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A B S T R A C T  

There is a duahty between the surplus process of  classical risk theory and the 
single-server queue. It follows that the probability of  rum can be retrieved from a 
single sample path of the waiting tnne process of the single-server queue. In this 
paper, premmms are allowed to vary It has been shown that the stationary 
&stnbut~on of a corresponding stolage process ~s equal to the sulvlval probabdlty 
(with varmble premmms) Thus by smaulatlon of  the conespondlng storage process, 
the probability of  rum can be obtained The specml cases where the surplus earns 
interest and the premiums are charged by layers are considered and illustrated 
numerically 

K E Y W O R D S  
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Snnulat~on 

1 I N T R O D U C ' I ' I O N  

The study of  the probablhty of  rum has been the centre of  mtelest ot many papers 
treating actuarial r, sk theory Most of  these arucles deal with the problem of 
determining this probability m the case of  constant premiums. The mathematics are 
snnpler and explicit results have been obtained fol certain clam3 amount distnbu- 
uons Fewer papers consider the case of premiums whose value depend on the 
current surplus Some of them are GERBER (1975), TAYLOR (1980) and SCHMIDt.I 
(1994) AS one would expect, fewer explicit results have been obtained For 
exponentml jumps. GERBER (1975) obtains an exact explesslon for the rum 
probablhty 

When no exphclt solution is available, the actuary must rely on alternative tools 
to obtain an answer DtWRESNE and GERBER (1989) make use of  the duality 
between the virtual waiting time of  the single-server queue (M/G/I) of queuing 
theory and the risk process of risk theory m the case of constant premmm rates to 
obtain the probabdlty of  ruin by sn-nulatlon See FELLER (1971, p. 198) and SEAL 
(1972) for proofs of this duality. 
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If the premiums are no longer assumed constant, a duality still exists between the 
two processes SIEGMUNI) (1976) first established the conditions on the probability 
measure of the storage process under which a dual risk process exists. HARRISON 
and RESNICK (1978), and ASMUSSEN and PeTERSEN (1989) have also shown the 
duality. The goal of  this paper ~s to Illustrate that the method of DUFRESNE and 
GERBER (1989) can be adapted to the case of vaNable premiums. Thus a single 
sample path of the corresponding storage process is sufficient to provide an estimate 
of  the probabili ty of ruin 

Two special cases will be studxed The first one considers the situation where 
interest ~s taken into account, and the other one looks at premiums charged by 
layers We look at the speed of convergence of the estimate when different 
assumptions are made The method proposed m this paper is put in perspective with 
alternative ones in the last section. 

2 THE SURPLUS PROCESS AND THE STORAGE PROCESS 

In the following, the surplus process {U( t ) ,  t - 0 }  ~s defined by the initial value 
U(0) = u and the stochastic differential equation 

(2 1) d U ( t )  = c ( U ( t ) ) d t  - d S ( t ) ,  

where {S(t) ,  t>--0} is the aggregate claims process and c(-) is the p r e m i u m  rate 
f u n c t i o n  such that 

(2.2) c ( u ) > 0  for u > 0 ,  

It ~s assumed that {S( t ) ,  t :~0} is a compound Polsson process with parameter 2 
and claim amount dls tnbuuon P(.).  We wish to stress the fact that the claims are 
not necessarily positive. 

It ~s worth menuomng that (2.1) ~s a qmte general defimtion of  the surplus 
process. The classical case ~s retrieved if c (.) is constant. If it is assumed that the 
surplus earns interest at a constant force 6, we have 

(2 3) c ( x )  = c + 6 x  

Thus earning interest is in fact "equ iva len t"  to receiving premiums at a rate which 
~s a hnear function of the surplus Another example ~s the case where premmms are 
charged by layers These two examples are treated m section 5. 

