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ABSTRACT 

In the present note we deduce a class of bounds for the difference between the stop- 
loss transforms of two compound distributions with the same severity distribution. The 
class contains bounds of any degree of accuracy in the sense that the bounds can be 
chosen as close to the exact value as desired; the time required to compute the bounds 
increases with the accuracy. 

1. INTRODUCTION 

During the last twenty years, there has grown up a large literature on approximations 
and inequalities for stop-loss premiums under various assumptions. One way of ap- 
proximation is to approximate the original distribution with another distribution that 
makes the evaluation simpler. In such cases it is useful to have bounds for the diffe- 
rence between the exact stop-loss premium and the approximation, that is, it is of 
interest to have bounds for the difference between the stop-loss transforms of two 
distributions. 

When approximating the stop-loss transform of a compound distribution, it is so- 
metimes convenient to replace the counting distribution with another distribution, e.g. 
a Bernoulli distribution or a Poisson distribution, and keep the severity distribution 
unchanged. Such approximations are discussed by i.a. Dhaene & Sundt (1996). 

In the present note we deduce classes of bounds for the difference between the stop- 
loss transforms of two compound distributions with the same severity distribution. The 
classes contain bounds of any degree of accuracy in the sense that the bounds can be 
chosen as close to the exact value as desired; the time required to compute the bounds 
increases with the accuracy. 

2 .  NOTATION AND CONVENTIONS 

Let ~÷ and Z÷ denote the sets of respectively the non-negative real numbers and the 
non-negative integers, and Pn÷ and it::'z+ the classes of probability distributions with 
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finite mean on respectively ~+ and &. For distributions in Re+, we shall denote the 
cumulative distribution function with a capital letter and, for distributions in Pz÷, the 
discrete density function with the corresponding lower case letter. The stop-loss trans- 
form of a distribution will be denoted by a horizontal bar on the top of the symbol of 
the distribution, that is, for a distribution F E Pe+, we have the stop-loss transform F 
given by 

F ( x ) = f ? ( y - x ) d F ( y ) = f ? ( 1 - F ( y ) ) d y .  (x_>O) 

The mean of  F is denoted by #~-, that is, 

PF = F(O)= ~ ydF(y)=j'~ (1- F(y))dy. 

We shall denote a compound distribution with counting distribution P E Pz÷ and 

severity distribution H E Pe÷ by P v H ,  that is, 

p v H = p ( . ) H " ' ,  
n=0  

where/-/"*denotes the n-fold convolution of H. 
For F E  PR+ and r e  K'+, we define the approximation Fr by 

Fr(x)=(lF.(x) (x(O<-x<r)_>r) 

This approximation can be interpreted as the distribution obtained by setting all obser- 
vations greater than r equal to r. The limiting cases r = 0 and r = ~ correspond to 
respectively the distribution concentrated in zero and the original distribution F. 

We shall interpret Z b i=a I)i = 0 when b < a. 

3 , 1 .  

the special case r = I ; the proof is easily extended to the general case. 

L e m m a  1 For H E P~+, r, m E Z÷ such that r _<m, and x E 7~+, we have 

(m - r)H (x) _< H ' * ( x ) -  Hr*(x) _< ( m -  r)12 H. 

3. RESULTS 

The following lemma is proved as formula (38) in De Pril & Dhaene (1992) for 

L e m m a  2 For P E Pz÷, HE P~+, r e  Z+, and x E 7~÷, we have 

H (x )P  (r) _< P v H ( x ) -  Prv H(x )  _< #H P(r). (1) 
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Proof. We have 

oo 

e v n ( x ) -  ~ v 14(x) = y~ p(n) ( n " ' ( x ) - / 4 " ( x ) ) .  
n = r  

Application of Lemma 1 gives 

p(~) (n-r)n(x)_< e v  H(x)-er v n(x)~_ ~p(n)  (n - , ' ) ~ . ,  
n = r  l i a r  

from which we obtain (1). Q.E.D 

The second inequality in (1) was proved under more general assumptions by Sundt 

(1991), who also showed that 0 _< P v  H ( x ) -  P r v  H(x ) ,  which is weaker than the 

first inequality in (1). 

If Pr = P, that is, P(r) = 1, then the bounds in (I) become equal to zero. 
Lemma 1 appears as a special case of Lemma 2 by letting P be the distribution con- 

centrated in m. 

