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ABSTRACT 

The chain ladder method is a simple and suggestive tool in claims reserving, and vari- 
ous attempts have been made aiming at its justification in a stochastic model. Remar- 
kable progress has been achieved by Schnieper and Mack who considered models 
involving assumptions on conditional distributions. The present paper extends the 
model of Mack and proposes a basic model in a decision theoretic setting. The model 
allows to characterize optimality of the chain ladder factors as predictors of non- 
observable development factors and hence optimality of the chain ladder predictors of 
aggregate claims at the end of the first non-observable calendar year. We also present 
a model in which the chain ladder predictor of ultimate aggregate claims turns out to 
be unbiased. 

1. INTRODUCTION 

The chain ladder method is a simple and suggestive tool in claims reserving, and vari- 
ous attempts have been made aiming at its justification in a stochastic model. Remar- 
kable progress has been achieved by Schnieper [1991] and Mack [1993,1994a, 1994b] 
who considered models involving assumptions on conditional distributions. 

The present paper proposes a basic model in a decision theoretic setting (Section 2) 
which is analyzed on the background of a general result on conditional prediction 
(Section 3). The model allows to characterize optimality of the chain ladder factors as 
predictors of non-observable development factors and hence optimality of the chain 
ladder predictors of aggregate claims at the end of the first non-observable calendar 
year (Section 4). 

The model considered here is exclusively based on assumptions on the conditional 
joint distribution (with respect to the past over all occurrence years) of the collection 
of all development factors from a given development year; by contrast, the model of 
Mack assumes unconditional independence of the occurrence years and certain pro- 
perties of the conditional distributions of single development factors. Since our model 
properly extends the model of Mack (Section 5), we obtain a justification of the chain 
ladder method under strictly weaker assumptions. 

We also present a partial solution to the prediction problem for ultimate aggregate 
claims: It is shown that in another model which again properly extends the model of 
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Mack the chain ladder predictor of  ultimate aggregate claims is unbiased but shares 
this property with many other predictors (Section 6). Optimality of the chain ladder 
predictor of  ultimate aggregate claims remains an open problem. 

Throughout this paper, let (fL 7, P) be a probability space. We assume that all random 
variables under consideration have finite second moments. 

2. THE PREDICTION PROBLEM AND THE BASIC MODEL 

Consider a family of  random variables {Si.k}i.~-EI0., ...... }. The random variable Si.k is in- 
terpreted as the aggregate claim size of  all claims which occur in occurrence year  i 
and which are settled before the end of  calendar year  i + k. We also interpret the 
subscript k as the development  year. 

We assume that the aggregate  claims Si.k are strictly positive and that they are obser- 
vable for i + k _< n but non-observable for i + k > n. The observable aggregate claims 
can be represented by the run-offtriangle: 

Occurrence Development y e a r  

y e a r  0 1 , , o  n - i  n - i + l  , , o  n - I  n 

o So.o So., ,,, So.._, So.._,~, ,,, So.o_, So.o 
1 Si.  o Si.  I , , ,  S l . . _  i S I . . . . .  ] , , ,  S t . . _  I 
: : : : : 

i - I  S i_ t .  o S~_t . t  , , ,  S , _ L . _  ~ S ~ _ L . _ ~ ÷  ~ 

i S~.o S~., ,,, S,..-i 

n - 1  S,_l.0 S,_1.1 
n S, .  o 

The problem is to predict the non-observable aggregate claims from the observable 
ones. 