In order to build a dual process, let {X(t)} be defined by an initial value X(0) 
and the stochastic differential equation 

(2 4) d X  (t ) = - c ( X  (l )) dt  + dS  (t ), 

where c ( )  and S ( t )  are the same as ,n (2 I) In addition to (2 4), we impose on 
{X(t)} the condition that it be a process with non-negauve values Thus the 
increments of  {X(t)} are defined by (2 4) unless they would cause the process to 
tall below 0, In which case the process is equal to 0 until the next positive jump. 
Figure I illustrates a sample path ot {X(t)} and {U(t)} with same initial value. 
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FIGURF I Typnc,d ~annple paths of IX(t)} and {U(t)} 

The process {X(t)} ts called a storage process clue the following mterpretatton 
Suppose that {X(t)} is in state x at tmle t (call x the stock) and consider the 
infinltesma,d tnmc interval (t, t+dt)  In that nnterval, there is an input ot amount 
dS(t) and an output equal to c(x)dt. In this context, c(x) is called the release rate, 
which nn our case is a function of  the current stock It is assumed that stocks cannot 
be negatwc This heuristic,ally explains (2 4) 

3. A PROOF OF I'HE DUALITY 

For completeness,  we give a proof of the duahty between the risk process and the 
storage process defmed by (2 I) and (2 4) The reader is referred to SIEGMUND 
(1976), HARRISON and RESNICK (1978) and ASMUSSEN and PETERSEN (1989) for 
alternative arguments. We use the classical notation q2 (u) for the p~obablhty of  ruin 
gwen the imtml surplus u, Le. 

(3 1) V3(u) = P r ( U ( t ) < 0  fol some t > 0 ) ,  
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and define the survival probabili ty as ~7(it) = 1 - ~, (u). It is shown next that ~ ( u )  is 
a solution of  the lntegro-dlfferentlal equation 

(3.2) c(u)~7'(u) = 2 ~ ( u )  - 2 JI"- ~7(u-~')dP(v), u > 0 .  

First, we define implicitly the function u( t )  by 

I' 
(3 3) . ( t )  = . + c ( u ( s ) ) d s .  

0 

Before the first claim, u ( t )  and U(t) will be equal. Second, consider an interval of 
arbitrary length h Now condition on whether there is a claim between times 0 and h 
and on the time of  this possible first claim There is no claim with probability e -lh 
and a claim at time l < h  with probabili ty 2e-~'dt With no claim m the interval, the 
surplus grows to u(h) at time h With a claim a time t, the surplus becomes u ( t ) - 3 '  
at time t with probabili ty dP(y) Applying the law of total probability yields 

(34)  ~ (u )  = e-2h~(u(h)) + 2 e -~' ~7(u(t)-v)dP(y)dt. 
0 - ~  

Note that ~7(u) = 0 for negative values of  u, i e ,  ruin is certain when the initial 
surplus is negative Taking derivatives of both sides of (3 4) with respect to h and 
letting h tend to 0 leads to equation (3.2). 

Let F(x, t) be the probabili ty d,strlbutlon function of the random variable X(t), 
that is 

(3 5) F(r, t) = Pr(X(t)<--x). 

From here on, It  IS assumed that c( . )  is "suff icient ly large"  so that the process 
{X(t)} does not escape to infinity and has a stauonary distribution. Let F(x) be the 
stationary distribution. Then we have (see Ross (1983), theorem 4 3 3) 

(3.6) F(x)  = hm F(.t, t). 

With arguments similar to the ones leading to (3 2), we can derive the following 
integro-dlfferentlal equation for F(x)" 

(37)  c(x)F'(x) = 2F( , ) -2 I i~F(x -~ , )dP(y ) , x>O.  

Consider  the function ~(t)  defined by 

(3.8) I 
(I 

( t )  = x + c ( ~ ( s ) ) d s ,  

t 
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and the time interval t0 - h <- t <-- t o (0 < h < to) In other words, we look backward 
from to at an interval of  length h Then the event (X(to)_< r) ~s equivalent to one of  
the following events 

• ( X ( t o - h ) 5 ~ ( - h ) )  if no jumps occur m the given time interval, or 
• (X (t 0 -  r) <-- ~ ( - r )  - y) if, m the given nine interval, the last jump of the sample 

path is of  amount y and occurs at tune t o - r ,  r < h .  
Thus, by the law of  total probabdtty,  we have 

(3.9) F(x, to) = e -'~h F(~ ( -h) ,  t o -  h) 

f" f ~l-r) F(~ (-T) - y, to - r ) d P ( y ) d r  +2 e -2r 

Taking hmtts a,; r0 tends to infinity and succes~wely applying the Dominated 
Convergence Theorem (RUDIN (1976), p 321, note that le-~'rl and IF( ) I  are 
bounded by 1) ymlds 

