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ABSTRACT

We consider three classes of bivarate counting distributions and the corresponding
compound distributions For each class we derive a recursive algonthm for
calculating the bivarniate compound distribution.
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1. INTRODUCTION

In this paper we develop recursive algonthms for bivariate compound distributions
of the type

(1.1) gle y) = X pl, ™, vy =01,

n m=0

which is the joint distnbution of
N M
X, ¥) = [Z U, X v,],
=9 i1=0
where (N, M) has a probability function (pf)

(1.2) pln, m)y=PN=n, M=m),

and all the sevenities U,, V, are mutually independent and independent of (N, M)
with pf’s

H) =PW,=u), /() =PV,=2)
on the non-negative integers
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For a counting variable K we write K ~ R, (a, b) when 1its pf g satisfies the
recursion

(13) q(k)=(a+—qu(k—l), k=1,

and K ~ R means that (1 3) holds for some constants « and b

For a compound varitable X with counting distnibution R, (¢, b) and severnty
distrnibution f we remind of the fact that the pf of X can be calculated from PANJER’S
(1981) recursive formula

1 . bt
(1.4) gy = —— Z a+ — | fygl—u).
1 —af(0) u=1 X
when f 1s concentrated on the non-negative integers. Also the identity
I (n+1 d lt 4] n
(15) —— Ty = Y, = " =),
n+1 u=1 ILX

from SCHROTER (1990, Lemma 1) will be used in the following
In sections 2, 3 and 4 we consider three different models

— Model A. With K = N+ M 1t holds that (N|K=k) ~ Biwnomial (k, p,), and
K ~ R,(u, b)

— Model B. N = Ry+R, and M = Ry+R,, where Ry. R, and R, are mutually
independent and R, ~ R (a,, b)).

— Model C. N and M are conditionally independent given 6 =19 and Poisson

distributed with parameters 94, and #4,, respectively. The parameter ¢ has a
density « which satisfies

d b ob
— logu(®) = Zi-0b,

(119 ,=()[I,'0J

We also consider the marginal pf’s

g = Y gley), pm) = 3, pn, m).

v=0 m=0
for X and N, and the conditional pf’s
g(y 1w = gle wig), pmlny = p@, myip ),

for (Y |X= v) and (M |N= n) In particular, we derive recursions for the conditional
moments,

wo= B x=9= 2 yg(y 1,
v=90
based on the auxihary functions

/zl. = g(-x).ux’. [
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The bivanate recutsions are of interest in prediction problems involving the
conditional pf g(v |,r) of Y, given that X = has been observed. Using the recursions
derived n this paper this will involve the calculation of g(u, ¥) forall u =0, ,x
and y =0, 1, . It should be noted that if one 1s only interested in the distribution of
X+ Y, then there are simpler ways of calculating this distnbution than via g(a, y),
and the bivariate recursions should not be used 1n this case

Model A has a natural applicanion n claims reserving where K denotes the total
number of claims incurted n a fixed exposure period If W,, 1 =1, . , K, denote the
waiting tumes until notification, which can be assumed to be nd and independent of
K ~ R, (a, b), then the numbers of reported and outstanding claims at ume 7,

K K
N= Y IW=1. M= Y I(W>1),

1=1 =1

satsfy assumption A with p, = P(W,=1).
The recursion obtained 1n Sectuion 2 can be viewed as a bivanate version of the
Panjer recursion)