The chain ladder method consists in using the chain ladder predictors 
m 

:= s,,._, 1-I 
I=n- i+l  

for all i ~ { 1 . . . . .  n} and m ~ {n - i + 1 . . . . .  n}, where the chain ladder factors ~ are 

defined by 

,~,,,-t s / ~ : =  ,g,,~i=O i,l 

• n - I  S 
i=o i . l - I  

for all l e {1 . . . . .  n}. 
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In order to study the properties of  the chain ladder factors and of  the chain ladder 
predictors, we introduce the development factors 

Si,t 
Fi. I :-" S i , l _ l  

for all i ~ 10, 1 . . . . .  n} and l ~ { 1 . . . . .  n}. Then the aggregate claims satisfy 

Si.rn = S i . n - i  " rI Fi,l 
l=n-i+l 

{0, l ..... n} and m ~ {n - i + I ..... n}, and the chain ladder factors can be for all i 
written as 

for all l ~ {1 . . . . .  n}. 

n-t S 
4 ---- W i,l-I Fi,l 

1 . . ~ X " , n - I  S 
i=0 Z-~j=0 j , l - I  

Let us now change the point of  view by turning from occurrence years to development 
years. 

O c c u r r e n c e  D e v e l o p m e n t y e a r  
y e a r  0 I ° , ,  k - 1  k , , ,  n - 1 n 

0 so.0 So., 

I Si.0 SI. I 

n - k  S._,.o S._,.i 

n - k + l  S,_~ +l. o Sn_t + i. I 

n - I  S"- I'° S"-I ' l  / 
J 

n S.. o [ S..~ 
r 

,,, So.,-i Fo., ,,, ,,, ,,, 

lo t  SI. k - I FI.k °°o o*; o°o 

, , ,  S . - * . * - I  F n - g k  , , ,  ,°° , , °  
! 

i l l  S n - k ÷ l , k - l J F n - k ÷ l , k  l i t  Oil i i ;  

° ° °  S n - I , k - I  F . _  i . ~  , , ,  , , ,  , , ,  

, , ,  S . . k_  I F . .~  , , ,  , ° ,  o,,  

First of  all, it is easy to see that for each k ~ { 1 . . . . .  n} the chain ladder factor /~k 

minimizes the expression 

,-k S oi,k-I 
~"~n-k  S ( Fi,k --  t~) 2 

i=0 ,~-~j=O j , k - I  

over all random variables ~. Thus, for development year k, the chain ladder factor Fk 

is the best approximation of the observable development factors when the approxima- 
tion errors are given the weights occurring in the representation of  the chain ladder 
factor as a weighted mean. 
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In what follows we shall study optimality of  the chain ladder factors as predictors of 
non-observable development factors. To this end, we first formulate the prediction 
problem and then state the basic model: 

Predict ion Prob lem:  For k ~ { I . . . . .  n }, let Gk denote the a-algebra generated by the 
family of random variables 

. . . . . . .  

and let Ak denote the collection of all random variables Swhich can be written as 
t l -k  

i=0 

where the weights of the development  factors are qk-measurable random variables 

satisfying 
t l - k  

i=O 

For each j  ~ {n - k +  1 . . . . .  n}, the problem is to find some/~" E A k satisfying 

E ( ( 6 . k - a ~ )  2 qk )= in fa~a ,  E ( ( F j . k - a )  2 qk)- 

These quantities can be interpreted as follows: 
- The o-algebra Ge represents the information provided by the past preceding deve- 

lopment year k. 
- The non-observable development factors are to be predicted by a weighted mean of 

observable development  factors from the same development  year such that the 
weights are measurable functions of  the aggregate claims in the past. (It is not as- 
sumed that the weight are positive.) 

- The optimality criterion is conditional expected squared error loss, given the infor- 
mation provided by the aggregate claims in the past. 

The conditional loss function instead of the usual unconditional one is reasonable 
since optimality is desired only with regard to the information provided by the past. 

Basic Model:  For each k ~ { 1 . . . . .  n }, there exists a random variable Fk such that 

E(F/.k [ qk) = Fk 

cov(~.~, ~..k qk)=O 

var(F/, k I qk) > 0  

holds for all i , j  ~ {0, 1 . . . . .  n} such that i # j .  
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The following lemma is of interest with regard to the model of  Mack which will be 
studied in Section 5: 

2.1. L e m m a  Under the assumptions of  the basic model and for  each k ~ { 1 . . . . .  n}, 
the following are equivalent: 

(a) There exists a real number fk such that 

FF~ = fk. 

