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ABSTRACT 

This paper shows how a multivariate Bayes estimator can be adjusted to satisfy a set 
of linear constraints. In the direct approach, the constraint is enforced by a restriction 
on the class of admissible estimators. In an alternative approach, the constraint is 
merely encouraged by a mixed risk function which penalises misbalance between the 
estimator and the constraint. The adjustment to the optimal unconstrained estimator is 
shown to depend on the risk function and the linear constraints only, not on the 
probability model underlying the Bayes estimator. Two practical examples are given, 
one of which involves reconciliation of independently assessed share values with 
current market values. 

KEYWORDS 

Bayes Estimation, Linear Bayes Estimation, Credibility Theory, Share Valuation 

I. INTRODUCTION 

Actuaries often need to reconcile the estimates they have arrived at, with the data 
used to calculate the estimates. In the estimation of pure premiums, for instance, the 
actuary would always check that the total premiums calculated are sufficient to 
cover the total cost of claims. 

The concept of  balanced linear estimators was introduced by Neuhaus (1995). In 
that paper, a linear estimator is called balanced if it satisfies certain linear con- 
straints involving the original data; furthermore, the optimal linear estimator is 
called the credibility estimator, and the optimal balanced linear estimator is called 
the balanced credibility estimator. 

This paper generalises the balancing concept in two directions. The first general- 
isation, presented in Section 2, involves balancing arbitrary estimators, i.e. estima- 
tors which are not necessarily linear in the data. By this approach one arrives at an 
optimal balanced estimator. As a by-product one obtains a much shorter derivation 
of the balanced credibility estimator than in Neuhaus (1995). A simple example of  
the calculations needed is given in Section 3. 

Section 4 provides a more practical example. Given independent valuations of  the 
different shares in a market, the actuary could wish to reconcile these values to the 
market value of the portfolio currently held, as well as the overall value of  the 
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market. We apply the balancing formula to calculate the optimal adjustment of 
individually assessed share values. 

In Section 5 we compare the balanced credibility estimator with the homogeneous 
unbiased credibility estimator in the Biihlmann-Straub model. The latter estimator 
has long been known to be balanced, see e.g. Gisler (1987). 

The second generalisation, briefly presented in Section 6, involves the use of  a 
mixed risk function, where balancing is not enforced but misbalance is penalised. 
The mixed risk function is similar to the optimisation criterion used in Whittaker- 
Henderson graduation (see e.g. Taylor, 1992). A mixed risk function has also been 
used by Sundt (1992) as a way of smoothing a sequence of credibility estimators. 

In both generalisations, the necessary adjustment to the unconstrained Bayes 
estimator turns out to be independent of the probability model underlying the Bayes 
estimator. This allows the actuary to balance the estimates after the unconstrained 
Bayes estimator has been calculated, and without reference to the model used. 

Finally, a few words on terminology: Actuaries' frequent need to balance a set of  
estimators against a set of  data, is the prime motivation for studying linearly 
constrained estimators. Since in the general context it is easy, however,, to construct 
linear constraints that do not comply with any sensible notion of balancing, we will 
simply talk of constrained estimators in the balance of this paper. 

2. OPTIMAL ESTIMATION UNDER BINDING LINEAR CONSTRAINTS 

We assume the existence of  a latent random vector (the estimand), 

Ir 'x' := ( b l , . . .  ,bp)' ,  (2.1) 

as well as the existence of an observed the random vector (the statistic) 

X "~' := (X , , . . .  ,Xn)'. (2.2) 

Assume that b and X are defined over the same probability space and square 
integrable, and assume also that the joint distribution of (b,X) is known. 

