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ABSTRACT

Policyholders often dectde to buy, renew, or cancel insurance based on the premium
charged by the insurer compared with what they expect their clanms will be It 1s
important for actuaries to consider the persistency of policyholders because the
financial well-being of the surer depends on spreading 1ts risk over a large book
of business We use statistical decision theory to develop premium formulas that
account for the past experience of a given policyholder, the experience of the entire
collection of policyholders, and the likelihood of the policyholder renewing with or
buying from a given insurer, that is, persistency

We assume that the persistency of policyholders depends on the arithmetic
difference between the premium charged and their anucipated claims We extend
the work of TavLOrR (1975) in which he obtains hnear credibility formulas by
mimmizing loss functions that incorporate the persistency of policyholders. We
consider Taylor’s loss functions and other objective functions, including those that
account for the amount of business the insurer writes or renews

KEYWORDS

Credtbihity . persistency, statistical decision theory

I. INTRODUCTION

It 1s important for actuaries to consider the persistency of policyholders because the
financial well-being of the insurer depends upon long-term profitability and upon
spreading 1ts risk over a large book of business An insurer also wishes to retain
business because writing initial business 1s more expensive than renewing existing
business. We devclop premium formulas that account for the past expenience of a
given policyholder, the expertence of the entire collection of policyholders, and the
likelthood of the policyholder renewing with or buying from a given insurer. that 1s,
persistency

The framework under which we determine the effect of the persistency of
policyholders on premuiums 1s statistical decision theory and 1its application to
credibility theory Credibility theory seeks to find systematic methods for calculat-
ing a policyholder’s insurance premium based on that policyholder’s past experi-
ence and the experience of the entire group of policyholders Current formulas
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in credibility theory often calculate premium as a weighted sum of the average
experience of the policyholder and the average experience of the entire collection of
policyholders. In order 10 avoid an off-balance from the applhication of credibility,
these formulas usually require that a policyholder will renew no matter what
premium 1s charged

We assume that the persistency of policyholders depends on the arithmetic
difference between the premium charged and their anticipated claims Considering
the arithmetic difference makes sense because we assume that the policyholders are
the same size (see Section 2.1). If one wishes to model the persistency of
policyholders of different sizes, one might assume that the persistency of policy-
holders depends on the relative difference, instead of the anthmetic difference. We
develop credibility formulas that optimize functions that consider the amount of
business that an insurer writes, as well as the monetary gamn of the nsurer. We,
thus, extend the work of TayLorR (1975) in which the obtains linear credibility
formulas by mimimizing loss functions that incorporate the persistency of policy-
holders.

SUNDT (1983) also considers the effect of persistency in credibility rating His
approach differs from ours 1n that he assumes that the likelthood of renewing 1s not
affected by the premium charged by the insurer. Instead, he assumes that the
persistency of the policyholder gives the insurer information about the claim
distribution of the policyholder

We review the work of BUHLMANN (1967, 1970) and TAYLOR (1975)
Section 2 Buhlmann derives a credibility formula by munimizing the expected
value of a squared-error loss function. Similarly, Taylor minimizes the expected
value of the monetary loss to the tnsurer while discounting the loss by the
persistency of policyholders In Section 3, we mtroduce objectives that an insurer
might consider optimizing

We propose an exponential persistency function in Section 4 and develop a
general credibility formula 1n Section 5. In Sections 6 and 7, we calculate credibility
formulas in two parametric cases--normal-normal and Poisson-gamma Finally. we
suggest future research in Section 8.

2 WORK OF BUHLMANN AND TAYLOR
2.1. Notation and Assumptions

Assume that the total claims of a given policyholder, or nisk, 1n the 1™ policy period
(usually one year), is a random variable X, |(9=0), or morc simply, X, 160, 1 =
1, , n. For a given value ® =80, assume that the random variables X,|0, 1=
1, ..., n, arc independently and identically distributed according to a conditional
probability (density) function f(x | ) Assume that the value 6 1s fixed for a given
risk. although 1t 1s generally unknown For existing policyholders, denote the
probability (density) function of @ by (), also called the structure function
(BUHLMANN, 1970) Note that we tacitly assume that the policyholders are the same
s1ze because the distribution of the total clatms of a policyholder selected at random
15 given by the marginal distribution of X
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Suppose the nsurer has n ycars of claim experience for a policyholder: x =
(v, , v,y e X" In this work, we consider credibility formulas that are not
necessarily linear, denoted by d(x), in which d is a real-valued function on X". We
also consider hinear credibility formulas of the form « + bx, in which « and b are
constants to bc determined and X 1s the arithmetic means of the claims v, ,x, We
refer (o d(x) as the renewal premium, ot simply premium, for year n + 1., and we are
not loading for administrative expenses