(b) The identity 

cov[Fi, k , F~. k] = 0 

holds for all i, j ~ {0,1 . . . . .  n} such that i ~j. 

The prediction problem for the basic model will be studied in Section 4 below. 

3. CONDITIONAL PREDICTION 

In the present section, we study an abstract prediction problem which will later be 
applied to the prediction of  non-observable development factors. 

Throughout this section, let {Xi}i ~ t, ....... ,} be a family of random variables and let G 
be a sub-a-algebra of  Y. We assume that there exists a random variable X such that 

E( Xi ] G) = X 

cov(xi, xj I G) = 0 

var(Xi I G) > 0 

holds for all i, j e { 1 . . . . .  m, m + 1 } such that i mj. We also assume that the random 
variables X, . . . . .  X,,, are observable whereas Xm ÷, is non-observable. 

Let ,5 denote the collection of all random variables `swhich can be written as 

,5= ~w~x~ 
i=1 

where the weights are G-measurable random variables satisfying 

~ w  i =l.  
i=1 

The random variables in ,5 are called admissible predictors of X m + ,- 

The problem is to find some ~ ~ A satisfying 

E((Xm+ I _~)2  I G ) = inf6~ E((Xm+ I _ ` 5 ) 2  G ) ,  
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that is, to predict the non-observable random variable X,, + z by a weighted mean of the 
observable ones such that the weights contain information from outside the sample 
{X, . . . . .  X m } and such that conditional expected squared error loss in minimized. 

Remark .  The classical  case is the case where G = { D, f~ }, which means that 

- no information from outside the sample is available, 
- the random variables X, . . . . .  Xm, Xm + t are uncorrelated with equal expectations and 

strictly positive variances, 
- the admissible predictors have constant weights, and 
- the optimality criterion is unconditional expected squared error loss. 

The following lemma is immediate: 

3.1. Lemma.  The identities 

and 

hold f o r  all 6 e A. 

E ((Xm+ I - 5) 2 

6(61 G) = X 

G) = var (X,,,+, I G) + var (S I G) 

The following result establishes existence, uniqueness, and the form of the weights of  
the optimum predictor of X,, ÷ ,: 

3.2. Theorem.  For  

the fo l lowing  are equivalent:  

~=~WiXiEA, 
i=1 

(a) There exists a random variable A such that 

~ / _  A 

var(x~ I G) 

holds f o r  all  i • { 1 . . . . .  m }. 

(b) The inequali ty 

E((Xm+ ' _ ~)2 G) -< E((Xm+I - 5)2 ] G) 

holds f o r  all S e A. 
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In this case, 

as well as 

when m _> 2. 

Proof. Define 

and let 

for all i ~ { 1 . . . . .  m}. For each 

we have 

var(,SI q) = var WiXil q 
\ i=1 

m 

i=1 

/£ ]-' var(,~ ] q) = A = I 
~ i=l var( Xi l q )  ' 

E ~ . ( X i - ~ )  2 q =A 

)-' 
A := 1 

,,i=, var(xi I q) 

• A 
W i . -  

var(Xil G) 

m 

i=l 

I n  m m 

= Z ( W i  - Wi ' )Zvar(Xi lq)+ 2 Z ~Wi" var(x, l q ) -  Z ( ~ / * )  2 var(Xi IG ) 
i=1 i=1 i=1 
m m m 

= Z ( W / -  W/')2 var(Xi ]q)+ 2A Z W i -A Z W/" 
i=1 i=l i=1 
m 

: E ( ~ /  _ ~ / . ) 2  v a . r ( X i [ ~ )  .-b A. 
i=l 

Because of Lemma 3.1, this proves the equivalence of (a) and (b) as well as the iden- 
tity for var(~ I G). The final identity follows by straightforward computation. 
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R e m a r k .  In the special case where there exists a random variable 
var (Xi lq)  = V for all i 

mean 

V sat is fying 
{I . . . . .  m}. the opt imum predictor of X,.+. is the sample 

1 m ~ :=-~ 
and we have 

var(XlG) = E [ (X i _ .~)2 
m - l  i= I 

In the classical case. this reduces to the well-known fact that 

1 1 " 2 
- - ~ ( X ~  - X )  
m m - I  .= 

is an unbiased estimator of  the variance of  the sample mean. 