3.2. For P, Q • ~z+, H • ~P~+, r • Z+, and x • "R+, we introduce 

B r ( x ; P , Q , H ) =  Prv  H ( x ) - Q r  v H ( x ) + P n P ( r  ) -  H ( x ) Q ( r ) ,  (2) 

which can also be written as 

r - I  

O r (X; P, Q, H ) =  Z ( p ( n ) - q ( n l ) H " * ( x ) -  
n=l  

( P(r - 1) - Q(r - 1))H r• (x) +/ ' /n  P(r  ) - H (x ) Q (r ). (3) 

Theorem 1 For P, Q • Pz+, H • PR+, r • Z÷, and x • 7~÷, we have 

-Br(x;Q,P,H) _< P v H ( x ) - a  v H(x)  _< Br(X;P,Q,H ). (4) 

Proof. Application of  Lemma 2 gives 

P v H ( x )  - O v H ( x )  _< Pr V H ( x )  + pt . iP(r)  - Or v H ( x )  - H ( x ) O ( r )  = 

Br(X;P,Q,H) ,  

which proves the second inequality in (4). The first inequality follows by symmetry. 
This completes the proof of  Theorem 1. Q.E.D. 
We shall look at some special cases of  Theorem 1: 

1. As 

Br(x;P,  Pr ,H)=I - IHP(r )  B r ( X ; P r , P , H ) = - H ( x ) P ( r ) ,  

we see that Lemma 2 (and thus also Lemma I) is a special case of Theorem 1. 
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2. From (3) we obtain 

B, ( x ; P , a ,  H )  = - ( p ( 0 ) -  q(0))  H ( x )  +/1H P ( 1 ) -  H(x)O(1) = 

For H ~ Pz+ this case is discussed in Dhaene & Sundt (1996). 

3. From (2) we obtain 

B 0 (x; P,Q, H) = ~HI.te - H(x)lJa. (5) 

4. If P(r) = Q(r) = 1, then Pr = P and Qr = Q, and from (2) we obtain 

B~ (x; P,a,  H) = -B~ (x;a, P, H) = P v H ( x ) -  a v H(x), 

that is, in this case Theorem 1 becomes trivial. 
5. From (2) we obtain 

Br(x ;P ,P ,H)=(I I  H - H(x) )P(r ) ,  (6) 

that  is, un fo r tuna te ly  the bounds  in T h e o r e m  1 do not  in general  b e c o m e  
equal to zero  when compar ing  two identical c o m p o u n d  distributions. 

3,3. 
Theorem 1, that is, 

Dr(x;P ,Q,H)= Br(x;P,Q,H)+ B~(x;Q,P,H).  

Then 

Let D/x,'P,Q,H) denote the difference between the upper and lower bound in 

(7) 

Or(x ~ P, Q, H ) :  (]'/H -- "n(x))('P(~')'~ ~)(F)). (8) 

We see that Dr(x;P,Q,H) decreases to zero when rincreases to infinity, that is, we 
can make the difference between the upper and lower bound in Theorem 1 as small as 
desired by making r sufficiently large. 

We see that Or(X;P,Q,I-I ) increases from zero to I.tH(-P(r)+O.(r)) when x increases 

from zero to infinity. Thus our bounds are most accurate for low values of  x. Further- 
more, if for some e > 0 we choose r such that 

_ m E 

P(r)+Q(r)  < - -  
lzn 

then Dr(x:P,Q,H) <e for all x E ;P+. 

3.4. Let 

br (x; P,Q, H)  = B r (x; P, Q, H )  - Br+ 1 (x; P, Q, H) .  
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From (3) and trivial calculus we obtain 

br(x;P,Q,n)=(P(r)-Q(r))(H(r+l)*(x) - Hr*(x)l+ 
/2H(1- P(r))- H(x)(1-O(r)). 

(9) 

By rewriting (9) as 

( i -Q(r))IH(r+I '*(x)  - H r * ( x ) -  n ( x ) l  

and application of  Lemma 1, we see that br(x;P,Q,H) _> O. Thus Br(x;P,Q,H ) is non- 
increasing in r. This implies that in (4), the upper bound is non-increasing and the 
lower bound is non-decreasing in r, and as Dr(x;P,Q,H) goes to zero when rgoes  to 
infinity, both bounds converge to P v H(x) - Q v H(x). 

Formula (9) can be applied for recursive evaluation of  &(x;P,Q.H). 
Furthermore, when we have found Br(x;P,Q,H), we easily obtainBr(x;Q,P,H) from (7) 
and (8). 

3 .5 .  

bounds in Theorem 1. For doing that, we shall need the following lemma. 