For a prospective policyholder, d(x) 1s morc accuately termed the 1nitial
premium based on past experience of the risk, but we blur this distinction because
the insurance products that typically use credibihty premiums are annually
renewable ones. For this reason, sales personnel must often “sell” the policy
annually even 1f the policyholder 1s rencwing and not initially buying

2.2. Work of Biihimann

To estimate the future claims of a nsk, X,,, |9, with unknown 6, BUHLMANN
(1967, 1970) minimizes the expected value of the squared-crror toss function

L(EIX, 11101 d) = (E1X, ., |0] - d(x))?
Under our assumptions, the resulting optimal premium d*(x) 1s
21 ElX,. a1 = TEIX, . 161 26| do

By restricting the form of the renewal premium d(x) to be a lincar combination
of the claim experience, x,, ., v,. and by using the same squared-error loss
function, BUHLMANN (1967, 1970) obtains the tollowing credibility formula

d¥(x) = (1 -Z)E[X]+Zx,

m which E[X] = E()E[XIO] 1s the overall mean, Z = n/(n+k); and k =
Eyg[Var|x|61]/Varg[EIX|01] The numerator of k 1s called the expected process
variance, the denominator, the variance of the hypothetical means.

In certain cases, the premium E1{X,,, | x] 1s Linear and, thus, equals the lnear
credibihty formula JEweLL (1974a, 1974b) venfies conditions under which this
exact credibility occurs Also, please refer to WiLLMOT (1994 ; Chapter 4) in which
he clearly explains the foregoing theory and illustrates 1t by providing many
examples

2.3. Work of Taylor

One of the properties that d*(x) = E[X, .| |x] sausfies 1s that the sum of
premiums over the portfolio of risks equals the expected claims from the portfohio
(BUHLMANN, 1967) In confirming this property, Buhlmann implicitly assumes that
the structure of the portfolio does not change as a result of the rating formula
TAYLOR (1975) challenges this assumption and asserts that 1f a policyholder tends
to cancel when 1t 15 renewed with a premuum that 1s higher than its anticipated
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claims, then the premium mcome will not necessarily equal the expected claims. He
proposes a loss function that explicitly accounts for the decision of policyholders to
buy, cancel, or renew their insurance He suggests that the insurer minimize i1ts
expected financial loss while discounting for the persistency of policyholders.

Taylor defines a persistency function p (8, x, d(x)) to be the ratio of the exposure
m year n+ | to the exposure in year n for the risk class given by © =6 with n-year
claim experience x and premium d(x) for year n+ 1. The exposure 1n year n 1s the
number of existing policyholders To be somewhat rigorous for a continuous
structure parameter @. think of p as an “instantaneous™ ratio or a density
function

His loss function 1s the financial loss, discounted by persistency,

(2.2) L, x,,a+bx))=p(Bx, a+bx) (E[X, | f1 = (a+brp),

and he finds values for a and b that mimimize the expected loss Note that he
restricts n=1 and d(x) =a + bx,

Taylot assumes that p 1s a hnear function of the anthmetic difference between
what the nsurer charges, « + bx|, and the amount of claims the pohicyholder
expects to incur. He then considers two cases In the first, Taylor calls the
policyholder unbiased because the policyholder expects to incur E[X2|6J, 1ts
hypothetical mean, n the second, the policyholder 1s biased and expects to incur
X, 1ts recent claim experience (Note that Taylor does not use the term biased 1n a
statistical sense because the expected value of A, 15 E[X161.) His two persistency
functions are, thus,

Unbiased risk pB.a,ab)y=1-e(a+by,-EX,]0]),
Biased nisk pB,x,a,b)y =1 =¢e(a+bx —1r));
in which e 1s a positive constant; Taylor calls the paramcter e a price-elasticity of
exposure
The hnear credibihty premiums that Taylor finds are
(2 3a) Unbiased risk: (1=-Z) EIX] + Zx, +1/(2¢),
(2.3b) Biased risk. (1 =Z*) E|X| + Z*x, + 1/Q2¢);

In these formulas, Z 1s the Buhlmann credibihty weight, and Z* = % (1 +Z) > Z
Note that 1n each case, the credibility premium 1s a weighted average of x, and
E[X], plus a flat load, 1/(2¢), independent of the claim distribution or the
pohicyholder’s experience. One can consider this load a nisk charge for the
policyholder selecling against the insurer

3 OBJECTIVES OF THE INSURANCE COMPANY
3.1. Maximize Underwriting Gain and Amount of Business

One of the goals of an insurance company, as for any company. is to earn a profit.
The profit or underwnting gain 15 the excess of income over outgo Insurance
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premiums contain provistons for claims (including nisk margins) and for the
expenses of administering the insurance policy Outgo consists of claims, expenses,
and experience rating refunds (MOREWOOD, 1992)

In this work, we consider the component of the underwriting gain equal to the
excess of the provision for claims and nisk 1n the premium over the claims
themselves In other words, we 1gnore service fees, investment income, loadings for
expenses, as well as the expenses themselves, and experience rating refunds.