4. THE RESULTS 

We now turn to the prediction problem for the basic model. Consider k ~ { 1 . . . . .  n }. 

4.1. L e m m a .  Under the assumptions o f  the basic model, the identities 

E(~I qk) = Fk 
and 

e(  ( Fj - Z 21 = var( Fj,  I q ,  + var( ) 

hold for  all ~ ~ A t and for  a l l j  ~ { n - k  + 1 . . . . .  n}. 

This is immediate from Lemma 3.1. 

The following result characterizes optimality of the chain ladder factor: 

4.2. Theorem.  Under the assumptions of  th basic model, the following are equivalent: 

(a) There exists a random variable V k such that 

var(Fi,kl Gk) = Vk 
Si,k-I 

holdsfor all i ~ {0 . . . . .  n - k } .  

(b) The inequality 

holds for  all 6 e Llk and for  some j ~ { n - k + 1 . . . . .  n } . 
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(c) The inequality 

holds f o r  all ¢~ • A k and f o r  all j • { n - k + I . . . . .  n }. 

In this case, tS* = Fk holds f o r  each tS* • d ,  such that 

e((6, -a')2l q,)~_ E((6,, -6)21 q,) 

holds f o r  all ~ • zlk and f o r  some j • { n - k + ! . . . . .  n }; moreover,  

I Vk = I 
var (P* lG*)=  ~- '"-* var(F~,,[ G,)  ' 

L i = o S i . k - i  k,i=O 

as well  as 

when k _< n - 1. 

ln-  / 
E " ~ "  .K,, n_k S 

"= Z , / =  0 I,k-I 

Proof.  By Theorem 3.2, the chain ladder factor 

. - ,  s~.k_, .F~,~ 

: =  Z/=o Z',':-o%-, 
minimizes conditional expected squared error loss if and only if the identity 

1 

Si,k-I var(Fi,k ] Gk) 
n-k  n-k 

1 

Z v r(F,,,I I=0 I=0 

holds for all i • {0, 1 . . . . .  n - k}, and this identity is equivalent with 
n-k 

St.k-i 

var(r,.k [qk) = 1 I=o 
Si,k_l n-k 

= var(F/,k Gk) 

This yields the equivalence of (a) and (b). 
The equivalence of (b) and (c) is obvious from Lemma 4.1, and the final assertion 
follows from Theorem 3.2. 

The previous result suggests the definition of the following general model: 
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Genera l  Model :  For each k • { 1 . . . . .  n }, there exist random variables F k and Vk > 0 
such that 

E(Fi,k I qk) = Fk 

cov(F~.k, Fj,~ [ qk) = o 

var(V~,k[ qk) -  V~ 
Si,k-I 

holds for all i, j • { 0, 1 . . . . .  n } such that i ~ j .  

4.3. Corol lary .  Under the assumptions of  the general model, the chain ladder factors 
satisfy 

and 

E(~[ Gk) = Fk 

and hence 

and 

for  all k • { 1 . . . . .  n } as well as 

E ( ( F L k -  F~)2[ Gk)= inf6~% E( (F j ,k -6 )2  [ Gk) 

• Sj'k-~ z..~i=o i,k-I 

for  all k ~ { 1 . . . . .  n} and for  all j e {n - k +  1 . . . . .  n}; moreover, the identity 

( ,,-k ) 

holds for  all k ~ { 1 . . . . .  n - 1 }. 