The situation with a binonuial distribution of N given N+ M as assumed 1n
model A arises 1n a variety of insurance problems Consider for instance the case
where a stop-loss contract with retention limit ¢ has been written for a one-year
period [0, 1]. At time ¢ € [0, 1] the aggregate claim amount has reached the level
X =x, and the problem s to determine the probability ¥, ,_,g(y | x) that the final
claim amount X+ VY will exceed the limit d, given the information X=x (or to
determine the expected reinsutance recoveries Z‘>,,_‘(x+y—d)g(yl.x) in this
case). If the claim occurrences are generated by a mixed Poisson process with
(random) intensity 05 (s), 0=s =1, then the claim numbers (N, M) occurring in
[0, 1] and (1, 1] satisfy the binomal assumption of model A with p, = Ié n(s)ds/
[dn(s)ds The recursion derived 1n Section 2 1s then applicable 1f 6 has a gamma
distribution, in which case the total number of clams K = N+ M has a negative
binomial distribution (€ R,), and of course in the Poisson case where 8 is
degenerate More generally, 1f the nixing distribution satisfies the condition given
in model C, we may use the recursion denived in Section 4 with 4, = Jo’ n(s)ds and
4, = 1'7(s)ds Another application of model C anses i connection with customer
based rating where a customer with unknown risk characteristics represented by 6
has reported a total claim amount X =.x on the existing policies. For a new policy,
this customer will report a claim amount of Y during the next year, and this policy
can then be rated on the basis of the experience X =x using the conditional pf
g(y 1 x.

The class of mixed Poisson distributions considered in Section 4 were investi-
gated by WiLLmor (1993) and HESSELAGER (1993) mn the univariate case, and the
recursions derived n Section 4 give a bivanate extension of their results

Model B uses a standard way of constructing bivanate distnbutions (see e g
KoCHERLAKOTA et al 1992), which 1s useful in risk theory when two nisk classes
are affected by the same events. Let R, and R, denote the numbers of events
causing a claim 1n class | and class 2, respectively, and let Ry denote the number of
events causing a claim to both classes
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Model B was studied in the Poisson case where a,=0 for ; = 0, 1, 2 by TEICHER
(1954), who obtained a recursion for the bivariate pf p(n, m). In Section 3 we
extend the result of TEICHER (1954) to the more general case where R, ~ R, and
denive a recursion for the corresponding compound pf g(x, y)

2. A BIVARIATE VERSION OF THE PANJER RECURSION
With K = N+M we consider the following model -

A. The conditional distribution of N given K 1s binomual,

.1) PIN=n|K=k) = ("

]p'fpé'",p|+pz= L.
n

and K~ R, (a, b).

2.1. Bivariate distributions
Let
@@, 0 = EfsM = Z p(n, m)s"t"

n, m>0
denote the pgt for (N, M), and let y (s) = Es* be the pgf for K = N+ M. From the
assumption (2 1) we find that
2.2) @@, ) = EEls" "I k] = E[XE |V ] K]
E [’K(Pl (s/t) +Pz)K] = p(ps+pat),
where we have made use of the fact that the pgf for the binomial distribution with

parameters (k, ) 15 (pz + (1 —p))*. When K ~ R, (a, b) we also remind of the fact
that the pgf ¢ sausfies the differential equation

23 (1 =—as)y'(s) = (a+b)y(s).
From this we readily obtain a recursion for the bivanate pf p(n, m):

Theorem 2.1: Under condition A it holds that

b
pn, my = p, (a + —)p(n— I, m) + ap,p(n, m—1), n=1
n

b
pn, m) = p» [a + —]p(n. m=1)+ap,p(n-1, m), m=1
m

with p(n, —1y=p(-1, m)y=0.
Proof Differentiating (2.2) with respect to s yields

d
(l—ap,s=ap, ) —@ (s, 1 = (@+b)p,¢(s, 1,
§
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=1 m

and with @(s, 1) = X, u=qp(n, m)s"t" we compare the coefficients of s" n
@ n m=>0 p
this equation for n=1 to obtain .

ap(n, m) —apy(n—Dpm—-1,m) —apnpn, m=1)=(a+b)yp,pn—-1, m)
This proves the first relation, and the second follows by symmetry. QED

Theorem 2 | gives the following recursion for g(x, y).

