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ABSTRACT

There 1s a duality between the surplus process of classical rnisk theory and the
single-server quecue. It follows that the probability of ruin can be retnieved from a
single sample path of the waiting ume process of the single-server queue. In this
paper, premiums are allowed to vary It has been shown that the stationary
distribution of a corresponding storage process 1s equal to the sutvival probability
(with vaniable premiums) Thus by simulation of the coricsponding storage process,
the probability of ruin can be obtained The special cases where the surplus earns
interest and the premiums are charged by layers arc considered and 1illustrated
numerically
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I INTRODUCTION

The study of the probability of ruin has been the centre of interest of many papers
treating actuarial nisk theory Most of these arucles deal with the problem of
determining this probabulity 1n the case of constant premiums. The mathematics are
simpler and explicit results have been obtained for certain claim amount distribu-
tions Fewer papers consider the case of premiums whose value depend on the
current surplus Some of them are GERBER (1975), TAYLOR (1980) and SCHMIDLI
(1994) As one would expect, fewer explicit results have been obtained For
exponential jumps. GERBER (1975) obtains an ecxact exptession for the ruin
probability

When no explicit solution 1s available, the actuary must rely on alternative tools
to obtain an answer DUFRESNE and GERBER (1989) make use of the duality
between the virtual waiing tme of the single-server queue (M/G/1) of queuing
theory and the nisk process of risk theory 1n the case of constant premium rates to
obtain the probability of ruin by simulation See FELLER (1971, p. 198) and SEaL
(1972) for proofs of this dualty.
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If the premiums are no longer assumed constant, a duality still exists between the
two processes SIEGMUND (1976) first established the conditions on the probability
measure of the storage process under which a dual nisk process exists. HARRISON
and RESNICK (1978), and AsMuUSSEN and PETERSEN (1989) have also shown the
duality. The goal of this paper 1s to illustrate that the method of DUFRESNE and
GERBER (1989) can be adapted to the case of vanable premiums. Thus a stngle
sample path of the corresponding storage process is sufficient to provide an estimate
of the probability of ruin

Two special cases will be studied The first one considers the situation where
interest 15 taken nto account, and the other one looks at premiums charged by
layers We look at the speed of convergence of the estimate when different
assumptions are made The method proposed 1n this paper 1s put in perspective with
alternative ones 1n the last section.

2 THE SURPLUS PROCESS AND THE STORAGE PROCESS

In the following, the surplus process {U(f), 1=0} 1s defined by the il value
U(0) =u and the stochastic differential equation

21 dUr) = <(U@))dr — dS (1),

where {S(1), 1=0} 1s the aggregate claims process and c(-) 1s the premum rate
Suncrion such that

2.2) c()>0 for u>0.

It 15 assumed that {S(r), r=0} 1s a compound Poisson process with parameter 1
and claim amount distribution P(-). We wish 1o stress the fact that the claims are
not necessarily positive.

It 1s worth mentioning that (2.1) 1s a quite genera! defimition of the surplus
process. The classical case 1s retrieved if ¢ () 1s constant. If it 1s assumed that the
surplus earns interest at a constant force §, we have

23 c(x) = c+0ox

Thus earning interest 1s i fact “equivalent” to recetving premiums at a rate which
1s a hinear function of the surplus Another example is the case where premiums are
charged by layers These two examples are treated in section 5.

In order to build a dual process, let {X(r)} be defined by an initial value X (0)
and the stochastic differential equation

(24) dX(1) = —c(X(2))dr +dS@),

where ¢ () and S(¢) are the same as 1in (2 1) In addition to (2 4), we impose on
{X (1)} the condition that 1t be a process with non-negative values Thus the
increments of {X (1)} are defined by (2 4) unless they would cause the process to
fall below 0, in which case the process is equal to O until the next positive jump.
Figure 1 1llustrates a sample path ol {X(r)} and {U (r)} with same imtial value.
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FIGURF | Typical sample paths of {X (1)} and {U(0)}

The process {X (1)} 1s called a storage process duc the following interpretation
Suppose that {X(r)} 1s n state x at time ¢ (call x the stock) and consider the
infinitesimal time mterval (1, 1+dr) In that mterval, there 1s an mput of amount
dS(t) and an output equal to c(x)dr. In this context, ¢ (x) is called the release rate,
which 1n our case 1s a function of the current stock It 1s assumed that stocks cannot
be negative This heunstically explains (2 4)

3. A PROOF OF THE DUALITY

For completeness, we give a proof of the duality between the nisk process and the
storage process defined by (21) and (24) The reader 1s referred to SIEGMUND
(1976), HarrisoN and ResNicK {(1978) and AsmusseN and PeTERSEN (1989) for
alternative arguments. We use the classical notation ¥ («) for the probability of rumn
given the imtial surplus u, 1e.