Conclus ion:  Under the assumptions of  the general model, we have, for each 6 e Ak, 

E(S.-k+l,k-," ~[ q~) 

= E(S.-k+~,k-," Fj.k [ qk) 
= E(S.-k+l,k[ qk), 

vk . var(~}qk ) 
1 
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and this implies that 6 and S,_,+~.k_~ • 6 are unbiased predictors of Fj., and S,_m. k, res- 
pectively; moreover, we have 

E((Fj, k -/~', )21 Gk ) = inf,~eak E((Fj, k l ~ ) 2 I f k ) 

and hence 

e((so_,+:., - q , )  = inf,5~a ' E((Sn_k+,. k l S .__k+ljk__lJ 6)21 qk ) , 

which means that the chain ladder factor /~ and the chain ladder predictor 

Sn-k+l,k = S n - k + l , k - l "  Fk are the opt imum predictors of  Fj.  k and S . l * + l , k  , respectively. 

This solves completely the prediction problem for the first non-observable year n + 1. 

5. THE MODEL OF MACK 

For all i, k 6 {0, 1 . . . . .  n}, define 

Si,  k : :  o ' ({Si,  1 }l~{0,1,...,k} )" 

These a-algebras are needed to formulate the model of Mack: 

Model  of  Mack :  The family of  a-algebras {&,}i~ {o.J ...... ~ is independent and, for each 
k ~ { 1 . . . . .  n}, there exist real numbersfk and v ,> 0 such that 

E(F/,k I Si,k_ | ) I f,t 

var(F~,, I se,~_,)- v, 
Si,kll 

holds for all i ~ {0, l . . . . .  n}. 

The main problem when comparing the model of  Mack with the general model con- 
sists in the fact that (unconditional) independence does not imply conditional indepen- 
dence (and vice versa). Nevertheless, we have the following result: 

5.1. Theorem.  The model of Mack is a special case of the general model. 

Proof .  Consider k ~  {l . . . . .  n}. Since the family {£i.,}i~{0.~ ...... ~is independent, the 
family {.-~.k-i}i~{0.t ...... ~ is independent as well. Also, for all i ~ {0, ! . . . . .  n}, we have 
5,.k- t C Gk" This yields 

E(Fi.kI qk) = E(Fi.kJSi.*-,) 
= A 

and 

var(F~,k I ¢k) : var(,% I s~,~_:) 
V k 

Si.kll 



258 K L A U S  D. S C H M I D T  - -  A N J A  S C H N A U S  

Furthermore,  using independence repeatedly and in a similar manner as before, we 
obtain, for all i,j ~ {0, 1 . . . . .  n} such that i ~ j ,  

= e ( ¢ ,  I s,.,_,>. I sj.,_. > 
= E(F~., ] %)-E(Fj., 1%) 

and thus 

The assertion follows. 

cov(Fi.~, Fj.k ] %) = 0 

Because of Lemma 2.1, the model of Mack is even properly contained in the general 
model; this is also true when the random variables Fk and Vk of  the general model are 
assumed to be constant. 

6. COMPLEMENT: UNBIASED PREDICTION OF ULTIMATE AGGREGATE CLAIMS IN A MODIFIED MODEL 

In the general model, the chain ladder predictor Si'n-i+l i s  the opt imum predictor of 

the aggregate claims Si,n_i+ 1 in the first non-observable calendar year n + 1. By con- 

trast, opt imum prediction of  the ultimate aggregate claims Si.,, remains an open pro- 
blem (except for the case i = 1). 

Mack proved, in this model,  that the chain ladder predictor  of  ultimate aggregate 
claims is unbiased. We now formulate a modification of the general model in which 
every predictor of the form 

tl 

Si, n-i H St 
I=n-i+l 

with ~ e A~ for all l e { n - i + 1 . . . . .  n } turns out to be an unbiased predictor of the 
ultimate aggregate claims. 

Modified Model: For each k ~ { 1 . . . . .  n}, there exists a random variable Fk such that 

e(F,,kl q~) = 6 
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and the identity 

holds for all k I1 . . . . .  n} a n d i e  {0,1 . . . . .  n}. 