Theorem 2.2: Under condition A 1t holds that
(2.4 g0, 0) = w(p,fi (0) + p2 2 (D)),
where W (z) 1s the pgf for K For x=1 it holds that

_ bu
2.5) g(x, v) = p, Z ((1 + —-_]f, (wyglx—u, y) + ap, Zfz @glx, y-v),

u=0 X v=0

and for y=1,s

26) g(x, y) = 2 (a + —]jz(u)g(x y—v) + ap, 2 fiu)glx—u, v).
v=0 v u=0
Proof. The imtial value is

o

g0, 0y = Y, pGrmyfi (0 HO)" = ¢ (fi (0), f(0)),

nom=0

and (2 4) follows from (2.2). Using (1 5) for =1 yields

2 Z -—p(n—l my " @) f5" ()

n=1 m=0 N

x

= Y PG, mf @A) = Y Y A g—u v)

am=0n+1 u=1.X

For x=1 we then obtain from Theorem 2.1 that

g(x, v) = 2 Z pl, m) " ()

n=1 m=0
<] o b ) I

=2 X [p] [a + —)p(n— 1, m) + apyp (n, m - 1)])“1 0" ()
n=1 m=0 n

=0 ) (a + —)fl (i gly—u, y) + pya Zfz(v)g(\ ¥ =)

n=0 =0
The second identity (2.6) follows by symmetry. QED

The bivariate compound distribution is calculated recursively from (2 5) or (2.6)
by collecting the terms involving g(x, y) on the left-hand side. It 1s seen that the
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number of multiplicattons involved with the calculation of g(u, v) for (4, v) < (x, y)
1s of order O(xy(x+y)) If the sevenity distributions f, and f, have bounded
supports, as will typically be the case in practical applications, the number of
multiplications will be of order O (xv).

By summing (25) over y=0 we obtain the Panjer recursion (i 4) for the
marginal distribution of X, and the recursion obtained from Theorem 2.2 may
therefore be viewed as a bivanate extension of the Panjer recursion

2.2, Marginal and conditional distributions

Theorem 2 | can also be used to identify the marginal and conditional distributions
of (N, M). We have the following.

Theorem 2.3 Under condition A 1t holds thar

N ~ R, |a Py b Py ,
l—ap2 l—ﬂpz

(M|IN=n) ~ R, (ap,, (b+an)p,)
Proof By summing the first relation in Theorem 2.1 over m=0 we find that

pn) =

n

b
a+ —jpn-1),n=l,
1 —ap,

which proves the first assertion For the conditional pf p (m | ) we observe from the
second relation in Theorem 2.1 that

5 b _17
pimlny  p(n, m =p2( )+ap,p(” mo

a+ —
m

p(m—l|n) _p(n, m-—1) p(n,m—l),

n+m
Since p(n, m) = q(n+m)( Jp’{p’z", where ¢ 1s the pf for K, we have
n

that
pn-1,m _n Py

)

pin,m-1) m p,

which proves the result. QED

The cluss R, contains the binomial distributions (@ <0), the Poisson distributions
(a=0), and the negative binomial distnbutions (0<<a<<I) It is seen from
Theorem 2 3 that the marginal and conditional distributions are binomial, Poisson
or negative binomial when the distribution of K 1s binomial, Poisson or negative
binomual, respectively. In particular, 1t 1s seen that N and M are independent 1n the
Poisson case (g =0)

Note also from Theorem 23 that the margmnal disiribution of X and the
conditional distribution of (Y|N=u) can be calculated by use of the Panjer
recursion (1 4)
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In order to calculate the conditional pf g(u | x) for y=0, ., ¥, one needs to
calculate pfg (i, v) for all (u, v) = (x, y,,,.)- In some cases one may settle for an
approximation to this distribution, based on the conditional moments gz, |

Theorem 2.4 With ¢, = X7_,v' fy(v). it holds that
-1

Q7 (U =apy)iy = apy O, [y, .y +apy 3, (L D, e,

u=10 =0

l -1
where c (I, 1) =a[ ]+ b[ )
i i

Theorem 2 4 follows from Theorem 22 by straightforward calculations, and the
details can be found in Appendix A With 4, | given by Theorem 2.4, and the
marginal pf g(x) of X being calculated from the Panjer recursion, we then have a
1ecursive procedure for obtaining the conditional moments g, , = 4, ,/g(x)
Note that EY' = 2. {; . By summing (27) over x we obtain that
-1