3D Y(u) = Pr(U@1)<0 for some r=0),
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and define the survival probability as i (1) = | — g (1). 1t 1s shown next that ¥ () 15
a solution of the integro-differential equation

(3.2) c()P'(u) = Apu) — 4 J Yu—y)dP(v), u>0.
First, we define implicitly the function u (r) by

!
(33) u(t) = u + J c(u(s))ds.

0
Before the first claim, u(t) and U () will be equal. Second, consider an interval of
arbitrary length A Now condition on whether there is a claim between times O and A
and on the time of this possible first claim There 1s no claim with probability et
and a claim at tme 1 <<h with probability Ae™™dr With no claim in the nterval, the
surplus grows to u (h) at tme 7 With a claim a time ¢, the surplus becomes u (1) -y
at time ¢ with probability dP(y) Applying the taw of total probability yields

h (1)
34 P = e_'lhl—/}—(ll () +4 J e"l"[ P (u(t)—v)dP(y)dr.

0

-

Note that i (u) = 0 for negative values of u, 1 e, ruin 1s certain when the nitial
surplus 1s negative Taking derivatives of both sides of (3 4) with respect to 4 and
letting h tend to O leads to equation (3.2).

Let F(x, 1) be the probability distnbution function of the random variable X (¢),
that 1s

(35) F(x, 1) = Pr(X(1)=x).

From here on, 1t 1s assumed that ¢ (-) 1s “sufficiently large” so that the process
{X (1)} does not escape to infimty and has a statonary distritbution. Let F(x) be the
stattonary distribution. Then we have (see Ross (1983), theorem 4 3 3)

(3.6) F(x) = hm F(x, 1),

o

With arguments similar to the ones leading to (3 2), we can derive the following
integro-differential equation for F(x)-

37 CF'(X) = AF(v) - A4 j Fx=y)dP(y), x>0.

Consider the function & () defined by

0

(3.8) E)y=x+ J ¢ (E(s)) ds,

!
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and the time interval fo—h<t=<1, (0<h<ty) In other words, we look backward

from 1 at an interval of length & Then the event (X (1,) =) 15 equivalent to one of

the following events

e (X(tg—h)=E(-M) 1f no jumps occur In the given time nterval, or

e (X(rp—1) = &(=1) —y) 1f, 1n the given tme interval, the last jump of the sample
path 1s of amount y and occurs at time 15—1, T<<h.

Thus, by the law of total probability, we have

(3.9) F(x, 1) = e F(E(=h), 1o~ h)

h E(-n)
+ J P J F(E(=1)~y, 1y—T)dP(y)dr

0

-%

Taking linuts as 1, tends to infimty and successively applymg the Dominated
Convergence Theorem (RUDIN (1976), p 321, note that le™*| and IF( )l are
bounded by 1) yiclds

h E-n
(310) F(x) = e’;'"F(E(—h))+}.JA c"lrj FE(-D)-v 1p—T)dP(y)dr

0

-

Taking derivatives with respect to h and letting 4 tend to O gives us (3 7)

if we compare (32) and (3 7), we sce that 1 (x) and F(x) are solutions of the
same ntegro-differential equaton In conjunction with the conditions F(e) = 1 and
P (®) =1, these equations have a unique solution (see DUFRESNE and GERBER
(1989), p 78), and we conclude that F(x)=(x) Thus we can estimate the
probability of ruin by estimating F(x)

Remark

In the proof of (3.2), it must be kept tn mind that () 1s not differentiable at the
points of discontinuity of ¢ («v) However, note that the expression on the right-hand
side of (3 2) is a conunuous function of u and 1t follows that the left-hand side 1s
also continuous Thus, although ‘(1) does not exist at points of discontinuity of
¢ (u), the product ¥/'(u)c(u) 1s continuous This remark holds true for (3 7) and
F(x)

4 STATIONARY DISTRIBUTION AND RUIN PROBABILITY

Following the reasoning of DurFrResNE and GERBER (1989), define D (x, t) as the
total time that the process {X (1)} spends below level v before time 1. From (3 6) we
have

D oty
“.1) Iim @ 1)

- !