The general model and the modified model can be combined without any problem. 
Moreover, if in the general model the random variables F~ are assumed to be constant, 
then the assumptions of the modified model are automatically fulfilled; in particular, 
the model of Mack is a special case of the modified model. 

6.1. Lemma. Under the assumptions o f  the modified model, the identities 

E<~,l qk> = F~ 
and 

hold for  all k ~ {1 . . . . .  n} andre  
l ~ {k . . . . .  m}. 

~ l=k I=m 

{k . . . . .  n} and fo r  every choice of  St ~ At for  all 

Proof. The first identity is obvious. Furthermore, we have 

I=m+l I,l=m 

and hence 

/O ni l  frn n / E ~t" Ft Gk = E E S t . Ft Gm Gk 
I=rn+l ~ k,l=k /=m+l 

(m_, ¢ , , 1 ~  I = E/Ha,.E/a,,,. H~ , I  q,./ G, 
~ l=k k I=m+l l y 

et F l  ,~, . E r, G,, G~ 

( (,,-i , / 

m-I n ) 

which proves the second identity. 
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6.2. Theorem. Under the assumptions of the modified model, the identity 

holdsforall  i • {0, 1 . . . . .  n} and for every choice of $1 • Ai foral l  l • tn - i + 1 }. 

Proof. By Lemma 6.1, we have 

E t 
~l=n-i+l 

and 

and hence 

( (I E ./ 
~, I=n-i+l 

E Si,n_ i • (~1 
l=n-i+l 

as was to be shown. 

q,,-,+, F I 6  q,,-,+, 
k/=n-i+l  

Ir I q.-,+, N F, q._,+, . 
~, I=n-I+l 

I I n Gn-i+l = Si,n_ i • E H ¢~I 
I=n- I+ l  

=sin' - i ' E(  t= ~Ni+l 

=Sin i " E( 'nNi+ ~ 
I = _" 

--E(S,.n_, 1FIR.' 
I=n-i+l 

= E(Si,n [ qn-i+l) 

~n-i+l  

Gn-i+l / 

Gn-i+J ] 

~n-i+l / 

Conclusion: Under the assumptions of the modified model, the chain ladder predictor 
is an unbiased predictor of the ultimate aggregate claims, but many other predictors 
are unbiased as well. 

In order to establish optimality, and not only unbiasedness, of the chain ladder pre- 
dictor, the modified model should be restricted by additional assumptions which are in 
the spirit of the general model. These additional assumptions should concern products 
of development factors instead of single ones. 
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7. REMARKS 

At the first glance, it may appear to be somewhat strange that if-algebras G~, which are 
used for conditioning, include (except for the case k = 1) non-observable information. 
However, non-observable information drops out automatically in the formulas for the 
optimum predictors of non-observable development factors. Moreover, all results 
remain valid when the if-algebras Gk are replaced by the if-algebras 

~-'k :----ifl{Si.k-l}i~{O,i . . . . . . .  k}) or by any if-algebras 5-k satisfying e k c  .7~ c Gk;a 

natural choice would be to take ~ := Gk n D,  where Ddenotes the if-algebra genera- 
ted by the run-off triangle. The choice of the if-algebras Gk considered here allows to 
capture the model of Mack, which also uses conditioning with respect to if-algebras 
including non-observable information. 

In the modified model, it is easily seen that the additional assumption 

e :IIE[ I 
I=k 

implies 

Viii]/i I ,J E = E , 
L /=k  ._t I=,~ 

which means that successive chain ladder factors are uncorrelated. This assumption is J 
automatically fulfilled if in the general model the random variables F~ are assumed to 
be constant; in particular, the assumption is fulfilled in the model of Mack. To the 
present authors, however, unco~Telatedness of chain ladder factors seems to be of 
minor importance when compared with unbiasedness of the chain ladder predictor, 
and assumptions on unconditional expectations appear to be a bit strange in the ge- 
neral setting of conditional prediction considered in this paper. 
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