Y el DEY'e,_,,

l-a =0

Ey[ - ap;

which is De PriL’s (1986) rccursion for the moments of the compound distribu-

tion when M ~ R, | a P2 , b P }
| - ap, 1 —ap,

3 BIVARIATE R, DISTRIBUTIONS
In this section we consider the following sitvations :

B. N=Ry+R, and M = Ry+R,, where Ry, R, and R, are mutually independent
and R, ~ R (a,, b)).

3.1. Bivariate distributions

The case where Ry, R, and R, are independently Poisson distributed has previously
been considered n the hiterature TEICHER (1954) (sec also JoHNsON and KoTz,
1969, p 298) showed that this bivariate Poisson distribution satuisfies the recurrence
relations

ap(n,m)y = A, pn—=1, m)+ Aygpn—=1, m=1).
mp, m)y=Apn, m=1)+ Agpn—=1, m-1),

where Ay, 4, and 1, denote the Poisson parameters for Ry, R, and R,, respectively.
HoLGATE (1954) treated the estimation problems for this distribution

Since the bivanate Poisson distribution appears as a special case of condition B
with @, =0and b, = 1, the following result 1s seen to generalize that of TEICHER (1954)
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Theorem 3.1 Under condition B 1t holds that

) )
(3.1 pn,m)y=lag+—|pn=1,m=1)+la +— |pn-1,m)

n n

a b+ b ag
—|agay + ——— {pn=2, m=1), n=1,
n

b() ])2
32) pn,my=lay+—|pn=-1,m=—1)+|a,+ — [p(n, m~1)

m m

ashy+ byag
- [aoaz g 20T pin=1, m=2), m=1,
m

where p(0, 0) = mom 7y, 7, = P(R,=0), and p(n, m)=0 when n<0 or m<0.

Proof The pgf for (N, M) 1s 1n this case
(33) (s, )= EIsY M = EfGsnPos®ie®) = sy, (), (),

where 1, denotes the pgf for R, ~ R, (a,, b,) Differenuating (3.3) with respect to s
and making use of (2 3) yields

d
(1 —als—ao.vr+a(,alrs2)—(p(s, t)
ds

=[r(l—ays)(ag+by) + (@) + b)) —agsn] (s, 1,
and with @ (s, 1) = ¥, ,=op (n, m)s"t™ we compare the coefficients of s"~'t" in
this equation for n=1 to obtain
npin, m) —a,in=Dpn-1,m —ay(n-Dpn-1 m-1)
+aga (n-2)p(n-2, m-1)
=(u,+by)pn—=1,m) + (ag+by)p(n-1, m-1)

= lai{ag+by) + aplay +b)pt =2, m—1).

This venfies (3 1), and (3 2) follows analogously. QED

Remark 1. Note from the proof of Theorem 3 | that (3 1) only requires that Ry and
R, are of class R . If p (0, m) is known for m =0, |, , the bivariate pf p (n, m) may
therefore be calculated recursively from (3.1) even when R, does not belong to R;.
A similar remarks holds if R, does not belong to R, . O

From the recurrence rclation 1 Theorem 3.1 we easily obtain the following
recursion for the corresponding bivanate compound distribution
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Theorem 3.2 Assume that condition B holds true Then