Another possible goal of an insurance company 1s to increase its book of
business. MOREWOOD (1992) notes that writing new business depends on compett-
tive premium rates and that renewing existing business depends on how tair the
policyholder perceives the price He points out that underwriting gain and growth
are interdependent Rapid growth and large profit margins in the premtums are
usually mversely related. We, therefore, propose finding a function d*: X" >R
such that the combination

E[p(6.x,d) (dx)-E[X|6])] + h E[ p(6.x, d(x))]
E[p(6,x,dx) (dx)+h-E[X]6])]

(1) UG+hB
(32)

1s maximum when d =d* The parameter  1s a non-negative constant, and we take
the expectation with respect to the joint distribution of X,,..,X,, and @ In
Secuon 4, we propose a specific formula for the persistency function p, but here 1t
1s any real-valued function defined on @ x X" x R Recall that p accounts for imitial
business as well as renewal

The first term on the nght hand side 1n equation (3.1) 1s the expected value of the
underwriting gain discounted for the persistency of policyholders We write UG to
denote this first term The second term 1s A multuplied by the expected relatnve
amount of business written, or B 1t 1s reasonable to constrain UG=0, B=1, or
both. If we let A approach 0, then by maximizing UG + h B, we maximize the
expected underwnting gain UG ; 1f we let s approach o, then we maximize the
expected amount of business written B.

The parameter A converts the relative amount of business into monetary units (see
equation (5.1) below). To choose its values, an actuary may wish to consider the
potential loss or gain of revenue to cover fixed administrative expenses Also, one
may choose h according to one of the following criteria

e 1=0 1s the smallest value such that B=M, for some M=1, in which B 1s
evaluated at the optimal J*

e =0 1s the largest value such that UG=M, for some M=0, in which UG 15
evaluated at the optimal 4*

In this context, one can think of 4 or 1/h as a Lagrange multipher in a constramned
optimization problem. At the end of Section 62, we apply these criteria 1n a
hypothetical example.
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3.2. Optimize Properties of the Book of Business

An nsurance company may set goals concerning the structure of its book of
business. If the structure of the company’s business 1s given by 7(8) during year |,
and the credibility premium for year 2 is d(x,), then the expected structure of the
business n year 2 1s described by

) =k] p(6,x,,d(x)) flx |6) 7(0) dr,,

in which x 1s a normahzing constant

One goal may be to ensure that the grand mean decreases from year to year. This
occurrence indicates that the company 1s writing risks with lower expected claims.
The grand mean n year 2, expected at tume 0, ts

=kl xy p(0,x,.d(x)) Fix|6) 7(6)dx dob.

in which x ={x,, x;) Note that ug, 15 the expected value of X,. with respect to the
distribution | £ (x, | 6) m,(0)de

Another goal may be to ensure that the total variance decreases over tume This
occurrence may enable actuaries to price more accurately by making claims more
predictable The variance m year 2, expected a time 0, 1s

El(X:—u)*] = Eg(EIX2|01-EX,161%) + (Eg [EIX,1617] - u}y)

Expected Process Variance + Variance of Hypothetical
Means,

in which @ 1s distributed according to 7,(6) We examine these two goals 1n two
parametnic cases in Sections 6 and 7

4. PERSISTENCY

We assume, as does TAYLOR (1975), that persistency depends on the arithmetic
difference between premium charged and anticipated claims. Such an assumption
may be suitable because we assume that risks are the same size. In our work, we
exphcitly account for Taylor’s beliet that policyholders most likely expect claims
somewhere between E[X|6] and ¥ We do so by expressing the policyholder’s
annicipated claims as a lLinear combination of £[X 6] and =, namely,
(1-¢) E[Xl,ﬂ] +cx, 0=c=1 The difference between what the surer charges
and what the pohcyholder expects 1s, therefore,

A=dx)-[(1 —c) E|X|8]+cX]

Note that when n=1. the amount that the policyholder expects to incur,
(l-0) ElX, | 0]+ cx,, includes as special cases the two that Taylor examines For
unbiased risks, ¢ =0; for biased risks, c= 1.