I" I7 (3 10) F(x)  = e-'7"hF(~(-h))+2 e -)'r F ( ~ ( - r ) - y ,  t o - r ) d P ( y ) d r  
0 - "  

Taking denvat~ve~ with respect to h and letting h tend to 0 gwes us (3 7) 
If we compare (3 2) and (3 7), we see that ~(.r)  and F(x)  are solutions of the 

same mtegro-dffferentml equatton In conjunctmn with the condlttons F ( ~ ) =  I and 
~ ( ~ ) =  I, these equations have a unique solution (see DUFRESNE and GERBER 
(1989), p 78), and we conclude that F (x)=~7(x)  Thus we can estimate the 
probability of  ruin by estimating F(x) 

Remark 

In the proof of  (3.2), it must be kept m mind that ~ (u )  Is not dlfferenuable at the 
points of dlscontmmty of c (u) However,  note that the expressmn on the right-hand 
side of (3 2) is a continuous function of u and it follows that the left-hand side is 
also continuous Thus, although ~ ' ( u )  does not exist at points of  d~scontlnmty of 

(u), the product ~7'(u)c(u) is continuous This remark holds true for (3 7) and 
F(x) 

4- STATIONARY DISTRIBUTION AND RUIN PROBABILITY 

Following the reasoning of DUFRESNE and GERBER (1989), define D(x, t) as the 
total time that the process {X(t)} spends below level x before tune t. From (3 6) we 
have 

(4.1) h m 
D(a,  t) 

- F(x) almost surely 

Heuristically, (4. I) means that in the long run, the probabdlty that a chosen point of 
the sample path is below x is equal to the proportion of  time spent by the process 
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below x. This lntumvely makes sense A proof of  (4 1) can be found m HOEL, PORT 
and STONE (1972) (Theorem I, p 58), which sums up to an apphcatmn of  the 
strong law of large numbers Hence, F ( r )  and the probability of rum can be 
obtained with the smlulatlon of a single sample path of {X(t)}. 

Stdl along the ~dea of DUFRESNE and GERBER (1989), one way to keep track of 
the total time spent below level x by a sample path i,~ to consider the random 
variables D,,(x), which are defined as the total tlrne spent below r before the nth 
jump  If 7",, is the random tmle elapsed between the (n - I)th and nth jump, we have 
that 

(4 2) 
O,, (x) 

hm 

2r, 
t = l  

tl 

~ 7~ = m almost surely 
t = l  

since hm 

- F ( r )  almost surely 

5 ILLUSTRATION 

According to (4.2), if we perform a sufficiently large number of simulations, the 
convergence of the estimate to F(x)  is certain Stdl we must test how fast this 
convergence occurs We will look at two cases for the premmm function c(  ) The 
first consists in allowing the surplus to earn interest and the second one treats the 
case of  premmms by layers 

5.1 Interest on the surplus 

Recall (2 3) which gave as a premium fllnCtlOn 

(5 1) c(u)  = c + 6 u  

We will simulate sample paths of  the process {X(t)} defined by the arbitrarily 
chosen mmal value X ( 0 ) = 0  and 

(5 2) d X ( t )  = - ( c  + 6 X ( t ) ) d t  + dS( t ) .  

If we look at the process between jumps,  then solving X ' ( t )  = - c - S X ( t )  yields 

I I -e~d(t-t°' 1 (5.3) X ( t )  = X ( t o ) e - d t ' - t " ) -  c , t > t  o 

First, we simulate jump amounts Y~, Y2, , and lnte0ump tmaes T~, T2, , where 
Y, ~s the amount of  the tth jump and 7", ~s the t~me between jumps  Y,_ i and Y, T 1 is 
defined as the time before the first jump Then, to keep track of  the process, let X, 
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be the value of the process immediately after jump t, wflh X o = 0 Keeping in mlnd 
that negative jumps are allowed and that {X(t)} is non-negative, we get with (5.3) 
that 

(5 4) X,, = max O, Y,,, X,,_~e -al'' - c - -  + Y,, 
6 

The amount of tune D,, (x) spent by the process below level x before the nth jump 
is obtained recurslvely by 