= F(x) almost surely

Heuristically, (4.1) means that in the long run, the probability that a chosen point of
the sample path 1s below x 15 equal to the proportion of time spent by the process
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below x. This inwinvely makes sense A proof of (4 1) can be found in HOEL, PORT
and STONE (1972) (Theorem 1, p 58), which sums up to an application of the
strong law of large numbers Hence, F(x) and the probability of ruin can be
obtained with the simulation of a single sample path of {X(1)}.

Sull along the 1dea of DuFRESNE and GERBER (1989), one way to keep track of
the total time spent below level x by a sample path 1s 1o consider the random
varables D, (x), which are defined as the total time spent below v before the nth
Jump If 7, is the random time elapsed between the (n — 1)th and nth jump, we have
that

D, (x)
(42) lim ————— = F(x) almost surely

n-x "

YT

1=
n

since hm 7, = 2 almost surel
i

x
H— =1

5 ILLUSTRATION

According to (4.2), if we perform a sufficiently large number of simulatons, the
convergence of the estimate to F(x) 1s certain Sull we must test how fast this
convergence occurs We will look at two cases for the premium function ¢( ) The
first consists 1n allowing the surplus to earn interest and the second one treats the
case of premiums by layers

5.1 Interest on the surplus
Recall (2 3) which gave as a premium function
B c() = ¢ +du

We will simulate sample paths of the process {X(r)} defined by the arbitranly
chosen imnal value X (0)=0 and

(52) dX (1) = = (c+ X (0))dr + dS(1).
If we look at the process between jumps, then solving X' (1) = —c—0X () yields
-0 -1g)
—0(i—1) I -e
(5.3) X(1) = X(1p)e 0— ¢ ——T— , 1>
First, we simulate yjump amounts Y,, Y,, , and interjump times T, T,, , where

Y, is the amount of the rth jump and 7, 1s the tme between jumps ¥,_,and ¥, T, s
defined as the ume before the first jump Then, to keep track of the process, let X,
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be the value of the process immediately after jump 1, with X, =0 Keeping in mind
that negative jumps are allowed and that {X ()} 1s non-negative, we get with (5.3)
that

-or,
| —e "'
“4 X, = max |:0, Y., X,,_|e'm" -c [———«J + Y,,jl
0

The amount of ime D, (x) spent by the process below level x before the nth jump
15 obtamned recursively by

D,,(\')+T”+|, XHSX‘
55 D, = |
( ) I(‘) Dll(‘.)_(Tll+|_.rIl+|)+’ Xn>""
with Dy(x) =0, x, = max (0, x), and r,,, being the time needed to reach level x
starting from X, (assuming no jumps occur during this time interval). The period
r, . 18 implicitly defined by r—1t, in (5.3) with X(¢,) =X, and X (t)=x Thus

[ X, + c/d
(56) Fpe1 = — ‘n E———
o Y+ ¢/o

Table | gives estimates of the probability of rumn for different numbers of
simulations n and different mitial surplus values u The Poisson parameter 1s A = |
and the jump amount distribution 1s exponential with mean equal to | The premium
¢ 1s equal to | and the force of iterest 0 1s 005 Thus no security margin 1s
included 1n the premium Although tn the classical model ruin 1s certuin when no
security margin 1s included m the premium, it 1s not the case when the surplus
ylelds interest. Moreover, 1t can be seen that if the imtial surplus s sufficiently
high, the probability of ruin becomes quite small, even in the absence of a security
margin. The exact values at the bottom of each column are given by the

formula
(,{ c u j
rN—, —+—
0 du u

57 Y (u) = —
A ¢ o (¢ A _—
N—, — |+ — de Ou
o du A O

with the incomplete gamma function defined as

%

(58) I, b) = J X lemVdr,

b

Formula (5 7) 1s attnibuted to SEGERDAHL (1942)
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TABLE |
THE PROBABILITY OF RUIN OBTAINED BY SIMUL ATION WITH
A=1,¢=1,06=005 Plx)=1=-¢"1>0