Taylor points out one major weakness of the linear persistency functions that he
uses. They may take on negative values, implying that the amount of business s
negauive We, therefore, propose an exponential persistency function

p{d)=90exp(—-1A4),
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in which 6>0 and A>0 Such a function p is always positive and behaves as one
expects, namely, 1t decreases as 4 increases, and conversely. The parameter o 15 the
relative amount of business written 1f the msurer charges what the policyholder
expects its claims will be, and A measures the sensitivity of policyholders to the
difference 4. That 1s, 4 1s analogous to the parameter ¢ of Taylor, the price-
elasticity of exposure.

We assume that o, 4, and ¢ (the relative weight the policyholder gives 1ts claim
experience) are fixed for all risks These assumptions are perhaps unrealistic
because one expects that for a given 4, an existing policyholder 1s more likely to
renew than a prospective one to buy. One also may argue that policyholders buy
insurance from a particular company based on that company’s premium relative to
premiums offered by other insurance companies 1in the market To adapt our
persistency function to that model. one could replace the difference 4 with the
following

4'= d(x) - dmarlwl (x)'

in which d,,,4,, 18 the (lowest) premium charged by the market. One might also use
a dynamic version of this model to explain the underwntng cycle experienced in

many hnes of insurance

5 UNCONSTRAINED MAXIMIZATION OF UG + h B

The combination of underwriting gain and relative amount of business, UG + h B,
includes UG as a special case by setung =0 and includes B by letung £/
approach «© We, theretore, do not work through the details of maximizing UG or B
separately Instead, we maximize UG + i B as given in equation (3 2) and obtain
the following theorem

Theorem 5.1: Let X, |0, i=1, ,n, be independent and identically distributed
random varnables given @ =6 Let F be the set of functions d* X"—R for which the
gain function

G=0dexp{-2(d@)-[(1 =c) E\X| 0]+ X))} (d@x)+h-E[X]0])

is mtegrable with respect to the joint distribution of X, X5, .., X, and O. The
expected value of G 1s maxinmzed when d = d*, with d* given by

5D d*(x)=1A=h+D,{inEq,[exp VEIX |01} |, 20 -0)s
provided d+ 1s in F Here D, denotes the operator of differentiation with respect

to¢

Proof: For d in %, we apply Fubini’s theorem to switch the order of integration n
the expectation of G. The expected value of G 1s, therefore, maximized when we
maximize

(52) Epj,[oexp|~A(dx)-(l —C)E[X|0J-c.?)} (d(x)+/1—E[X|0])l,
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for an arbitrary sample X =x, in which we take the expectation with respect to the
posterior distribution of @ | x. Treating expression (5.2) as a function of d(x), and
applying standard techniques from calculus, we find that the maximum occurs
when

Ad*x) Ey)[exp (A1 - EIX161}] =
= Ad*(x) Eg |, [EIX|01exp (21 ) E[x|6])]
+(L=ah) Eg|[exp{A(1-) E[X|01}],
or, after solving for «* (x),
di(x) = UA-h+Ep| [EIX16]explA(l —c) EIX|0]}]
+ Eyl [exp(2(1-) Elx|6]}]
VA—h+D {InEg [exp WEIXTONTY | oai -y, O

One may interpret the terms n equation (5 1) as follows* The first, 1/4, 1s a flat
load similar to the one found by Taylor in equations (2 3a, b), namely, 1/(2e); 1t
partially accounts for the sensitivity of policyholders to the premium charged. The
second term, — A, offsets for how much the insurer weights the relative amount of
business, B Note that d*(x) decreases one unit for every unit of increase of h;
therefore, the more we weight B, the more we decrease the optimal premium, as one
might expect The third term 1s an Esscher premium (GERBER, 1980), 1t equals a(x)
that mimimizes the expected value of the following loss tunction

(ax)-E[X161)? exp{a(i-c) E{X|0]}.

6 NORMAL-NORMAL
6.1. Unconstrained Maximization of UG +h B

To maximize UG + h B in the normal-normal case, we apply Theorem 5 | to obtain
the following proposition.