An estimator b is any measurable function 

b :  R " ~  r ~ P : x  ~ b(x), (2.3) 

such that b(X) is square integrable. The criterion (risk function) we use to measure 
the performance of a given estimator is generalised mean squared error, 

r(b) := E[(b(X) - b)tW(b(X) - b)], (2.4) 

with W pxp an some fixed, positive definite risk weighting matrix. 
It is well known that the optimal estimator in the absence of any constraints, 

which we denote by b, is the conditional mean of b given X: 

b(X) = E [ b l X  ]. (2.5) 
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The risk of  that estimator is 

r(b) = tr[W. ECov[b IX]]. (2.6) 

The optimality of 6 and its risk (2.6) are a direct consequence of  the decomposition 

r(b) = E E l ( b -  b) ' W ( b -  b) I X] 

= t r [W.  ECov(b I X)] + E[(b - 6) 'W(b - b)] 

= r(b) + EE[(b - b) 'W(b - 6) I X]. (2.7) 

We refer to the last term in the above expression as the excess risk of the estimator 

Assume now that a constraint of  the following general form has been imposed on 
the class of admissible estimators: 

f(b(X)) = g(X) a.s., (2.8) 

where f :  R p ~ Rq and g : R "  ~ Rq are known, fixed functions. The constraint 
may equivalently be stated as 

b(X) E f  -I {g(X)}, (2.9) 

provided that f - i{g(X)} :fi ~ a.s. An estimator will be called constrained if it 
satisfies (2.8). 

From the decomposition (2.7) and the observation that both 6 and b are functions 
of  the statistic X, it is evident that the optimal constrained estimator, which we 
denote by b(X), can be found by pointwise minimisation for each possible realisa- 
tion X=x: 

b(x) = prow)(b(x) I f  -I {g(x)}), (2.10) 

where prow(a [ B) denotes a projection of  a vector a into a set B, with respect to the 
metric derived from the inner product <a, b>  = a'Wb. For general functions f, g, 
this projection need not be unique and may not even exist; however, the projection 
does exist if f is a continuous function. In particular, i f f and  g are linear functions, 
the projection has the explicit formula given in the next theorem. 

Theorem 
Assume that the two constraining functions are linear, 

= g ( x )  = P x ,  (2.11) 

where L qxp and pqxn are known, f ixed matrices, and L is o f  full  row rank q < p; then 
the optimal constrained estimator is 
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b(X) = b(X) + W - ' L ' Q  -1 (PX - Lb(X)), (2.12) 

with Q = L W -  1L'. 

Proof 
Consider a fixed value of the statistic (X = x) and note that both 6 and 6 are 
functions of x. Define the Lagrange functional 

~(b - b )  ' W ( b  - 6 )  - A ' ( L b  - P x ) ,  ( 2 . 1 3 )  F =  

with A qxl a vector of Lagrange multipliers. Solving the equation 

OF (b - 6) ' W  = - A'L = 0 (2.14) 

yields 

b(A) = 6 + W- 'L 'A.  (2.15) 

Now use the constraint (2.11) to determine A = Q-I (Px-L6) ;  substitute this 
expression in (2.15) to find (2.12). 

R e m a r k s  

Two remarks on the hypotheses of the theorem are in order. Firstly, the full rank 
assumption on L is needed in order to ensure that the equation (2.8) is consistent. 
Secondly, the assumption that g is linear has not been used at all; thus the estimator 
(2.12) may easily be extended to more general functions g; however, the assumption 
that g is linear will allow us to derive transparent formulas for the excess risk, which 
is our next stopping point. 
Using (2.12), the excess risk of the optimal constrained estimator over the uncon- 
strained Bayes estimator is easily seen to be 

E[(b - b) 'W(b - 6)] = tr[Q-IE(PX - Lb)(PX - Lb)']. (2.16) 

One can write 

E(PX - Lb)(PX - Lb)' = E[E(PX - Lb I X).  E' (PX - Lb I X)] 

CovE[PX - Lb [ X] + E(PX - Lb)- E' (PX - Lb) 

Cov(PX - Lb) - ECov[PX - Lb I X] 

+ E ( P X -  Lb).  E' ( P X -  Lb) 

E(PX - Lb)(PX - L b ) '  - L .  ECov[b I X]. L' 

a .  ECov[X ] b]-P '  - L-  ECov[b [ X ] . L '  

+ E[(P-E(X [ b) - Lb)(P.  E(X I b) - Lb)']. (2.17) 
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In the important special case where n = p and E(X [ b) = b and L = P, the last term 
drops out and the expression is reduced to L(ECov[X [ hi -ECov[b  [ X]) L'. 