n\u 0 2 4 6 8 10
10 000 0 848728 0552233 0334032 0190215 0 100786 0052822
100 000 0 846427 0553203 0326112 0177550 0087981 0041057
200 000 0844146 0550787 0325396 0176152 0 086685 0039624
300 000 0843202 () 549879 0324983 0175151 0086354 0039693
400 000 (0 842386 0 548004 0321891 0172704 0 (85010 0039081
500 000 0842270 0547173 0321128 0171949 0084398 0038676
600 000 0841583 0 545989 0 319980 0 171063 0083841 0038345
700 000 0 841850 0 546447 0 320371 0171678 0 084360 0038700
800 000 0841910 0545976 0319828 0171489 0084383 0038660
900 000 0841728 0 546393 0 320642 0171790 0084402 0038724
1 000 000 0841819 0 546590 0 320795 0171867 0084570 0038740
exact 0841108 0547364 0322416 0173175 0 085508 0039123

Table 1 seems to indicate that in this case, simulatung 1 000 000 claims provides
an estimate with a precision of about +0001 One way to venfy any statement
about convergence 1s to carry out the simulation a given number of tunes and then
compute the sample variance of the estimates for each # and «. However, statistical
common sense suggests that 1t 1s not neccssary to verify the sample variance for
each n. The reason for this lies in the fact that our estimates are, more or less, just
sample means Thus using one sample of size mn or m samples of size n should
give similar values for the estimated vaniance of the population. In other words,
estimating F(x) with 1 000 000 claims should provide a value as precise as taking
the sample mean of 100 esumates of F(x) with 10000 claims (Since m samples
have equal 1mitial values, a fact which does not hold if we “split” into s one larger
sample, these statements are not exactly true mn our case However, a few tests
should convince the reader that the bias 1s small and of no practical importance )
Table 2 gives sample means and standard deviations for estimates of F(x) obtained
from 100 simulations of 10000 claims as done in Table |

TABLE 2
SAMPLE MEANS AND SIANDARD DEVIATIONS OF THE FIRST ROW OF TABLE |

1 0 2 4 6 8 10
mean 0 840817 0546415 0321480 0173301 0 086320 0039825
std dev 0006811 0015135 0016091 0012874 0009071 0006142

Given the estimated values of the standard deviation in the last row of Table 2,
we know approximately how many claims we must simulate in order to get a
desired precision A 95 44 % confidence interval for the exact value of F(x) 1s given
by

(5 9) [Fn (X) - 2Sn (-'\’)v Fn (-\.) + 2511 (.\')]
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where F, (x) 1s the esumate of F(x) and s, (x) 15 the sample standard deviation when
n claims are simulated. The values of s, (x) can be approximated by the values of

Table 2 divided by yn/10 000. In the next section, we shall return to the question of
effictency and usefulness of this method.

One should note that the standard deviauon for # =4 1s almost twice the one for
=10 Thus the value of u has an effect on the precision of the estunate This
makes sense since for high enough values of u, the estimate for F(x) tends to zero.
Hence we must expect that the standard deviation should at some point start
decreasing and reach zero for high values of u.

Table 3 and Table 4 give results for a case sinular to Table | and Table 2, with
the exception that the premium ¢ 1s now set equal to 1.5 The reader 1s invited to
compare the estimates when n= 10000 with the exact value. The estimates are
already about exact to the second decimal place. It 15 a consequence of the smaller
standard deviations

TABLE 3
THE PROBABILITY OF RUIN OBTAINED BY SIMULATION WITH
A=1,¢c=156=005 PL)=1-¢"" >0

n\u 0 2 4 6 8 10
10 000 (0 626483 0 267620 0 103953 0039879 0013643 0003166
100 000 0621247 0267299 0108216 0041382 0015142 0005366
200 000 0621558 0266750 0108240 0041695 0015280 0005514
300 000 0620434 0 265071 0 106970 0041265 0015145 0005478
400 000 0 620350 0 265389 0107332 0041506 0015226 0005473
500 000 0621022 0266831 0 108398 0041920 0015207 0005330
600 000 0 620897 (266538 0108153 0041820 0015248 0005372
700 000 0 620798 0 266677 0107939 0041564 0015010 0005222
800 000 0 620505 0 266258 0107762 0041427 0014983 0005195
900 000 0 620099 0 265688 0107292 0041051 0014808 0005146
1 000 000 0619961 0 265640 0107393 0041162 0014886 0005187
exact 0619915 0264757 0106251 0040303 0014525 0 004997