Proposition 6.1: Let X, lo~N@, 6%, 1=1, . n, be independent and 1dentically
distributed normal random variables, with unknown mean 6 and known variance
0>>0 Let @~N(u, t°), with known mean x and vanance 72>0. Then UG + h B
15 maximized when

(6.1) d*@)= 1A -h+{(1 -2 )u+2x} + (1 -2) (1 -¢),

in which Z=nt?/(nt?+0?), the Buhlmann credibility weight

Proof: The posterior distribution of & | x 15 normal with mean
(62) wr=(1-2Z)yu+2x

and variance
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(6.3) Ty =2t mri+ 0 =121 -2).

Because E[X|8]=6, substitute the moment generating function of 9|x Into
equation (5 1) The moment generating function of a normal random vanable
O~N(u, t2)1s

(6.4) My(t)=Eglexp (61} =exp{ut+ 1212}

The derivative, with respect to 1. of the natural logarithm of this moment generating
function 1s

(65) w+tlt

To calculate the credibility formula in equation (5.1). substitute u* from equation
(6 2) for u, (z%)* from equation {6 3) for 72, and A (1 =¢)for r1n equation (6 5) We
obtain

d¥(x) = Ud=h+(u*+@ A -0)
A-h+{(1 =Z) u+Z3}+Ar*(1-2Z)(1-¢). O

Note that d*(x) 1s a linear function of the average claim experience X, therefore,
we have a type of exact credibility in this case This credibility premium 1s the sum
of five interesting terms. We discuss the fust two at the end of Section 5, they
occur tin d*(x) in general The sum of the third and fourth terms 1s the standard
Buhlmann credibihity estimate n the normal-normal case. The fifth expresston,
depends on how much the policyholders weight their own claim experience relative
to their true mean

To see how the optimal premium d* (x) changes when the parameter A changes,
examine

Dpd*(x) = — /A + 73 (1=Z) (1 -¢).

Observe that 1f ¢ 1s sufficiently close to 1 (that 1s, the policyholders weight their
claim experience heavily) or 1if n 1s sufficiently large, then d*(x) decreases as 4
increases In this case, as the policyholders become more sensitive to the arithmetic
difference 4, the lower the optimal premium.

6.2. Constrained Maximization of UG + i B

Up to this point, we have not constrained the values of UG and B It 1s reasonable to
require that UG =0, B= 1, or both, 1n other words, the insurer does not lose money,
business, or both. We examime two sets of constramts and obtan the tollowing
propositions

Proposition 6.2: Given the assumptions 1n Proposition 6 I and the restrictions
UG=0 and d(x)=a+bx, we maximize UG+ h B when d =d*, with d* given
by

(6 6) d¥@x)=Ui-h+{(1=Z2)u+Z3} +Ar2(1 =2) (1 = ),
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for h=1/4, and
67 d*(x):[(l—Z),u+Z.F}+/1r2(l—Z)(l—c),

for h>1/4

Proof: UG +hB = E{dexp{-A(a+bx)-(1-c)f-cx}(a+h+bhx-0)]

(68) = dexp(—Aa} (a+h) EglexplOA(l —c)} Exjglexp{ —A(b - ) X}1]
+0exp{ —Aa} b Eglexp{0A(1 =)} Exjglxexp{—A(b-c)x}]]
~dexp{ ~Aa) Eg[0exp{0A(1-0c)} Ex|glexp{ -A(b-c)x}]].

Use My |g(1) and Ex|glxexp{xt]] to calculate the expected values in UG + hB
More specifically,

{My|o(tim)}"
exp {Or + ol m).

Ex)glexp {xt}]

and

{My o (t/n)}" =" Ex|glxexp {xt/n}]
= exp {01+ 021 @2n)} [0 + o2tin)

Exjglxexp{xs}]

Substitute these expressions into UG + i B, equation (6 8), to obtain

UG+hB = dexp{-Aa} (a+h) Efexp{A(1 =h)8 + 1> (b - c)? 0/(2n)}] +
+oexp(—Aa) bE[exp{A(1 —=b)8+A% (b - ) 0%/ (2n)} x
x[0—4(b—c)o*n|]-dexp{-Aa}x
xE[6exp [A(1=b)0+27 (b~ ) a1 (2n)}]

= dexp{ —da+ A% (b =) a¥2n)) x
x {(a+h—Ab(b—c)a*n) Elexp (8A(1 =b)}] - (1 - b)x
XE[6 exp {0A(] = b)}])

(69) =odexpl—Aa+i2(h-c)a¥@2n)+A(l —b)u+A2 (1 -b)* 72}
x{la+h=2bb-c)a*m-(1-bu-Al-b1%)
By setting /1 =0 1n equation (6 9), we see that
610) UG=01f and only ff a=Ab(b =)o n+ (1 —=byu+(1-b*7’