Note that the adjustment matrix in (2.12), namely 

J = W - I L ' Q  -1, (2.18) 

does not depend on the probability distribution of(b,  X). As a consequence, one can 
calculate the constraining adjustment after the unconstrained Bayes estimator has 
been calculated, and without reference to the model used to derive that estimator. 
Unlike the unconstrained Bayes estimator, however, the optimal constrained esti- 
mator b depends on the risk weighting matrix W and, of course, the constraints. 

An important special case is where W = diag0v) , . . . ,  wp) is a diagonal matrix and 
there is only one constraint (q = 1). In that case one can write L = (11,. • •, lp) and P 
= ( P l , . . . , P , , ) .  Inserted into (2.12), this gives the following formula for the ith 
component of  the optimal constrained estimator: 

bi~ 'i-~L(~P IJ2~-I.~,'iTj) 'l=~l pjXj -£ljbj. I 

=: /~  + - -  .~x, (2.19) 
w i  = l 

where Dx is the 'amount of  misbalance' exhibited by the unconstrained Bayes 
estimator. The excess risk in this case becomes 

r (g)  - r (6)  = .E(ZX2). (2 .20/  

Neuhaus (1995) treated the case where, on top of linear constraints of the form 
(2.11), one imposes the additional constraint that the estimator b be a linear function 
of the statistic X (i.e. a 'credibility' estimator). Using Lagrange minimisation, the 
resulting 'balanced credibility estimator' was shown to be of  the same form as 
(2.12), with 6 the credibility estimator rather than the Bayes estimator. Given the 
present result, a simple reasoning leading to that result goes as follows: since the 
risk r(b) of a linear estimator b depends on the distribution of(b,  X) only through its 
moments of first and second order, the balanced credibility estimator can only 
depend on those moments, too. But those moments could have been generated by a 
Gaussian distribution, in which case even the optimal constrained estimator is a 
linear function of X. Being selected from a wider class of admissible estimators, the 
optimal constrained estimator in the Gaussian case must coincide with the balanced 
credibility estimator; which in turn coincides with the balanced credibility estimator 
in any other model that generates the same first and second order moments. 

The excess risk (2.16) measures the average cost of constraining the estimator in 
the long run by repeated independent estimation situations. One could argue that the 
expectation should be dropped and that the pointwise increase of loss is what 
matters. If  one takes this view, the pointwise increase at X = x can be easily 
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calculated by the formula 

(b(x) - h(x)) 'W(f~(x) - bg(x)) = (Px - Lb(x)) ,Q-1 (Px - Lh(x)),  

being simply the distance between 6 and its projection onto f - I  {g(x)}. 

(2.21) 

3. EXAMPLE:  O P T I M A L  CONSTRAINED ESTIMATION OF LOGNORMAL MEANS 

As we have seen, the optimal constrained estimator (2.12) always has a component 
that is linear in the statistic X. Let us now consider a model in which the optimal 
unconstrained estimator is non-linear in X, and quantify the excess risk generated by 
the constraint. 

