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ABSTRACT

This paper presents a continuous time version of a stochastic nvestment
model ongmally due to Wilkie. The model 1s constructed via stochastic
differential equations. Exphicit distributions are obtained in the case where
the SDEs are driven by Brownman motion, which is the continuous time
analogue of the time series with white noise residuals considered by Wilkie
In addition, the cases where the driving “noise™ are stable processes and
Gamma processes are considered.
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1. INTRODUCTION

Wilkie (1986) presented an tnvestment model based on time series, which has
since been updated and extended 1n Wilkie (1995) This paper presents some
continuous time variants of Wilkie’s original model using stochastic
differential equations driven by appropriate Lévy processes. There 1s no
single correct continuous time equivalent to the model in Wilkie (1986), the
aim of this paper 1s Lo suggest somc possible ways of constructing the
analogous continuous time models and to analyse these mathematically. Tt
seems that whatever one takes to be the “right” continuous time equivalent
of the Wilkie model, similar methods to those presented here can be used to
analyse 1t.

One reason one might be interested 1n a continuous time model 1s that in
a continuous time setting one 1s free to choose any unit of time and to model
the state of the various investment variables at any time, not just at discrete
instants. However, the main attraction of continuous time models 1s their
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mathematical tractability; whereas the Wilkie model 1s mainly intended for
computer simulations, 1n the continuous time sectting here many questions
admit explicit answers which can be obtamed in a simple way. Here, we
concentrate on obtaining explicit distributions but other questions can
undoubtedly be answered

The model introduced 1in Wilkie (1986) only makes use of Gaussian
(white noise) series, for our model the driving noises are allowed to have
other distributions.

2. DESCRIPTION OF THE MODEL

In many ways, the model described here is the most direct and obvious
continuous-time version of the model 1in Wilkie (1986), although some
modifications are necessitated by the transition to a continuous time scale.
We do not make any special claims about 1ts appropriateness to practical
situations beyond pointing out its similarity to the onginal Wilkie model
which has by now gained wide acceptance, at least in the world of insurance.
The two main guiding principles behind the construction of the continuous
time model presented here are firstly the analogy with the corresponding
time series and secondly the similarities between certain features of the
Wilkie model and other models which feature widely in different areas of
financial modelling, occasionally we shall depart from an exact analogy with
the time series to emphasise these similarities because the qualitative features
common to all these models are of potentially greater interest Thus, 1t would
be more appropriate to refer to the continuous time mode! presented here as
inspired by the Wilkie model, rather than “‘the continuous time Wilkie
model” The model should be treated as a ‘“‘first draft™ rather than a final
version. As with the original Wilkie model, the model here 1s based on four
processes (although these are not exactly the same as the ones in Wilkie
(1986)) and we describe each of these in turn.

Let Z,, Z3, Z3 and Z4 be four independent (not necessarily continuous)
processes. Exactly what kind of processes are the Z, will be discussed later.

1.1. Retail prices index and inflation

Consider first a retail prices index, Q, =exp{P;} We use an Ornstein-
Uhlenbeck type modecl for the process P.

dP, = R,dt

dR, = —a\Rydt + ¢(0)dt + o1dZ (1) (1)
where a; > 0, oy € R and ¢ is a (determimistic) positive periodic function
with period /1 > 0. Here the process R plays the role of the continuous force
of inflation. A direct translation of Wilkie’s model would have ¢ = constant,
but in passing to continuous time it may be desirable to take into account the
seasonal fluctuations in inflation over a year. The period / here corresponds
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to a year in our units of time (see Remark (i1) below) (To spell things out in
a little more detail, supposing ¢ = constant, the process R, mm (I 1)
corresponds to Wilkie’s Viog Q(f), the parameter a; corresponds to the
parameter Wilkie calls t — QA, ¢ corresponds to QMU(I — QA) in Wilkie's
original paper and o, plays the role of QSD).

Because (1.1) 1s a hnear equation, 1t 1s easy to solve explcitly, whatever
our choice of driving noise Z;. The general version of 1t6’s formula for
discontinuous semimartingales X states that 1if f1s a continuous function
with the necessary derivatives,

S (Xort) = £ (X0,0) /f s dv—f-/j \,(/X+/f"\, X),
vy (f(x.f,s> () ~f X AX, = 35X

O0<s<t

where AX, =X, — =9f /01, ff=0f/0x etc. For this and other
aspects of the genelal theory of stochastic integration with respect to
semimartingales, we refer the rcader to Protter (1990) and Roger and
Wilthams (1987), which approach the subject in different ways. (Note that X
is assumed to be right-continuous and can only have countably many jumps,
so the sum above is actually a sum over countably many values of ).
Consider now the case that f(x,7)=¢“X, We have f =0 and
S(X=,5)AXs = f (X5, 5) —f(X,—,$). so the terms mvolving the jumps of X
in I[td’s formula all vanish Therefore applying 118’s formula to ¢"'R,, we
obtain an explicit formula for R;:

! !
R, = ¢ 'Ry +/ e"'('_°)<7f>(s)(l.v+/ e UIdZ,(s). (12)
0 0

From (1.2), we can find P, = Py + f(; Rds and the resulting double integrals
can be handled by interchanging the order of integration (e g. see Lemma 3 1
in the sequel)

1.2. Share yield process

Wilkie (1986) next considers two inter-related processes: an index of share
dividends and the dividend yield process. Let Y, denote the share dividend
yield The continuous time analogue of Wilkie’s model would be

),I - Y* CXI){X, + CR!}v

13
where dX, = —a X,dt + bydt + 02dZ5(1) (13)



80 TERENCE CHAN

(Here, Y, = Yoe ¥0+¢R) I the sequel, this notation will be frequently used
to denote this kind of ““modified initial condition’’.) Equation (1.3) admits an
explicit solution similar to (1.2), namely

1_ —ayf {
X, = Xpe ™" + b, (—L—> +/ gre U N dZ5(s). (14)
0

az

1.3. Share dividend process

We next turn to the index of share dividends, D, Our model follows Wilkie
in using an exponentially discounted “sum of inflation effects™.

!
d(logD,)= <bz +ﬁ/\/ e*X‘R,Ads+’yR,> dt +mdZy (1) +mdZ5(t).  (1.5)
0

In Wilkie’s time series model, the noise has a simultancous as well as a
lagged effect which 1s captured by moving average n the noise. There 1s no
senstble equivalent in the continuous time context for such a moving
average. Another feature of the model (tnherited from Wilkie) 1s the mixing
of the drniving notses for ¥, and D,.

The share price S, 1s related to the dividends and the yield by S, = D,/ Y,
It 1s interesting to note that the process S, satisfies an equation of the form

dS, = ¢/ Sidt + S{(61dZ (1) + 62dZ: (1) + b3dZ5(1)),
which has exactly the same form as the ubiquitous geometric Brownian
motion model of share prices, except that the coefficient ¢, here takes a rather
complicated form which involves the whole path of the force of inflation R

up to time 7, as well as the usual constant dnift terms
Interchanging the order of integration, 1t 1s easy to see that

{ 3 {
A / / e ™R, _,duds :/ (1 — e "N R du ,
Jo Jo 0

thercfore from (1 5) we have

{ {
D,:D*exp{nzzz(t)+'I73Z_1(1)+[3/ (I1—e A(’_”))R,,du—k'y/ R“du-{-bzt}.
Jo 0
(1.6)

where D, 1s a constant determined by Dy and Ry 1n a similar manner to Y,
(see Remark (iv) in §1.5 below).
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1.4. Consol yield process

Finally, we have the yield on consols C,,

!
C = e P Ry_sds + Cue”",
! fp/o =S (].7)

dV, = —agVidi + 04dZ4(1), Vo=v

The equation for ¥ in (1.7) admits an explicit solution for the same form as

(12)

1.5. General remarks on the model

(1) We do not claim that the method in (1.1) 1s the most appropriate way to
model seasonal effects in inflation — 1t 1s one stmple and obvious way to do 1t
without destroying the most attractive features of the Ornstein-Uhlenbeck
process but we could equally plausibly let o be a periodic function as well
and we would sull be able to obtain an exphcit solution as before

(ii) Some remarks on the time scale of the continuous time processes here
and therr relationship with their discrete-time counterparts in Wilkie (1986)
might be useful Typically these continuous time processes run at a much
faster speed than their discrete-time equivalents: for example, if the unit of
time 1in Wilkie (1986) 1s years, the unit of time here might be centuries, so
that 1 = 0.01 would correspond to a year. This 1s essentially an artifact of
the discretization i passing from continuous time to discrete time. If we
were to discretize (1.1) in multiples of /& using first-order Euler approxima-
tion together with the approximation P, — P,_; = ft'_,l R.ds ~ hR,_; and
noting that ¢(t) = ¢(t — h) = ¢ = constant, we would recover the Wilkie
model provided we rescale time by defiming R, := Ry;,. For example,
assuming that Z, i1s Brownian motion for simphcity, the first-order Euler
discretization of (1.1) 1s

R, ~ R_y = —a\hR,_y + ol + o (Z]([) - Z|(l — /1)),
which can be rewritten as
R, = (l — alll)Rr—h + ¢h + o) \//_1 W,
=p+a(R_y— p)+ovVh W,

where we have puta = 1 — ayh, pu = ¢/ay and W, = (Z,(1) = Z,(t — h))/Vh.
Note that W, Wy, Wy, ... are 1.1.d. standard Gaussian random variables.
Defining R, := Ry, we obtain from (1.8) the AR(1) ume-series model of Witkie:

(1.8)

RI =nu +a(k,_| — /L) +o W, (19)
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where &, = o;vh. The calculations at (2.5) and (2.6) below and the
subsequent discussion tllustrate this point in greater detail Observe that the
corresponding parameters in (1.1) are rescaled 1n the appropriate way with
this time change @, = ha; and &, = o1vh Because the parameters are
automatically scaled accordingly once a time scale has been chosen. such
comparisons with the discrete time-series are usually irrelevant from a
practical pomnt of view; in practice, one would choose a suitable time scale
and then fit the model to data directly without reference to any discrete-time
model and if one wished to do simulation, one would choose a discretization
for its numerical efficiency rather than for 1its consistency with another
discrete-time model. The same comment applies to all the other processes
discussed above

(i) For our choices of Z|, the process R will have a stationary distribution.
Throughout this paper, we assume that the initial condition Ry 1s some fixed
number as in (1.2) However, it 15 also possible to let Ry be a random
variable with the stationary distribution, in which case R would be a
stationary process. The same can be said of all the other processes which
have stationary distributions.

{1v) Because the processes X and R in (1.3) are not spatially homogeneous,
the itial values Xy and Ry cannot be absorbed into Y, and so separate
parameters for the initial values are needed The same applies to the
processes D and C. Also, Wilkic (1986) has an extra drift term of the form
¢ dt appearing 1n the equation for V, in (1.7) but we have omutted it here
because 1t 1s clear from the explicit formula for V, that ¢ can be absorbed
into the two parameters v and C,, and so serves no additional purpose

1.6. Lévy processes

We are mainly interested in the case where the “noise” processes Z, are
symmetnic Levy processes, that 1s processes with stationary independent
increments (“*Symmetric” in this context just means that Z and —Z have the
same law.) We end this section by briefly recalling some results about Lévy
processes which we shall need in the sequel. Let Z be a (symmetric) Lévy
process. Since Z has stationary independent increments, 1ts characteristic
function must take the form E [e %] = ¢ "9 for some function 1, called
the Lévy exponent of Z. The Lévy-Khintchine formula says that

(0)=" % 11ab v / (1—e "™ —1fx)v(dx)+ / (1—e “")u(dx) (110)
2 J{<1y {hz1}
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for a,oc € R (1if Z 15 symmetric, « = 0) and for some o-finite measure v on
R \{0} satisfying [ min(1, x?)v(dx) < co. The mecasure v 1s called the Lévy
measure of Z. (To put readers on more familiar ground, consider the
sttuation when ¢ = a = 0 and suppose that the total mass A of v, A = [ru(dx)
1s fimite. Then the Lévy process Z with such a Lévy measure 1s just an
ordinary compount Poisson process which jumps occurring as a Poisson
process of rate A and whose jump-size distribution is A™'v(dx). In the case
that the integral of v diverges near 0, Z will have infinitely many small jumps
in a finite time-interval At the other extreme, if v = 0, there are no jumps so
we just have Brownian motion and # is the same as the exponent for a
normal distribution )

From the Lévy-Khintchine formula we can deduce the exact form Z must
take. 1t turns out that Z must be a linear combination of a Brownian motion
(the continuous part) and a pure-jump process independent of the Brownian
part. Specifically, let Q (dt, dx) be a Poisson measure on (0,00)x R {0} with
expectation measure dt X v (here dr denotes Lebesgue measure), then
(assuming ¢ = 0 1n (1.10)) we have the Léevy decomposition

Z(=O'BI+J1+A[ (111)

where, corresponding to each of the three terms in (l lO) respectlvely, Bisa
Brownian motion, J1s the pure-jump martingale J, = [ _, X(Q((0,1],dx)—1v(dx})
and A s the finite-variation jump process 4, fl\ >y Q ((0,1),dx). The
processes B.J and A are independent A more detailed treatmem can be found n
Protter (1990) and Rogers and Wilhams (1987) also contains a nice direct
construction of (1.11). Because of independence, we lose no generality in treating
separately the cases where Z 1s a Brownian motion and where Z 1s a pure-jump
process We do this in the next two secttons

3 EXPLICIT DISTRIBUTIONS IN THE Brownian CASE

If the Z, are all Brownian motions, all the processes described in the previous
section are either Gaussian processes or exponentials of Gaussian processes
Since 1n order to specify the law of a Guassian process one only has to
specify the mean and the covariance, the results of this scction are essentially
trivial.