The values of the parameters a and b that appear in ¢* (x) 1n equation (6.1} satisfy
the inequality (6.10) if and only 1f A=< 1/A. Therefore, 1f h=< 1/4, then the 1nsurance
company does not expect to lose money by using the credibihty formula o* (x) in
equation (6 1).
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On the other hand. if #> /4, then invoke the constraint and set
a=a,=Ab(b-c)o’ i+ -b)u+i(l-b)?1,
that s, set UG =0 In this mstance,
UG+hB=IB
(611) =hdexp{-Aa+A2(b-c)Yo¥@2n)+A(1 =b) u+A*(1 =b)} t2)

The value b of b that maximizes /1 B also maximizes the exponent 1n the braces 1n
equation (6 11). The maximum of the exponent occurs at

b, =nt¥(nt*+0?) =2

In this case. a,=(l —Z)/c+/1t2(l ~Z)(1 —c), and we are done Note that the
formula 1n equation (67) 1s the one we obtain when we maximize B subject to
UG=0. O

We offer the following proposition without proof, thereby sparing the reader of
the messy details that are similar to the ones 1n the proof of Proposition 6.2.

Proposition 6.3: Given the assumptions in Proposition 6 | and the restrictions
B=1 and d(x)=a+ bk, we maximze UG + h B when d = d*, with d* given by

d*X)=1A-h+{(1=-Z)u+Zi}+At° (1 =Z) (] = ¢),
for h=1/A—(In 8)/A+At*(1 = Z2)/2 — Ac* 0% (2n), and
d¥)={(1 =2 )u+Z3) +(In O/ A+At>(1 =2) (1 =2¢)/2 + Act a ¥ (2n),
for h otherwise. O

To illustrate how one mught choose the parameter A, we offer the following
example-

Example: In the normal-normal case, let A=001, ¢?=250, « = 1000, v*=250,
0=1.5, and n= 1. Therefore, Z=0.50, so let c=075. As h increases from 0 to
1/ =100, UG decreases from about 55 to 0. As h increases beyond 59 375, as
determined 1 Proposition 6 3, B increases from | upward.

Supposc we target an underwriting gam of at least 25 The largest value of /1 1s,
therefore, 79.571 If we use this value of h, then we maximize the relative amount
of business B, subject 10 the constraint that UG =25. Also, suppose we target a
relative amount of business of at least | 1 The smallest value of h 1s, therefore,
68 939. If we use this value of £, then we maximize the underwnting gain UG,
subject to the constraint that 8= 1 1. To achieve both UG =25 and B=1 I, use any
value of h between 68 939 and 79 571 O
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6.3. Optimize Properties of the Book of Business

An msurance company may set goals concerning the structure of its book of
business. We obtain the following lemma that we use to minimize the future grand
mean and the future total variance.

Lemma 6.4: Assume the conditions in Theorem 6.1. If the structure of the
company's business 1s given by 7 (8) during year 1, and the credibility premium for
year 2 1s a + bx|, then the expected structure of the business 1n year 2 1s distributed
normally with mean u + Az (1 - b) and vaniance 7°

Proof: 72(0) = [ p(0,x,, a+bx) flx, | ) 7(0) dx,
xexp | —[0%-20(u+At*(1-h)]/Q21%))}.
It follows that the structure parameter @ 1s expected to be distributed normally with

mean u +A72(1 = b) and vanance t° O

The density 7, will be independent of the rating parameter a in every case because
the term e ~** factors In the normal-normal case, the distribution 1s also indepen-
dent of ¢.

Proposition 6.5: Given the conditions in Lemma 6 4, the grand mean 1n year 2,
expected at time 0. 1s mimmized when the insurer gives full weight to the
policyholder’s experience

Proof: The tuture grand mean 1s ym:EgE[Xz|0]=E[6]=‘u+/lr2(l —-bh), In
which 0=b=1 In order to mimimize this mean, set b equal to I In other words,
give full weight to the policyholder’s experience in calculating 1ts second-year
premium O

Proposition 6.6: Given the conditions in Lemma 6 4, the vanance in year 2,
expected at time 0, 15 constant, independent of the premium parameters a and b
Proof: The future total variance is

EL(Xy - pga) 1= Eg[Var[X,181] + Vary[E[X, | 81 = E[6* | + Var[6] =c* + 12,

a constant O

7 POISSON-GAMMA

To maximize UG + h B 1n the Poission-gamma case, we apply Theorem 5.1 to
obtain the following proposition.