D,,(r) + T,,+ ,, X,,<--x. 
(55)  D,,+,(x) = D , , ( r ) -  (T , ,+ , - r , ,+ , )+ ,  X,,>.r, 

with Do(x)=0 ,  .r+ = max(0, x), and r,+ I being the time needed to reach level x 
starting from X,, (assuming no jumps occur during this time interval). The period 
r,~+l is imphcltly defined by t - t  o in (5.3) with X(to)=X,, and X( t )=x  Thus 

61 In IX"+c /6 )  (56) r , , + , -  

Table 1 gives est ,nates of the probability of ruin for different numbers of 
simulations n and different mltlal surplus values u The Polsson paraineter is 2 = I 
and the jump amount distribution is exponential with mean equal to I The premium 
c is equal to I and the force of interest 6 is 005  Thus no security margin is 
included in the premium Although in the classical model rum is certain when no 
security margin is included in the premium, it is not the case when the surplus 
yields interest. Moreover, it can be seen that if the initial surplus is sufficiently 

high, the probability of ruin becomes quite small, even m the absence of a security 
margin. The exact values at the bottom of each column are given by the 
formula 

(5 7) ~ (u) = 

/" _ _ +  

- -  h e bB 
r 7 '  + 7 la ,/ 

with the mcolnplete gamma function defined as 

(5 8) F(a, b) = .r"- l e - 'dx .  
b 

Formula (5 7) is attributed to StZGERDAHL (1942) 
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TABLE I 

T H E  PROBABILITY OF RUIN OBFAINED BY SIMtlI  A f l O N  WITH 

,1=1, c =  I, ~ = 0 0 5 ,  P(.r) = I - e  - ~ , a > 0  

n \ u 0 2 4 6 8 10 

I 0 00O 
IfX3 000 
200 000 
300 000 
400 000 
500 000 
600 000 
700 000 
800 000 
900 000 

I 000 000 

exact 

0 848728 0 552233 0 334032 0 190215 0 100786 0 052822 
0 846427 0 553203 0 326]12 0 177550 0 087981 0 041057 
0 844146 0 550787 0 325396 0 176152 0 086685 0 039624 
0 843202 0 549879 0 324983 0 175151 0 086354 0 039693 
0 842386 0 548004 0 321891 0 172704 0085010 0 039081 
0 842270 0 547173 0 321128 0 171949 0084398 0038676 
0 841583 0 545989 0 319980 0 171063 0 083841 0 038345 
0 841850 0 546447 0 320371 0 171678 0 084360 0 038706 
0 841910 0 545976 0 319828 0 171489 0 084383 0 038660 
0 84•728 0 546393 0 320642 0 171790 0 084402 0 038724 
0 841819 0 546590 0 320795 0 171867 0 084570 0 038740 

0 841108 0 547364 0 322416 0 173175 0 085508 0 039123 

Table  1 s eems  to indicate that m this case,  s imula t ing  I 000 000 c lamls  provides  

an estm~ate with a precis ion of  about _+0 001 One  way to verify any s ta tement  

about  c o n v e r g e n c e  ~s to carry out the s imulat ion a D v e n  n u mb er  o f  tunes  and then 

compu te  the s ample  varmnce  o f  the e s m n a t e s  for each n and u. However ,  statlstmal 

c o m m o n  sense  sugges ts  that it is not necessary  to verify the sample  variance for 

each n. The reason for  th~s lies m the fact that our  es t imates  are, more  or less, jus t  

sample  means  Thus using one  sample  of  size mn or m samples  of  size n should  

give  snmla r  values for the es t imated  var iance o f  the populat ion.  In o ther  words ,  

es t imat ing  F(x) with I 000 000 c la ims should provide  a value as precise as taking 

the sample  mean o f  100 es t imates  of  F(x)  with 10000  c lmms  (Since m samples  

have equal initial values,  a fact which  does  not hold if we " s p l i t "  into m one larger 

sample ,  these s ta tements  are not exact ly  true m our case However ,  a few tests 

should  conv ince  the reader  that the bias is small  and of  no practical mlpolrtance ) 

Table  2 g ives  sample  means  and s tandard devmt tons  for es t imates  of  F(x)  obta ined 

f rom 100 smlu la tmns  of  10 000 c lamls  as done  in Table  1 

TABLE 2 

SAMPI .E  MEANS AND S I A N D A R D  DEVIATIONS OF Ti l t :  FIRST ROW OF "FABLe. I 

II 

tne~l l l  

~td dev 

0 2 4 6 8 10 

0840817 0546415 0 321480 0 173301 0086320 0039825 
0006811 0015135 0016091 0 012874 0 0 0 9 0 7 1  0006142 