(3.4) g(0, 0) = v (/1 (0)£20)) v, (f1(0)) ¥, (f2(0)),

where Y, (2) 1s the pgf for R,. For x=1,

(3.5) gx, ) = 2, [a, +—)f|(u)g(\—u, ¥)

u=0 X

\ ¥

+ Z Z [ao + MJ Hwf(ygle—u, y—v)
X

u=0 r=0

L e (agb, +bya,)u
(loal _
2x

] [ f() gl =—u, y=1v),

=0 0

©
n

and for y=1,

(36) gx, » Z [az + —-—-jfa(v)g(\ y—1v)
»=0 y

) v b
22 (a() +ﬂ]fz<v>f| (g —u, y=2)
v=0 u=10 A4

. 9 , 2 *
- Z Z (a()az M] 2 (0) o () g3 =ty ¥ = D)

y

Proof. We have that

9(0,0) = 3 pin, mf(®"/O)" = ¢(fi (0), (),
nom=0
where @ (s, 1) 1s the pgf for (N, M), and (3 4) therefore follows from (3.3)
Using (1.5) we have for i=1 and j=0 that

- I * * : . " ®
Y —pmmnm-nfrOE 0 = Y S LA @ g -u y— ).
n=1, m=; N n=0 v=0 IX

*n

Muluplying (3.1) with f, (.r)f;’"(y) and summing over n, / then yields (3.5), and
(3 6) follows analogously from (3 2). QED

Remark 2. Since (3 5) was obtained by use of (3 ), it follows from Remark [ that
g(x, v) may be calculated recursively from (3.5) when g(0, y) 1s known for y =0, 1,
., even If R, does not belong to R, A similar remark holds if R, does not belong
to R,.
It 1s seen from (3.5) and (3 6) that the number of multiplications involved with
the calculation of g(u, v) for (u, ) = (x, y) 1s of order O(x*y?) If the severty
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distributions f; and f, have bounded support, as will typically be the case in
practical applications, the number of multuplications will be of order O (xy)

For the bivariate Poisson distribution corresponding to a,=0 and b,=4,, the
recursive formulas in Theorem 3.2 ssmphify substanually In this case we have,

i

A
glx, v) = = 2 ufy W) g(x—u, y)

X u=t
—0 2 z uf L (i@ glx—u, y—v), x=1,
X wu=l v=0

l \

glx, y) = — Z v () g(x, y—v)

Y=
S D A OVACEICEI R =S
¥ =0 =

3.2. Marginal and conditional distributions

SUNDT (1992) considered the class R, of counting distributions satisfying

=1 n

: A
37 gn) = Y, [a. + —’)q(:z—o,

for surtable constants «, and f,, and showed that if ¢, € R, ¢, € R,, then the
convolution ¢, * ¢, belongs to R;,, From this we observe that the marginal
distributions of ¥ and M belong to R, under condition B, and Theorem 3 2 may
therefore be viewed as a bivanate extension of SUNDT (1992, Theorem 9) The
representation (3.7) for the marginal distribution of N can be found 1n SUNDT (1992,
Corollary 4), or may be obtained by sumnung (3.1) over m Sinmuilarly, a recursion
for the margimnal distribution of X can be obtained from SUNDT (1992, Theorem 9),
or by summng (3 5) over v.

The following result gives a recursion for the auxihary quantittes g, , Since the
marginal pf g(x) can be calculated recursively from SUNDT (1992, Theorem 9) we
then have a recursive procedure for calculating the conditional moments y;, , =
£ /g(x). Theorem 3 3 follow by straightforward calculations, and the details can
be found in Appendix A

Theorem 3.3 Asswme that condition B holds true. With

/ [-1
¢, (.1 =aq ’ + b, , ,)=0,2,

d(l, 1) = apcy (I, D+ayco(l, 1),
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i holds for 1= 1 that
-1

(l —(lz)(l _“Ofl (0))!‘21 V= z 62(19 l)‘l,-t', et (l()(l _aZ) Zfl (“)ﬁl. -u

1=0 =1
\ -1 1
+ 2 fl (“) 2 ,ﬁz. \—u C()(I’ l)el—A - —d(lv ’)e7z—l:|v
u=0 i=0 2
¢, = Xooov fo(v) and ejz =3I v (v)

Remark 3. The recursion 1n Theorem 3 3 is obtained from (3.6), and 1s according to
Remarks | and 2 therefore also valid when R, does not belong to R,. O

4 BIVARIATE MIXED POISSON DISTRIBUTIONS
Consider the following situation

C. N and M are conditionally independent given 8 =19, with pf
(ﬁl])” - 04, (19/12)"‘ e"'—‘MZ

e
n!' m!