L e m m a  3 For P, Q ~ Pz+, H ~ ~+, r ~ Z÷ and x ~ R+, we have 

br(X;P,Q,H)_>(~ H -H(x ) ) ( l -max (P ( r ) ,Q( r ) ) ) .  (10) 

Proof.  We apply Lemma 1 in (9). If P(r) _> Q(r), then 

b r (x; P,Q, H) _> (P(r) - Q(r))H(x)  + IZn (1 - P(r)) - H(x)(1  - Q(r)), 

that is, 

br(x;P,Q,H ) _> (u H - H(x))(I- P(r)). (I I) 

Analogously, if P(r) < Q(r), then 

b, (x; P, Q, H) _> ( P(r ) - Qfr )) la H + #H (l - P(r )) - H(x)(1  - e ( r  )), 

that is, 

b,(x; P,Q,H)_> (#h - H(x))(l-Q(r)). (12) 

From (I I) and (12) we obtain (I0). Q.E.D. 

The main purpose of the present subsection is to deduce an improvement of  the 
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Theorem 2 For P, Q E Pz÷, H ~ PR+, r ~ Z÷, and x E 7;?+, we have 

Br(X;Q,P,H)+(p  H - H ( x ) ) ~ ( 1 - m a x ( P ( k ) , Q ( k ) ) ) _ <  
k=r 

P v  H ( x ) - O v  H(x)< 

n r ( x ; e , a , " ) - ( ] l  H - H ( x ) ) ~ ( 1 - m a x ( P ( k  ) ,Q(k ))). 
k=r 

(13) 

Proof.  For s ~ Z÷ such that s _> r, we obtain by applying successively Theorem 1 and 

Lemma 3 

P v H(x) - Q v H(x) _< Bs(x; P, Q, H) = 
s - I  

Br(x; P, Q, H) - Z bk (x; P, Q, H) _< 
k=r 

s - I  

Br(X;P,Q,H)-(I.tH - H(x ) )Z ( I -max(P(k ) ,Q(k ) )  ). 
k=r 

By letting s go to infinity, we obtain the second inequality in (13); the first inequality 
follows by symmetry. 

This completes the proof of Theorem 2. Q.E.D. 

We see that in (13), like in (4), the lower bound is non-decreasing in rand  the upper 
bound is non-increasing in r. 

The infinite summation in (13) may seem complicated. However, as all the terms 
are non-negative, we obtain weaker bounds by including only a finite number of  
terms. Furthermore, if P or Q has a finite support, then only a finite number of  terms 
are non-zero. 

In the following corollary we consider another case where the summation obtains a 
particularly simple form. 

Coro l la ry  1 

teger s (possibly equal to infinity) such that 

Q ( y ) < P ( y )  ( y =  0,1 .. . . .  s -  1)'~ 
t -  

Q(y)_> P(y),  (y= s,s + l .... ) J 

then 

Let P, Q E Pz+, H ~ Pe+, and x E 7~+. If there exists a non-negative in- 

- 8 / x ; Q , P , H ) + ( u .  _< 

P v  H ( x ) - Q v  H(x) < 

Be(x; P, Q, H) - (,tt H - H(x))('P(r) - "P(s)+ Q(s)) 
( r = 0 , 1  ..... s - I )  

(14) 

(15) 
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-B,. (x;Q, P, H) + (11 H - H(x  ))Q(r) _< P v H(x ) - Q v H(x ) <_ 

Br(x; P ,Q,H)- ( I11  t ---H(x))Q)(r). (r  = s,s + 1 .... ) (16) 

Proof.  For r = 0, 1 . . . . .  s -1 ,  we have 

' ~  (1 - m a x ( P ( k ) , Q ( k ) ) ) =  ~_~(1- P(k ) )+  ~ ( 1 -  Q ( k  ) ) =  
k=r k=r k=s 

7(r)-- 7(s) + 0(s), 

and insertion in (13) gives (15). The inequalities (16) are proved analogously. 
This completes the proof of  Corollary 1. Q.E.D. 

If  we in addition to (14) assume that/.to < ,up, then we have the stop-loss orderings 

Q < P and Q v H < P v H; for proofs cf. e.g. Goovaerts,  Kaas, van Heerwaarden, & 

Bauwelinckx (1990). 
At the end of subsection 3.2. we pointed out that unfortunately the bounds in Theo- 

rem 1 do not become equal to zero when Q = P. From (6) and (15) we see that the 
improved bounds of  Theorem 2 do not have this deficiency. 
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