Assume that the portfolio under consideration consists of  stochastically indepen- 
dent policies labelled by i = l , . . .  ,p. For policy no. i, assume we have observed 
claim amounts X/j : j  = 1 , . . .  ,hi, with n i  fixed. Now assume that the X O. are 
conditionally independent, given the value Oi of  a hidden random parameter Oi, 
and that under the same conditional distribution, 

Y,y := log(X0. ) ,~ Normal  (Oi, 0), (3.1) 

with a fixed value of ~. Assume that the hidden risk parameters Oi are independent 
with 

Oi ~ Normal(~u, A). (3.2) 

The properties of  the Iognormal distribution are summarised in e.g. Hogg & Klug- 
man (1984). In particular, the conditional mean of  XO., given Oi, is 

bi = E[XoIOi] = e °' +~. (3.3) 

Now assume that it is our intention to estimate the vector of lognormal means, 

b := ( b l , . . . ,  bp)' (3.4) 

under the constraint that the weighted sum of  the estimates must equal the sum of 
claims: 

p p n, p 

Z n,bi = Z Z XO = Z niXi, (3.5) 
i=1 i =  I j =  1 i =  1 

where X1 := n71 ~ j X  O is the average of claims against policy no i. 
It is well known that the conditional distribution of Oi, given Xil,.. . ,  Xi,,,,, is 

again a normal with conditional mean 

ni)~ ~L ~--~ log(Xij) } + n i A ~ l ~  =: zi~.i+ (l _ zi) # (3.6) 
tt i --  hi" ~ q- ~ [ ni j~= I 
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and conditional variance 
,x¢ 

Ai - - -  - (I - zi)A. 
niA + fb 

The Bayes estimator of  bi is its conditional mean 

t~i = E[b, I x;, , . . . ,  &,,,] = e u' : ' 

and its conditional variance is 

(3.7) 

(3.8) 

Var[b/I Xi,, . . . ,  Xi,,,,] = e 2"' + '~ + 4'(e4' - I). (3.9) 

Using (3.9) and the marginal distribution of  f'i, which is Normal(/_t, A + qS/ni), we 
find after some tedious manipulation the Bayes risk for estimating bi: 

EVar[bi I x , , , . . . ,  Xi,ni ] = e 2" + 24 + ~'(1 - e-4'). (3.10) 

Let us assume that the matrix W is diagonal. Inserting li = Pi = ni( i  = 1 , . . .  ,p) and 
bi given by (3.8) into (2.19), the optimal constrained estimator can be read off  
directly. 

In order to calculate the excess risk using (2.16) and (2.17), we must also find 

EVar[Xi I bi] = --le2u + 24 + ~(e ~ _ 1). (3.11) 
Hi 

Now inserting the expressions (3.1 1) and (3.10) into (2.17), we find the excess risk 
generated by the constraint: 

r ( b ) - r ( b ) :  //__ELF/) e2U+24+~Zni[(e~-i=,  l ) - n i ( I - e - 4 ' ) ] .  (3.12) 

Using Jensen's inequality one can check that each of  the summands on the right 
hand side is non-negative. 

The weighted Bayes risk is 

P 

r(b) = e 2" + 24 + ~ Z wi( l  - e -4 ' ) .  (3.13) 
i = 1  

In the case where nl . . . . .  np = n and W = | ,  it is easy to calculate the relative 
excess risk, 

r ( b ) - r ( b )  1 [!  e ~ - I  ] 
r(b) = p  '1 - e  -4, 1 , (3.14) 
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with A 1 = Aq~/(nA + qS) = (1 - Zl)A. The relative excess risk can become arbitra- 
rily large. One can also show that 

l i m r ( b ) - r ( b )  1 [ e ~ - I  ] 
,,-.oo r(b) -- P ~ -  1 > 0 ,  (3.15) 

independent of A. Thus constraints should never be applied uncritically, and special 
care must be taken when the original observations have a heavy-tailed distribution. 

