X'l

a

LU RU-"+ 2l =, ~VaJu, u,=n ~mA,

Differenvation of g with respect to f and § results in the elements of the
Hessian H:

*f >
@34 =20l - n(n, - Da;&lm,0.x,x,
pof’
e S0 - Ve im o,
apag

a’f -2 2
—= = R(1=-0)72+ X (= Dla,u, )’ >0
ae?

The Information matrix 1s given as the expected value of the Hessian

E[H] = (I —c>2m,9{"'}[x'}
01lL0

+ 22'71,0, ()nr0r+2C)—l|: :X, :H: Cxl :|
-7l -n""

The Newton-Raphson search direction 1s given by H ™' g. Whenever the Hessian H
1s not positive definite, we replace the Hessian by the Information matrix
Occasionally, an iteration may tmply =1, an a, =<0 or an increase of f. In such
cases, we halve the stepsize

Taking the loglinear Poisson model as a starting value, convergence 1s quick and
swift
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4 NUMERICAL ILLUSTRATION

In Table 2 we find data from BAILEY and SiMON (1960) on R =20 risk groups
defined by 2 nisk indicators with 5 and 4 levels.

TABLE 2

EXPOSURE AND NUMBER OF CLAIMS, AULOMOBILE 1iABILITY, CANADA 1957-1958

Number of claims

. Eamed car
X-matrix
years Observed Poisson Lagrangian Poisson

1 0000000 2757520 217 151 2199501 219 868 7
1 1000000 130 535 14 506 140523 14 083 6
10100000 247 424 31964 31 5468 315909
10010000 156 871 22 884 201702 210856
100601000 64 130 6 560 63457 63947
1 0000100 130 706 13792 136882 13761 4
1 1000100 7233 1 001 10223 10305
10100100 15868 2695 26563 26753
10010100 17707 3054 31374 31428
1 0001 100 4039 487 5247 5318
1 0000010 163 544 19 346 186079 186316
11000010 9726 1430 14935 1499 3
0100010 20 369 3546 37046 37159
10010010 21089 3618 40597 4050 1
1 0001010 4 869 613 6873 6937
1 0000001 273944 37730 357728 357153
1 1000001 21504 3421 37899 37936
10100001 37 666 7565 78623 78635
10010001 56730 11345 125337 12 468 2
10001001 8601 1 291 13933 14024

Applying the maximum hkehihood model of the previous section, we have K =
1+(5-1D+@-1) = 8 elements for . The maximum lkelithood results are
presented n Table 3

TABLE 3

MAXIMUM LIKCLIHOOD FSTIMATES AND STANDARD DEVIATIONS

Loglinear Poisson Loglinear Lagrangian Poisson

Parameter Maximum Maximum Standard deviation based on

likelithood likelthood

estimate estimate Hes<ian Intormation matnx
B -25287 -25291 0110 0111
s 2998 3024 0392 0392
B 4691 4708 0273 0272
B 5259 5222 0294 0291
Bs 2156 2236 0575 0575
Be 2723 2780 0385 0385
B 3552 3568 0337 0336
B 4930 4917 0247 0244

4 0 8154 0294 0294
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We see close agreement between the parameter estimates for f w the loghnear
Poisson as well as the loghnear Lagrangian Poisson model This agieement 1s also
evident 1n the fitted clatm numbers 1n Table 2. The relauve large value for §
increases the varances in the Lagrangian Poisson model

The similarity between the standard deviations based on the inverse of the
Hessian and Information matrix 1s reassuring

If, 1n this 1llustration, we shrink the X-matnix to the fust column, the maximum
likelthood estimate for f3; changes to —2.3295 and that for { increases to
0.9738

5 FINAL REMARKS

The use of the Lagrangian Poisson distnbution with loglinear mean contams,
through the parameter {, a diagnostic tool to infer the presence of omitted
explanatory vanables in the loglinear specification. As such. the loglinear Lagran-
gian Poisson model 1s a posstble starting pont from which to model the loglinear
Poisson model.

When the maximum hkelihood estimate for £ 1s clearly different from 0, the
variance of the Poisson distribution 1s too small, whereas the Lagrangian Poisson
distnbution 1mphes the appropriate larger variances

As shown by GoovagerTs and Kaas (1991) the Lagrangian Poisson distribution
also allows a recursive evaluation of a compound Lagrangian Poisson distribution.
So, from an applied point ot view, there 1s little reason to object to the use of the
Lagrangian Poisson distribution.
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