TABLE 4

u 0 2 4 6 8 10
mean 0619790 0 264067 0105692 0040024 0014316 0004799
std dev 0007323 0 009806 0007197 0004605 0002652 0001478

Table 5 and Table 6 show results for the case where the jump amount distribution
1s gamma with mean equal to | and vanance equal to 10 (the values of 4, ¢ and o
are the same as 1n Table |) This distribution 1s heavily skewed to the night. [t 1s
interesting to observe that for low values of u, the probability of ruin 1s smaller than
that of Table 1 It comes as no big surprise that the opposite 1s true for sufficiently
high values of u Note that the convergence of the esumates 1s quite slow, but it
must be kept 1n mind that this 1s a “ worst case scenario” example since the claims



102 FREDERIC MICHAUD

distribution 1s very skewed and no secunty margin 1s included in the premium As
can be seen by comparison of Table 2 and Table 4, a higher security margn pulls
the storage process faster towards level O, thereby inducing a smaller standard
deviation for the estimates

TABLE 5
THL PROBABILITY OF RUIN OBTAINED BY SIMULATION WiTH
(O ] )() 1
A=l.c=1,6=005 P'(1) = —- - 17290 >0
roit)

n\u 0 2 4 6 8 10
10 000 0689627 0534063 0426268 0339340 0269248 0215301
100 000 0 694396 0543978 0438372 0352647 0283304 0227501
200 000 0692600 0542045 0437333 0352160 0283047 0227270
300 000 0690774 0539260 0434332 0349699 0281290 (225822
400 000 0690506 0539206 0434469 0350262 0282013 0226767
500 000 0690252 0538565 0433786 0349681 0281509 0226364
600 000 0691321 0539879 0434928 0350625 0281986 0226477
700 000 0691120 0539932 0434990 0350448  (028168I 0226102
800 000 0691508 0540416 0435668 (351265 (282542 (226926
900 000 0691812 0 540971 0436270 0351890 0283268 0227778
[ 000 000 0692597 0541912 0437225 0352825 (284139 (228484

TABLE 6

u 0 2 4 6 8 10
mean 0694120 0544448 0440406 0356273 0287755 0231561
std dev 0013900 0017105 0017434 0017072 0016591 0015668

Remark

The special case where ¢ =0 1in (5.1), 1e ¢ (u)=0u, 1s of unexpected interest. In this
case, the process {X(r)} will never attain the barner 0, and there 15 an explicit
expresston for its value at time 7.

(5.10) X(1) = xe”® + J e~ gs (7).
0

The stationary distribution 1s the distribution of the sum of the discounted claims,
that 1s

(5.11) F(x) = Pr “ e"”dS(t)Sx)

0
For this case, the duahty has already been noted by GerBgrR (1971). Finally, we
note that the distribution (5.11) also contains mmportant information about the
probability of rum in the general case where ¢>0 1n (51) See Example 1.2 in
Chapter 3 of GERBER (1979)
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5.2 Premiums by layers

Now we look at the case where

Cos 0=u=u=<u,,
Cy, U, <u=u,,
5.12) c(u) = ! ! 2
Cials» u  <u<u, = ©,
The premiums vary according to the level of the current surplus When ¢y, ¢,. .. is

a decreasing sequence, one reasoning that can jusufy the structure of (5.12) 1s the
following The greater the surplus of a company, the less the nsk of ruin. Thus, a
company can take advantage of this situation to lower its premium rates (and thus
be more competitive) when its surplus increases. Another reasoning 1S to view the
reduction of premium as a form of dividend payment, where the dividend rate
increases along with the surplus Increasing patterns of c(u) have already been
explained 1n section 5.1.

Consider the process {X ()} with the premum function given by (5 12). Let Y,
and 7, be simulated as in section 51 and X, be the value of the process
mmediately after jump Y,. A bit of notation must be introduced to show how to
apply the method of section 4.