Proposition 7.1: Let X,|0~P(6), 1=1, .,n, be independent and identically
distributed Poisson random variables, with unknown mean 6. Let @~G(a, 3) be
gamma distributed, with known mean o/f and variance o/f% Then UG + h B 1s
maximized when
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an d*(x)y=MA~h+(x+nX)/(f+n-21(-0)),
for B+n>A(l —c¢).

Proof: The posterior distribution of Olx s gamma, G (o + nXx, f§+n). Because
E[X2|0]=9, substitute the moment generating function of @ lx into equation
(5 1) The moment generating function of a gamma random variable @~G (a, )
1S

Mo (1)=Eglexp {1}]1=8%/(B~-1)",

for 3>t The denivative, with respect to 1, of the natural logarithm of this moment
generating function 1s

(72) al/(f-1)

To calculate the ciedibility formula in equation (5.1), substitute a +nx for o, B+ n
for B, and A (1 —c) for 1 in equation (7.2) We obtain

d¥*(x)=1i-h+(o+nX)/(B+n-1(l -0)). O

Note that d*(x) 1s a linear function of the average claim experience ¥, therefore,
we have a type of exact credibility in this case, as in the normal-normal case. The
third term in equation (7.1) 1s similar to the Buhlmann credibihty formula,
(e +nx)/(f+n), except for =4 (1 =c).

To see how the optimal premium ¢ *(x) changes when the parameter A changes,
examine

Dids(x)= =122+ =) (@ +nx)/(f+n-i(1-0)°

As n the normal-normal case, observe that 1f ¢ 1s sufficiently close to | or if n is
sufficiently large, then d* (x) decreases as A increases; therefore, as the policyhold-
ers become more sensiive to the arnthmetic difference 4, the lower the opumal
premium will be

7.2. Constrained Maximization of UG+ h B

As 1n Section 62, we examine two sets of constraints and obtain the following
propositions

Proposition 7.2: Given the assumptions in Proposition 7 1 and the restrictions
UG=0 and d(x)=a + bx, we maximize UG + hB when d=d*, with d* given
by

(73) d* ()= 1A-h+(a+nX)/(f+n-A(l -0)),
for h=<1/A, and
(7.4) d¥*(x)=(a+nX)/(B+n—-24(1-¢))

for h>1/4.
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Proof : The moment generating function of a Poisson random variable P(6) 1s
My g(1)=Ex|glexp{vr}]=exp{6(exp{r} - D},
and stmilarly
Exiplvexp(xt}l=exp{OExp{r} -1} [Bexp{r]].

Use My|g(t) and Ey|glrexp{ar}| to calculate some of the expected values in
UG + h B More specifically,

My (tim)}"
exp {nf (exp {t/in} - 1)},

Exlolexp (x1}]

]

and
Eglgplvexpixt}] = Myg(tim)}" =  Exyglyexp {xtin}]
= exp {nB(exp{t/n} - 1)} 18 exp(1/n}]
Also we have for a gamma random variable, @~G (. f3),
E{6exp (6} =aB"/(B-1)"""
Assume that > Al —c)+n{exp{-A(h=c)/n}-1), forall be [0, 1].
Subsutute these expressions into UG + 1 B, equation (6.8), to obtain

UG+ hB=
=odexp|—Adal(a+h Elexp{6 (A0 —c)+n(exp{—A(b—c)/n}—-1))}]+

+oexp{ —Aa) hE[exp{0(A(1 —c)+n(exp{~A(h-c)/n} —1))}x
x[@expl{ =A(b—c/n}]]-dexp{—Aa)x
xE[@exp{0 (A1 =) +n(exp(—A(b=c)/n}=1))}]

=dexp{-Aa} {(a+h) E[exp{0(A(1 —c)+n{exp{—-A(b=c)/n)—i)}]+
+(bexp{ =AW -)/n)=1)E[@exp{0(A(1-¢)+
+n(exp{ -2 -c)/ny-1)}]}

(75) = odcexp{-Aa} BY(B+n-A(1—)—nexp{ —A(b=c)/n})**!
x{a+h) (B+n=2(1-c)-nexp{—=A(b—-)/n})
+a(bexp{—A-c)/n)—1}.

By setting /1 =0 1n equation (7 5), we see that

(76) UG =0 1f and only 1f
aza(l =bexp{ —Ah=c)/n))/(B+n=A(l =c)—nexp{-A(b-c)/n})

The values of the parameters ¢ and b that appear in d ' (x) 1n equation (7 {) sansfy
the mequality (7.6) if and only 1if h<1/A. Therefore, if 1< 1/, then the insurance
company does not expect to lose money by using the credibihty formula ¢* (x) n
equation (7.1)
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On the other hand, if #> 1/A, then invoke the constraint and set
a=ay=a(l=bexp( =2 -m(B+n-2(1-c)-nexp{ -A(b-c)n});
that 1s, set UG =0. In this instance,
UG+hB = hB
hdexp{—Aa} BY(B+n=-A(l-c)—nexp|~A(b-c)n})®
The function A8 attains its maximum at
by=nl(B+n-2(1 -0)).