CRY) py(n, m) =

The parameter 8 € |0, 7,1, 0=0,<0, =%, has a density u which satisfies

d 3 opa
42) — logu@) = S0 )
dv Sh_ob ¥
for suitable constants a, and b,, and
k
(4.3) > b u@ =0, 90, 0.
1=0
Let
o O gy e
Q,(?J)(X) = z e Mffj @, j=1,2,

n=0 n!'

denote the conditional pf’s of X and Y and let

x

@44) g v = Y paln A" = g () g ),

n m=0

denote the jomnt conditional pf of (X, Y). Fmnally, introduce the auxihary
functions

45) h(x, y) = j e gy (x, Yy u () dd,

|

and note that g(x, y) = hg(y, y)
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4.1. Bivariate distributions

The following recursion for the function A,(x, y), and hence the pf g(x, y), i1s a
bivariate extension of the recursion presented in HESSELAGER (1993).

Theorem 4.1 Under condition C 1t holds that

(4.6) h, (0, 0) = j Fe~t-fond, (D) d?,
. A 0)y+A 0
with A = A, +2,, and f(0) = ANO+LLEO 0, k-1,
A+ 2,
' u
4.7 hoe, ) =4y Y = fiwh  (x—u y), x=1,
u=1 X
i v
“3) h(eY) = Ay 2 —fa@h (6 y-v), y= 1,
v=1 Y
and

(4.9) o h(x, v) = A, Zfl(u)th(r u, v)+lqu2(v)2bh(,t y—v)

u=1 =0
A=

+ 2 hl("" )’) [(l+ l)bl+|—cll’
where ¢, = 1 (1 - f(0)) b, -

With 1nmual values #, (0, 0) one calculates /1y (x, 0), .., A;_, (x, 0) from (4 7) and
hi(x, 0) from (49) forx=1,2, . Fory=1, 2, one calculates 4y (0, y), ,
hy_1(0, y) from (4.8) and h, (0, y) from (4 9). For (x, y) = (I, 1) one may then use
either (4.7) or (4.8) together with (4.9) The recursion 1s seen to be of order
O (xy(x+y)), reducing to O (xy), when the supports of £, and f, are finite.

Proof of Theorem 4 1. Since gif’ 1s compound Ponsson with parameter A 4 1t holds
that g’ (0) = e~ ™50 and g.(0, 0) = g4 (0) g2 (0) = e~ ™ O 7O wuth . and
f (0) as stated and (4.6) then follows from the definition (4.5).

Under the Poisson assumption of condition C, the conditional pf gif’(x) satisfies
the Panjer recurston,

g'@ =04 Y Lrwec-u, z=1,,=1,2,

u=1 2
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and from (4.4) we than have that

(2)()’)011 Z f, (u)g(“(\—u)

u=1 X

gﬂ(vv\)

04, Z lfl () gy(x—u. v), x=1,

u=1 A

and simlarly,
AS

v
go (v, y) = 04, 2 ~f @) gy(x, y-v), y=1.

v=1 V

By muluplying this expression with '« (&), and integrating over  we obtain (4 7)
and (4 8).