4. EXAMPLE:  C O M B I N I N G  SHARE VALUATIONS WITH MARKET VALUES 

Consider an actuary who has been charged with an analysis of a portfolio of p 
shares. Assume that in addition to the market values at any time t, which we denote 
by 

X(t) = (X l ( t ) , . . . ,  Xp(t))', (4.1) 

the actuary has access to an individual valuation of the shares, based on an analysis 
of the economic fundamentals. Let us assume that the individually assessed share 
values reflect the analyst's conditional expectation, given all the information avail- 
able to him, and denote the analyst's best bet by 

b(t) = (t~l ( t ) , . . . ,  bp(t))'. (4.2) 

Of course it is possible that hi(t) = Xi(t) for the major stocks and those stocks that 
have not had the attention of the analyst. 

In order not to stray too far from the market value of the shares, the actuary now 
wishes to ensure that at least the overall value of  the shares coincides with their 
overall market value. Thus assume that the number of  shares listed is 

n(t) = (nt ( t ) , . . . ,  np(t))', (4.3) 

while the number of  shares held by the company (or pension fund) is 

re(t) = (ml ( t ) , . . . ,  mp(t))', (4.4) 

Assume that n(t) and re(t) are linearly independent. We must also assume that 
shares have a common nominal value. 

There could conceivably be two different constraints the actuary wishes to obey: 

P P 

( l ) :  ~ nli(1)bi(l) = Z ' l i ( t ) X i ( l ) ,  
i=  I i =  1 

P P 

(2):  Z mi(t)l~(t) = Z mi(t)Xi(t). (4.5) 
i = 1  i = 1  

The first constraint prevents any deviation from a market weighted index, while the 
second constraint ensures that the values used in the actuary's analysis add up to the 
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total value the company must show in its books. There could be additional con- 
straints, for example a constraint to prevent deviation from a major sub-index like 
the All Industrials. 

The two constraints in (4.5) are formalised by the matrices 

(4.6) 

We suppress the argument (t) in the rest of this section. 
The optimal adjustment to make to the analyst's set of estimates, follows directly 

from (2.12): 

- 6 = W - I L ' Q - I A ,  (4.7) 

where the vector 

(A,) (E,n,/x,-S,) 
= A2 = \ ~ , m i ( X , - b i )  J 

(4.8) 

contains the misbalance of the analyst's estimates against each of the two con- 
straints. 

If W is diagonal, one can derive the following expression for the adjustment to 
vector of share values: 

+ s21'  
_ ~ _~ L z - o  w , j  ' - -  w, L~- , j  ,,~-j = ~ j  wj L w, ' ,,,, j ( 4 . 9 )  

. : .st. . .  . ~  _ .~...~.~ [E,d [z,,,,] ,=,,, 
In particular if mean squared error is weighted by the number of shares listed 
(w i = h i ) ,  w e  obtain the simple adjustment 

- b = s ,>  + Is , -  s > )  (4.10) 
; -  S / i =  I ,  ,p 

with N := gjnj the total number of shares listed, M := £jmj the total number of  
shares held, si : =  mi/ni the stake held in stock i, ~ := M-Igjmjsj the average stake 
held and S : =  M/N the overall stake in the stock market; 61 := Ai/N and 
62 := A2/M denote the relative (per share) deviations between the market values 
and the analyst's values. 

From (4.10) one sees how the optimal adjustment depends on the relative 
misbalances and the company's relative exposure to the different stocks. In parti- 
cular, if62 > 6], then the adjustment to be made to share price no. i, is an increasing 
function o f s i ,  the stake held in stock no. i. Roughly speaking, 62 > 61 means that the 
market likes the portfolio held by the company better than the analyst; in that case it 
seems reasonable that the value of stocks of which the company has a major 
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holding, should be assessed more highly than the value of  stocks of which the 
company only has a small holding. The opposite holds if 62 < 6n; if 62 = 6j = 6, 
then each share price is adjusted with the same amount 6. 