Given  the es t imated  values of  the s tandard devia t ion m the last row of  Table  2, 

we know approx imate ly  how many c lmms  we must  slnlulate m order  to get a 

desi red precis ion A 95 44 % conf idence  interval for the exact  value o f  F(x)  is given 

by 

(5 9) [F,,(x) - 2s , , (x) ,  F,,(x) + 2s, ,(x)]  
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where F,, (x) ns the estnnate of F(x) and s,, (x) ns the sample standard devnatlon when 
n claims are simulated. The values of s, (x) can be approxunated by the values of 

Table 2 divided by {n/lO 000. In the next section, we shall return to the question of 

effnc~ency and usefulness of this method. 
One should note that the standard devmuon for u = 4 ns ahnost twuce the one for 

u =  10 Thus the value of u has an effect on the prec0slon of the estnmate This 
makes sense since for high enough values of u, the esnmate for F(x) tends to zero. 
Hence we must expect that the standnrd dewatnon should at some point start 
decreasing and reach zero for hugh values of u. 

Table 3 and Table 4 gtve results for a case simdar to Table I and Table 2, wtth 
the exception that the premium c ns now set equal to 1.5 The reader is invited to 
compare the estimates when n =  10000 with the exact value. The estmmtes are 
already about exact to the second decnmal place. It is a consequence of the smaller 
standard deviatnons 

"I'ABLE 3 

THE PROBABILITY OF RUIN OBTAINED BY SIMULATION WITH 
2= I, c=  I 5, 6 = 0 0 5 ,  P(a) = I - e  -~, r>O 

n \ u 0 2 4 6 8 I0 

100OO 
I O0 000 
200 OOO 
300 000 
4O0000 
500 OOO 
600 000 
700 000 
800 OOO 
900 000 

I OOO OOO 

exact 

0 626483 0 267620 0 103953 0 039879 0 013643 0003166 
0 621247 0 267299 0 108216 0041382 0 015142 0005366 
0 621558 0 266750 0 108240 0041695 0 015280 0005514 
0 620434 0 265071 0 106970 0 041265 0 015145 0005478 
0 620350 0 265389 0 107332 0041506 0 015226 0005473 
0 621022 0 266831 0 108398 0041920 0 015207 0005330 
0 620897 0 266538 0 108153 0 041820 0 015248 0005372 
0 620798 0 266677 0 107939 0 041564 0 015010 0 005222 
0 620505 0 266258 0 107762 0041427 0 014983 0005195 
0 62fN99 0 265688 0 107292 0 041051 0 014808 0005146 
0 619961 0 265640 0 107393 0041162 0 014886 0005187 

0 619915 0 264757 0 106251 0 040303 0 014525 0004997 

TABLE 4 

u 0 2 4 6 8 10 

mean 0 619790 0 264067 0 105692 0 040024 0 014316 0 004799 
std dev  0 007323 0 009806 0 007197 0 004605 0 002652 0 001478 

Table 5 and Table 6 show results for the case where the jump amount dnstrlbunon 
Is gamma with mean equal to 1 and variance equal to 10 (the values of 2, c and 6 
are the same as m Table I) Thts dtsmbut~on ts heavdy skewed to the rtght. It ~s 
interesting to observe that for low values of u, the probaNInty of rum ns smaller than 
that of Table 1 It comes as no bug surprnse that the opposite ts true for sufficiently 
high values of u Note that the convergence of the esumates is qmte slow, but nt 
must be kept m nnnd that this is a "worst case scenario" example since the clmms 
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distribution is very skewed and no security margin is included m the premmm As 
can he seen by comparison of Table 2 and Table 4, a higher security margin pulls 
the storage process faster towards level 0, thereby |nduclng a smaller standard 
devlaUon for the estimates 