Differentiating (4 1) wrt 0 yields
d
410) —pg(n, m) = Aypagn—=1, m) + Aapy(n, m=1) — L. pg(n, m).
dd

According to (42) it holds that w(H)Xr_ya, 9" = u' (P Th_b, 9", and partial
integration using (4 10) yields

o, k gy A
J. Z a, ¥ pg(n, myu()dd = J Z b, py(n, myu' (9)dd

0, 1=0 o, 170

=0 =1

8 gy g, k
[ z b, py(n, myu (l‘)‘)} - '[ Z i b (B py (. mydd

A

i3y
- J Z b, u(MN|A pgn=1,m) + A,py(n, m=1) = 4 pg(n, m)|dd
e 1=0

k-
J Z (t+ )b, u()pyn, m)dd

=0
l

g,k
- J 2 b, u(N A pgtn=1,m) + Aaps(n, m—1) - A.py(n, m)]d?,
g, 1=0

*i

where the last equality follows from (4.3). Multiply on both sides with f;™ (x) £, (v)

and sum over (n, m) to obtain
I

“411) Zah (x, y) = — Z(l+])b,+|/1 (x, y) = 44 Zf,(u)th (x—u, y)
1=0 =0 u=90 1=0

R 2 f2(v) 2 b (x, y—2) + A Z b,h, (x, 3).

v=0 =0

By rearranging terms we then arrive at (4 9) QED
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The expression (4 6) for the nitial values 1s analogous to the expression given by
HESSELAGER (1993) for the umvariate case, and the reader will 1n that paper find
exphcit formulas for (4.6) for a number of cases

It should be noted that the gamma mixing densiy satisfies (4 2), and the
corresponding nuxed Poisson distribution can be shown to be the bivanate negative
binomial distribution treated in Section 2 For this case, the recursion n
Theorem 2.2 1s simpler than the one given in Theorem 4 1, although they are both
of the same order.

The condition (4.3) may be dropped without serious consequences, and the
identity (4.9) will 1n this case contain an additional term as 1n Theorem 1 of
HESSELAGER (1993). In all of the examples considered in HESSELAGER (1993), (4 3)
1s however fulfilled

Univanate mixed Poisson distributions with a muxing density which sausfies
(4 2) were studied by WiLLMOT (1993) who obtamned a recurrence relation for the
counting distribution and also mvestigated a number of special cases where (4 2)
holds true. A recursion for the bivariate counting distribution 1s obtaining by letting
fi(1y = £,(1) = 1 1in Theorem 4 | In this case we may elnimmate the auxihary
functions i, (n, m) for 1=1 and obtain a recurrence relation for the pf p(n, m) =
ho(n, m), analogous to that of WiLLmoT (1993):

Theorem 4.2 Under condition C 1t holds for n>k that
k+1

4 12) z Mn=0'pn~t, m){a,_, = A b_, + (n+m+1-0)b,,,_,} =0,
1=0
and for m>k,

A+

4 13) Z Aam=typn, m=0{a,., —A b, + n+m+1=-0b., _,} =0,
1=0

with the convennion that a_,=b_,=b ., =0
Proof. When f, (1) = f5(1) = 1, the relations (4 7), (4 8) become

A A
@14y  h(n, m = . hoo =1, m), h(n, m)= o2 ho (i, m=1),
n n
Repeated use of the first relation gives h,(n. m) = A7 i+ 0" p(n+1). where
1+ 0" = (n+1)!/n'. By inserting nto (4.11), which n this case becomes
A= L

x
415 Z ah,(n, m = - z (t+ yb,, h(n, m) = A, Z b h,(n—1, m)
=0 1=0

=0

% A
- 25 Z b h(n.m—=1)+ A z b, h, (n, m),
1=0 i=0
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we then obtain after a hitle rearrangement that

A
(4 16) Z(a,_,—i b DA m=D'pln—1, m) =
=0

%
- Z k—t+ Db, A (n=0"pln—1, m)
r=1

A

~ A Z by _ Min=-K(n=1=-D'pln—1-1,m)

=0
x

-4 Z by Am-0)lpn~1, m-1)
1=0

From (4 14) 1t follows that

A Aym
hin=1—-t,m=-1)= ————pn-1-1, m),
n—u (n~1ni,

pn—1,m-1) =

which mserted into the last term 1 (4 16) leads to (4 12) after rearranging terms
The relation (4 13) follows analogously. QED

The reader will notice from the proof of Theorem 4.2 that there 1s a whole vanety
of recurtence relations for the bivanate pf p(n, m). From (4 14) we observe that

n+ Y (m+r=-)
417 h,(n, m)y = ( /j) ( 'i) pn+y, m+i1—j)
# 2

for arbitrary y = 0, , 1, which together with (4.15) also will give a iecurrence
relation In particular (4 16) 1s such a relation, which n fact 1s the bivanate
extension of WiLLmoT's (1993) recurrence relation for the univanate case, as one
may verify by summing (4 16) over m=0.