We will say that a value x 1s at level ¢ 1f 4, <x=u,,,. Let
o bh(x) be the level of a value x, 1e, h(x) =i 1f u, <x=u,.,,

* ,(x) be the time needed, starting from x, to get to the bottom of level 1 = b (x),

1e. A
) by it i = b(x),
CI;(()
513 1w =

X = U, Upy = Upy-1 U, —u
AR A AL PR

if i < b(x),

CI)(!) Ch(\)—l ¢,

e ¢(x, 1) be, for a path starting at x, the level of the process at ume ¢ (assuming no
Jumps occurred), i e.

0 if 1 > 19(x),
514 1) = [ ’
G149 e max {t € {0, 1, ., b))} r—1(x) =0} f 1 = 15(x).
Thus we have
max (0, y") if Tn > Iy (Xn—l)’

515 X, = [
( ) " max (0, u, + ¢,(t,=T,) + Y,) f T, = 1,(X,_)).

where € 1n (515) 15 given by e(X,,_,, T,) - Before the (4 1)st jump, the path 1s

below level x for an amount of time

Dn (X) + Tn + 1 Xn = Be

X = Upey )
D,,(.\') + Tn+l - rb(\)(Xn) - ’ Xn > X,
+

Ch(\)

(5 16) Dn+ 1 (X) =

and with (4 2), the probability of ruin can be retrieved
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An 1llustration 1s given in Table 7 For the simulation, the Poisson parameter was
equal to | and the claims were distributed according to a translated gamma
distribution (claims > —1) with mean equal to | and variance equal to 2 The
premiums and layers are as follows:

1.7, 0=x=2,

1.6, 2<x=4,
15 4<x=<6
517 c(r) = > ) ’
17 @) 14, 6<y=8,
1.3, 8<x=10.
1.2, >10
TABLE 7
THE PROBABILITY OIF RUIN OBTAINED BY SIMULATION WITH
A=l P) = @+ De” ™", a>=1 AND ( () GIVEN BY (5 17)
n\u 0 2 4 6 8 10
10 000 0754924 0483182 0293354 0 168664 0095282 0051425
100 000 075978 0497156 0 303036 017568 0098522 0054574
200 000 0 760895 0498213 0303498 0175486 0097763 0053552
300 000 0763933 0 502501 0 306681 0 177508 0098657 0053784
400 000 0 764685 0503882 0307947 0178021 0 098809 0053752
500 000 0 764652 0504126 0 308297 0178533 0 (099493 0054241
600 000 0 76482 0503911 0 307887 0178048 0099054 0053717
700 000 0764248 0503313 0307358 0177684 0098852 005353
800 000 0763817 050263 0 306994 0 177603 0 098887 0053637
900 000 0 763825 050262 0307235 0 178197 0 (99494 0054179
1 000 000 0 762866 03501131 0 305775 () 17693 0098507 0053432
TABLE 8
u 0 2 4 6 8 10
mean 0762935 0502425 0308143 0 178967 0099972 0054582
std dev 0 009878 0014930 0015546 0013561 0010778 0008359

6. DISCUSSION OF THE METHOD

A question has been left unanswered: do other methods exist to obtain the
probability of ruin, and if so, are they more efficient (in the sense of speed of
convergence)? The answer can be yes or no Obviously, for cases where an exphcit
solution 1s available, the question 1s not worth asking When no explicit formula 15
available, another method 1s to solve the approprate integral equation numerically
A few tests show that 1t 1s a much faster technique. However, numerical evaluation
cannot provide an answer when claim amounts can be negative In fact, no other
method seems to be able to deal with possible negative claim amounts. In that sense
simulation 1s the most general solution



ESTIMATING THE PROBABILITY OF RUIN FOR VARIABLE PREMIUMS BY SIMULATION 105

The author wishes to point out that, in practice, an actuary does not need an
estimate precise to many digits What he wants 1s a rehable 1dea of this value So 1n
hight of the examples given 1n section 5, simulating 10 000 claims can be sufficient.
Moreover, he will not need to know the vatues of y () for many u’s since he will be
needing an answer for a given surplus With that i mind, the question of efficiency
1s not a crucial matter for the practitioner because the required ume for such
simulations 1s a matter of seconds, even for random variables which are ume
consuming to simulate (on a Pentium-90 PC with the APL programming language).
Smee simulation algorithms are nowadays readily available, the method suggested
here 1s easy to implement. However, for extensive studies of y () when positive
claims are sufficient, numerical evaluation s much faster See PETERSON (1989) for
an example of such methods
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