TABLE 5 

THL PROBABIL I  rV OF RUIN O B T A I N E D  BY SIMULATION WITH 

(0  I )o~ 
2=1 ,  c = l ,  6 = 0 0 5 ,  P ' (O = - -  - . ' % - o . , ,  ~>0  

F(O I ) 

n \ u 0 2 4 6 8 10 

10 000 
II)0 000 
2(X) 000 
300 000 
400 000 
500 000 
600 000 
700 000 
800 000 
900 000 

I 000000 

0 689627 0 534063 0 426268 0 339340 0 269248 0 215301 
0 694396 0 543978 0 438372 0 352647 0 283304 0 227501 
0 692600 0 542045 0 437333 0 352160 0 283047 0 227270 
0 690774 0 539260 0 434332 0 349699 0 281290 0 225822 
0 690506 0 539206 0 434469 0 350262 0 282013 0 226767 
0 690252 0 538565 0 433786 0 349681 0281509 0 226364 
0 691321 0 539879 0 434928 0 350625 0 281986 0 226477 
0 691120 0 539932 0 434990 0 350448 0 281681 0 226102 
0 691508 0 540416 0 435668 0 351265 (1282542 0 226926 
0 691812 0 540971 0 436270 0 351890 0 283268 0 227778 
0 692597 0 541912 0 437225 0 352825 0 284139 0 228484 

TABLE 6 

u 0 2 4 6 8 I 0 

m e a n  0 694120 0 544448 0 440406 0 356273 0 287755 0 23156 I 
~td (let' 0013900 0 0 1 7 1 0 5  0017434 0 0 1 7 0 7 2  0016591 0015668 

Remark 

The special case where c = 0 m (5.1), i e c (u)= 6u, is of unexpected interest. In this 
case, the process {X(t)} wall never attain the barrier 0, and there is an exphclt 
expression for its value at time t. 

f, (5.10) X(t) = xe-a '+ e-a<'-r)dS(r). 
o 

The stationary distribution is the distribution of the sum of the discounted clam~s, 
that is 

(Y / (5.11) F(x) = Pr e-a'dS(l)--<x 
0 

For this case, the duality has already been noted by GERBER (1971). Finally, we 
note that the distribution (5.11) also contains unportant mformahon about the 
probablhty of rum m the general case where c > 0  m (5 1) See Example 1.2 m 
Chapter 3 of GERBER (1979) 
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5.2 Premiums by layers 

Now we look at the case where 
C O, 0 "~ L/0~ U-~/ / I  , 

(5.12) c(u)  = c l ,  ul <u--<u2, 

Ck _ I , tile - I ~ bt ~ ll k ~ ~ .  

The premmms vary according to the level of  the current surplus When Co, c '~ . . ,  is 
a decreasing sequence, one reasoning that can justify the structure of (.5.12) is the 
following The greater the surplus of  a company, the less the risk of  ruin. Thus, a 
company can take advantage of  this situation to lower its premium rates (and thus 
be more competmve)  when its surplus increases. Another reasoning is to view the 
reduction of premium as a form of  dividend payment, where the dividend rate 
increases along with the surplus Increasing patterns of c(u)  have already been 
explained in section 5.1. 

Consider the process {X(t)} with the premmm function given by (512) .  Let Y,, 
and T, be simulated as in section 51 and X,, be the value of the process 
tmmedlately after jump Y,,. A btt of notatton must be introduced to show how to 
apply the method of section 4. 

We will say that a value x is at level t if u,<x<--u,+ ~. Let 
• b(x) be the level of  a value x, i e ,  b(x)  = i if u , < x - -  < u , + l ,  
• t,(x) be the time needed, starting from x, to get to the bottom of  level t < b ( x ) ,  

i.e. 

(5.13) t , (x) = 

X - -  lib(i) 

Cb(~) 

X -- lib( 0 

Cb( 0 

If i = b (x), 

lib(t) - -  l l b o ) -  I LIs ÷ I - -  lit 
- - +  + . . + - -  I f i  < b(x),  

Cb( Q-  I Ct 

* e (x, t) be, for a path starting at x, the level of the process at time t (assuming no 
jumps  occurred), i e. 

(5 14) e(x ,  t)  = I 
0 i f /  > to(X), 

( m a x { l e  {0, I . . . .  b(x)} t - t , ( x )  <- O} f i t  <- to(X). 