5. BALANCED VS. HOMOGENEOUS CREDIBILITY ESTIMATION 

IN THE BUHLMANN-STRAUB MODEL 

For the purpose of this section only, we revert to using the term 'balanced 
estimators', since the constraint applied here neatly fits in with the intuitive notion 
of balancing. Moreover, the estimators analysed in this section satisfy several 
different constraints, so that the simple term 'constrained estimator' without a 
number of  qualifiers would be highly ambiguous. 

Assume that the actuary is charged with estimating the pure premiums of  n 
independent insurance policies. For policy no. i, what has been observed is a 
measure of  exposure, denoted by Pi, and the total claims cost, denoted by Si. The 
empirical pure premium per unit of exposure of  policy no. i is then Xi = S i / P i .  

Assume now that the probability distribution of Xi is governed by an unobserved 
random parameter Oi coming from a distribution U, in such a way that 

Eo,(Xi) = b(Oi), (5.1) 

Var0, (Xi) = v(Oi)/Pi. 

Define the following structural parameters: 

,8 = E(b(O)),  49 = E(v(O)), A = Var(b(O)). (5.2) 

If a diagonal risk weighting matrix W = diag(wu,. . . ,  w,) is used, the balanced 
credibility estimator under the constraint 

II  ?1 

Zpibi = Z p i X i  (5.3) 
i=1  i=1  

is given by 

fgi = z iX i+  (l - zi)/3 + Piwi ~,,i~__l ~vje I j= I pj(l - z j ) ( ) ( ) -  fl), (5.4) 

(i = I . . . .  , n), and its risk is 

r(b) = A J='~ •,).(1 - zj) -F 49 \j--El ~'J¢ 
-1 

II  

~ p j ( 1  - _~.), (5.5) 
j= I 

where zj = Apj/(Apj + 49) are the credibility factors. The results (5.4) and (5.5) are 
proved in Neuhaus (1995). 

Another linear estimator that is known to balance (i.e. satisfy the constraint (5.3)), 
is the optimal homogeneous and unbiased credibility estimator, 
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f)i ~-- Zi"~i -[- (1 -- Zi) Zj zjXj. (5.6) 
j = l  

This fact has been noted by e.g. Gisler (1987). 
Since the optimal homogeneous and unbiased estimator has two constraints to 

satisfy and just happens to be balanced as well, there is no prize for guessing that its 
risk will exceed that of the optimal balanced estimator. The question is just, by how 
much the risks differ. 

Specialising equation (5.27) of Neuhaus^(1995) or using the representation (5.6) 
directly, one easily shows that the risk of h is 

r(b) = A Z ,,(/(1 - zj) + A zj wj(l - zj) 2. (5.7) 
j = l  j = l  

After some manipulations one can write the difference in risk as 

The inequality is a consequence of Jensen's inequality applied to the convex 
function x ~ x -I (x > 0), and will be strict unless all zjwj/p] are identical. 

6. OPTIMAL ESTIMATION UNDER A PENALTY FOR MISBALANCE 

In the example of Section 3 we noted that the relative excess risk introduced by the 
constraint, can become arbitrarily large. Thus one must consider whether the benefit 
of constraining the estimator is worth the added risk. 

A compromise approach would be not to enforce the constraint, but merely to 
'encourage' it by a suitable modification of the risk function, so that the modified 
risk function reflects our preference of constrained estimators. This approach is 
similar to that taken in Whittaker-Henderson graduation, see e.g. Taylor (1992). It is 
also very similar to the smoothing approach proposed by Sundt (1992). 

Let us therefore introduce the following, mixed risk function: 

r ~ ( b ) = ( i - 5 ) . E ( h - b ) ' W ( b - b ) + 5 . E ( L b - a X ) ' V ( L b - P X ) ,  (6.1) 

with W, V fixed, positive definite matrices, and a E [0, 1) a parameter which 
quantifies the trade-off between estimator precision and estimator constraints. 

One can write 

ro(b) = EEl(1 - 5 ) .  ( b -  b) ' W ( b -  b) + a .  ( L b -  PX) ' V ( L b -  PX) I X]. 