In this case, a, =a/(f+n-1(l —c)), and we are done O

We offer the following proposition without providing a proof.

Proposition 7.3: Given the assumptions in Proposition 7.1 and the restrictions
B=0 and d(x)=a+ bx, we maximize UG + h B when d = d*, with d* given by

d*@X)=Ul~h+(a+nX)/(B+n-A(1-0¢)),
for h=UA-=(Ind)A+a/(B+n-A(1-c)) -
(@) In(BlI(B+n—A(1—c)—nexp|-4(b —c)n})),
in which by =n/(f+n-21(l-c)), and
d*xy=(In oY A+ @/ In(BI(B+n—-A( —=c)—nexp|—A4(b, —c)n)))
+nd{(B+n—-A(l -¢)).

for h otherwise O

7.3. Optimize Properties of the Book of Business

An msurance company may set goals concerning the structure of its book of
business We obtain the following lemma that we use to minimize the future grand
mean and the future total variance

Lemma 7.4: Assume the conditions in Theorem 7 1 If the structure of the
company’s business 1s gtven by 7(8) during year |, and the credibility premum for
year 2 1s a + bx,, then the expected structure of the business in year 2 15 gamma
distributed G(a, S+ 1-A(l-c)-exp{ -4 (b-0)))

Proof:
1 0) =] p8,x,,a+bx,) f(x,]6) 7(0)dx,
OCB""exp{ —0[B+1-A(l-c)-exp{-A(h-0))1}.
It follows that the structure paramcter @ s expected to be gamma distributed
G(a, B+1-A(l-0)—exp{-A(b-0O)}) |

Proposition 7.5: Given the conditions in Lemma 7.4, the grand mean in year 2,
expected at tume 0. 18 muumized when the nsurer gives full weight to the
policyholder’s experience
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Proof: The future grand mean v ugp=E9E[X, |6’| =Ef|=a/(f+]
—A(l=0)—exp{-Ab-O}), mwhich0=<h=1 In order to mmimize this mean,
set b equal to |, that 1s, give full weight to the policyholder’s experience a

Proposition 7.6: Given the conditions in Lemima 7 4, the variance in year 2,
expected at ume 0, 1s miminuzed when the msurer gives full weight to the
policyholder’s experience.

Proof: The future total vanance 1s
E|(Xy— o)1= Eg[Var[X, 1 0]] + Varg [E|1X, 1 6]]
=E[0]+ Var|8=a/(B+1-A(1 ~c)—exp{ —A(b—0)})
+al(f+1-A(1-c)—exp{ —A(b-0)})%

This variance 1s ninimized when 5 equals | O

8 FUTURE RESEARCH

Credibility theory continues to be an important and dynamic area of research 1n
actuarial science as witnessed by the recent work of NORBERG (1992) and PANJER
and L1 (1994) An aspect of credibility theory that has not been considered very
extensively 1s persistency, which we have addressed here This work only begins to
deal with the problem of credibility and persistency, and we intend to explore this
1issuc further Some of the outstanding problems are.

Long-term effects

We have optimized gain functions that span only one year or policy period Because

actuaries consider longer lengths of time, it may be more appropriate to consider the

following objectives .

e Maximize the present value of underwriting gain

e Maximize the stability of the number of insureds; for example, one could
minimize the change n the expected number of insureds from year to year

¢ Optimize properties of the long-term structure of the book of business.

Another time effect to invesugate is the change, or irend, in the number or amount

of claims from year to year. Such work could follow the models given by KREMER

(1982) or LEDOLTER, KLUGMAN and LEE (1991)

Different risk sizes and empirical study

We have not considered different risk sizes. This factor 1s an important one to
include 1n future models because, n reality, policyholders are not the same size. In
future work, we will consider the Buhlmann-Straub model (BuHLMANN and
StrAauB, 1970) and other models that allow for varying nsk size (VENTER, 1990),
(GooVvaERTS and HooGgsTAaD, 1987).
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Such models could be used to fit empirical data in practical research, as in
KLUGMAN (1992) An empinical study may also test the vahdity of the model
proposed 1n this paper with the one menttoned at the end of Section 4
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