4.2. Marginal and conditional distributions

The marginal distributions arc in this case the mixed Poisson and the corresponding
compound mixed Poisson distributions considered by WitMor (1993) and HESSE-
LAGER (1993)

Since N and M are conditionally independent given 8 =4, it follows that

A')'l() m
p(m | n = J (i ety (& l mdd,
m!

where u(ﬂln) 1s the posterior density for 0 given N=n When the prior density
u (9) sausfics (4 2), 1t was venfied in HESSELAGER (1993) that « (3 |n) also sausftes
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(4.2) with updated constants d,, b, Thus, the conditional compound distribution of
Y given N=n may be calculated recursively by use of the recursion from
HESSELAGER (1993).

For the canditional distribution of ¥ given X =.x we may multiply (4 8) and (4 9)
by y dnd sum over v to obtain a recursive algonthm for the auxihary function u TR
=3, v'h,(x, v) This, in particular, will give a recursion for the function g, ,=z'¢.,
and hence for the conditional moments g, , =4, /g(x). We state the result without
proof .

Theorem 4.3 With ¢, = A4,b,(1 —=£,(0)) — a, and e, = L, v’ f,(v) 1t holds that

-1 /-1
L_i(ll,x = Z [ JC’[ ',LZ;ITI), ! = 0, . k- ],

A - A-1
)
LA/LZ(IUx = l2 2 z ( )U ey + Z (b1+l(l+ I) - (‘J)/I(/‘.)l
1=0 ;=0

N =0

APPENDIX A

Proof of Theorem 2.4. For [=1, muluply (2 6) by v/ and sum over y to obtain

qay Z yigx, v

y=1

M-

a\" + l)vy" ! Yo glx, y—v)

0

v

u

+ ap, Z Z fiwyy' gx=u, v)

v=l u=0

= p; Z Z (a(v+ o) + bo(y+0)' ")) gx, v)

+ ap,

fl (u).ﬁ[ -

t
=0

{ -1 !
1Y . =1y .
=p2”2 ( J‘ul \el—1+p?_b2 [ ]/’ll,\el—l+(lp| Zfl(u),ul,\—u

=0 u=0

QED
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Proof of Theorem 3 3. Muluply (3 6) by y' and sum over y to obtain for /= |
that

o= 2y gy

yv=1

x

Y lay(y+ ) + byww+y) T 1A g, ¥

- dapa, Z 2 v+ () fi ) gl — 1, ¥)

1
bl) a, +dy b:)_

- 20NN v+ T AW wghi -, y)

2 =0 »3=0

L (1 w (1-1
:(122 [_]!71,\31-1"'[722 ( ].ﬁl.\el—l
=0 1

1=0 4

v ! -1
/ -1
+ Zfl(“)[a()z ( ]/Zn \—llel-l+b0 2[ )ﬂt\—uel—l]
I

u=10 =0 =0 i

— Qpay Zfl(u)z ( ) l,l—l4e;2—l

1=0

1-1
(byay +aghs) ~ .
——“—L Z fi () 2 ( j#, el

=0
-1
= aydy 4+ Yl DA, e, + ag(l —ay) Z Frlu)iiy -,
=0 =0
{~1

1 22
+ Zfl (“) Z ‘lll (-ul('()([ l)el—l - "5 (I(l, l)e’:ll’

u=0 =0

and the result follows upon rearranging terms. QED
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