(6.2) 

Thus the optimal estimator may be determined pointwise for each possible realisa- 
tion of X = x, and after having decomposed the first term in (6.2) as in (2.7), it is 
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easy to verify that the optimal estimator is 

b , (x)  = ((1 - c~)W + o~LTL) -I [(1 - o0Wb(x ) + c~LTPx]. (6.3) 

Using tedious but straightforward matrix transformations, we can derive an equiva- 
lent expression, 

bo(x) = b(x) + J~(Px - Lb(x)),  (6.4) 

with 

It is plain to see that 

Ja = a W - l L ' ( ( l  - a)V -I + aQ)  -1. (6.5) 

limb.(x)=b(x), (6.6) 

i.e. the optimal estimator under the risk function r~ converges to the constrained 
estimator when the relative penalty for misbalance increases. 

7. CONCLUSION 

The results of the author's previous paper (Neuhaus, 1995) have been generalised. 
Constrained estimators solve a practical problem faced by most actuaries and, as 

it turns out, the necessary adjustment is often very simple to compute. However, the 
warning about constraints creating an excess risk cannot be put too strongly; in 
unfavourable cases, an elaborate search for a realistic model and the optimal 
estimator may well have been in vain, if subsequent use of  constraints greatly 
increases the risk of the estimator. 

An interesting aspect concerns the use of constraints in empirical Bayes estima- 
tion and empirical credibility estimation. The normal procedure followed by actu- 
aries is to estimate the distribution of(b,  X) (or its first and second order moments if 
only a credibility estimator is sought), and then to act as if the estimated model was 
the true model. In that case the constraining adjustment is still appropriate because, 
as we have seen, it is independent of the model used to derive the Bayes (or 
credibility) estimator. However, the resulting constrained estimator will not be the 
optimal constrained estimator (or balanced credibility estimator), only an approx- 
imation of it. 

The last argument may be extended to arbitrary estimators. The derivation in 
Section 2 rests ~ l ly  on a pointwise minimum distance projection of the optimal 
estimator into the space of  constrained estimators. Now if one redefines the 
optimisation problem from one of finding the optimal constrained estimator, to 
one of finding the constrained estimator with minimum distance from a given 
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estimator, one still arrives at the same constraining adjustment. A similar argument 
is valid for the weighted estimator o f  Section 6. 

ACKNOWLEDGEMENTS 

This paper was written during the author 's  stay at the Laboratory o f  Actuarial 
Mathematics. Thanks go to the Laboratory staff for their hospitality and in particular 
to Ragnar Norberg for making my visit possible. Thanks also to Ragnar Norberg for 
the probing questions that lead to this paper, and to Thomas Mack (Miinchener 
Riick) for posing the question that is answered in Section 5. Finally, thanks to two 
anonymous referees for their thoughtful comments. 

References 

HOGG, R.V. AND KLUGMAN, S.A. 0984) Loss Distributions. John Wiley & Sons. 
GISLER, A. (1987) Einige Bemerkungen zum hierarchischen Credibility-Modell. Mitteilungen der 

Vereinigung Schweizeriseher Versicherungsmathematiker 1987, Heft 1 : 91-98. 
NEUHAUS, W. 0995) Balanced Credibility Estimation. Applied Stochastic Models and Data Analysis 11, 

No. 3: 217-230. 
SI~',~DT, B. 0992) On Greatest Accuracy Credibility with Limited Fluctuation. Scandinavian Actuarial 

Journal 1992, No. 2:109-119. 
TAYLOR, G.C. (1992) A Bayesian Interpretation of Whittaker-Henderson Graduation. Insurance: 

Mathematics & Economies 11, No. I: 7-16. 

Address for correspondence 
Waither Neuhaus, 
UNI Storebrand ASA, 
P.O. Box 1380 
Vika, N-01 14 Oslo, 
Norway 