Thus we have 

(5 15) I max (0, Y,,) if T,, > t o (X,,_ i), 
X,, 

t m a x ( 0 ,  ue + ce(te--  T,)  + Y,,) If T,, --< to(X, ,_l) .  

where e m (5 15) is given by e (X , , _ l ,  T,,) . Before the ( n +  l)s t  jump, the path is 
below level x for an amount of  tinae 

O,, (x) + L ,  + ~, 

(5 16) D,, + l (x) = F 
D,, (x) + IT,, + I 

L 

Sit  ~ x ,  

( [ b ( , ) ( X n )  " v ' ~ - £ 1 b ( Q I 1 , X , , ~ . l . "  , 

c b ( o  J J+ 

and with (4 2), the probabdlty of  rum can be retrieved 
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An dlu,~tratlon is gaven m Table 7 For the samulanon, the Poasson parameter was 
equal to I and the claams were distributed according to a translated gamma 
dastnbution (clmms > - 1 )  with mean equal to I and variance equal to 2 The 
premiums and layers are as fol lows:  

(5 17) c(.Q = 

1.7, 0--<,r--< 2, 
1.6, 2<x- -<4 ,  
1 5, 4<x- -<6 ,  
1.4, 6 < x - ~  8, 
1.3, 8 < . r - -  < 10, 
1.2, a > 10 

TABLE 7 

T I I E  PROBABILITY O1- RUIN OBTAINED BY SIMb'LAFION WITH 

},= I, P'(~) = ( a +  l ) e  -¢ '+1),  ) . > - I  AND ( ( ) GIVEN BY (5 17) 

n \ u 0 2 4 6 8 10 

I 0 0OO 
100 000 
200 000 
300 000 
400 000 
500 000 
6OO 000 
700 00O 
800 000 
900 000 

I 000 000 

0 754924 0 483182 0 293354 0 168664 0 095282 0 051425 
0 75978 0 497156 0 303036 0 17568 0098522 0 054574 
0 760895 0 498213 0 303498 0 175486 0 097763 0 053552 
0 763933 0 502501 0 306681 0 177508 0 098657 0 053784 
0 764685 0 503882 0 307947 0 178021 0098809 0 053752 
0 764652 0 504126 0 308297 0 178533 0099493 0 054241 
0 76482 0 503911 0 307887 0 178048 0 099054 0 053717 
0 764248 0 503313 0 307358 0 177684 0 098852 0 05353 
0 763817 0 50263 0 306994 0 177603 0 098887 0 0536~7 
0763825 050262 0307235 0178197 0099494 0054179 
0 762866 0 501131 0 305775 0 17693 0 098507 0 053432 

TABLE 8 
t 

u 0 2 4 6 8 10 

mean 0 762935 0 502425 0 308143 0 178967 0 099972 0 054582 
std dev 0009878 0014930 0015546 0013561 0010778 0008359 

6. DISCUSSION OI ~ THE METHOD 

A question has been left unanswered:  do other method,, exast to obtmn the 
probabdaty of rum, and af so, are they more efficient (m the sense of speed of 
convergence)~ The answer can be yes or no Obviously,  for cases where an exphcat 
solution is avmlable, the quesnon as not worth asking When no expho t  formula is 
available, another method as to solve the appropriate antegral equataon numerically 
A few tests show that at is a much faster techmque. However,  numerical evaluation 
cannot provade an answer when clmrn amounts can be neganve In fact, no other 
method seems to be able to deal with possible negatwe claim amounts. In that sense 
simulanon is the most general solution 
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The author wishes to point out that, m practice, an actuary does not need an 
estimate precise to many d~g~t~ What he wants ~s a rehable tdea of this value So in 
hght of the examples gwen in section 5, stmulatmg 10 000 clmms can be sufficient. 
Moreover, he will not need to know the values of ~p( ) for lnany u's since he wdl be 
needing an answer for a g~ven surplus Wtth that m mind, the question of  efficiency 
is not a crucial matter for the practitioner because the required tune for such 
slmulanons Is a inatter of seconds, even for random varmbles which are time 
consulnlng to simulate (on a Pentlum-90 PC with the APL progralnmmg language). 
Since smmlat~on algorithms are nowadays readdy avmlable, the method suggested 
here is easy to implement. However, for extenstve studies of  q~ ( )  when positive 
clallnS are sufficient, numerical evaluation is much faster See PETERSON (1989) for 
an example of  such methods 
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