Recall that for a Brownian motion W, [(; f(s)dW, =B f(;j(s)zdsg where
B 1s some other Brownian motion. Applying this result to (1.2) givés

I 20,0 __ 1
R =Ry + / e (s)ds + oje” ' B, (E—> (2.1)
0 2ay
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where B 1s a Brownian motion. Hence, R, has Gaussian distribution with
mean

pr() = e ‘“’Ro—f—/o (=) o (s)ds (2.24)

and variance

_ o 2ayt
vR(l) = al,<l——2%l——> . (2.2b)

(In 2.2a,b) we have used the fact that B, 1s Gaussian with mean 0 and
varitance ¢). Similar results hold for the other Ornstein-Uhlenbeck type
processes X and V introduced 1n Section 1.

From (1.6) and (1.7), 1t is clear that the key to finding the dlstnbutlons
of D, and C, hes in obtamming the distnbution of ]0 s)R; ds for
su1table (determunistic) functions f. Since R 1s a Gaussian process SO 18
1 f( )R, ds and so all we need to do 1s work out the mean and variance
of [,/ (s)R. ds. The mean 1s trivial: by mterchdnglng the order of integration
i1t 1s easy to see that the mean 1s just [, f(s)jx(s)ds We now turn to the

vanance Since the mean is irrelevant here, the variance is ssimply given by

IE"[ // Hds ] ]EO[//f f(uHH,,dudv]

where we have put
2ayt
et —1]
H,:O'|€_(”’B|( >
2a,

and we use the superscript in E® to emphasise that Hy = B;(0) = 0. Using
the covariance of Brownian motion E (BB,) = min(s, ) and interchanging
the order of integration, we get

E’ [/ / Sy (u)HH, du ds]

=2 / 1(s) / f(0)E(H,H,) duds

_2r/j ""/f —“'"( 7";‘;”_') du ds (2.3)

Putting £ = 1 1n (2.3) gives the vanance of /0 R; ds to be

2 a1 —2aq1
ﬂ(i_,_zez _e__i>_ (2 4)

a; \a a 2a2 24t
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At this pomnt, 1t may be instructive to compare these results with the
analogous ones for the AR(1) time series (1.9) The mean and vanance of
S -i—| R has been obtained by Hurlimann (1992) and Wilkie (1995). Keeping
to our notation established in (1.9), the mean of the accumulated force of
mflation 31, R, 1s

(25)

while in the continuous model the mean j(; R; ds1s (assuming ¢ = const.)

I
/ pals)ds = ot + "By gman) (26)
JO a

where 1« = ¢/a, as before. We see immediately that (2 5) and (2.6) have the
same form. To check that they in fact agree, recall that to obtain the time-
series (1.9) from (1.1), we discretized time 1nto steps of size i Therefore
Z,/ll IR, 1s precisely the Riemann- sum ) approximation to fo Rids. According
to the formula (2.5), the mean of Z' " 1R, 1s

i | — t/h
pt+ (Ro — u)ha(—a—)
l —a
1 —ay/ t/h
=/Lf+(R0—'/,L)< alal 1> [l — (I —a\h) /I:l

Ro —
— i+ 9 M[l —e
ay

as i — 0, which 1s precisely the mean of O'&(IS given by (2 6). Similarly,
Hurlimann (1992) gives the variance of ), R, as

&2 [’ _2a(1 - d') N a*(l — az’)]

(]_(1)2 l —a 1 —a?

which has the same form as (2 4).

It 1s just as easy to obtain the distributions of the other processes 1 our
model Putting f(s) = pe 7" in (23) we get that [ e "R, ds has
Gaussian distribution wnth mean

o
/ pe =) pup(s) ds (2.7a)
0

and vartance

2

poi ((an — o) — (a1 + p)(pe"”” + aye2") + 40'/)6-((““))’) (2.7b)

a 2(ay - p)(a +p)
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Putting f =3+~ — Be =9 also gives an explicit expression for the
variance of 3 [y (1 — e "N R, ds+ v [ R, ds, although this 1s too messy
to write down here — the formula 1s simplfied somewhat by choosing y =0
and simplified considerably by choosing v = —f, for this would then reduce
to (2.7b). The full covariance structure of the process rH.jg/(s)R\ ds can
also be obtained in this way

Armed with these results, we can now state the distributions of interest.
We have already found the distributions of R, and P, = f(; R, ds (see (2.2)
and (2.4)). Applying the results (2 2) to the process X, we get from (1.3) and
(1.4) that log Y, has Gaussian distribution with mean

1 _ p—ual
log Y, + Xoe™“ + by (—a—i———> + Cur(7)

and vanance

2(12

1 _ ,—2(1:/
Conlt) + A ()

For the dividend index D, the result (2.3), with f(s) = 3+ — Be™ =),
together with the analogous results (2.2) for U give that log D, has Gaussian
distribution with mean

log D, + byt + / (B+v - Be NN g (s) ds
0

and variance
2 2
(m5 +m5)¢

n s Nt __ gt
+20%/ (ﬁ+7—ﬁe_’\('_“))€—"”/ (ﬂ_i_,y_ge—/\(’*“))(e(—ze—) duds.
o Jo '

Applying (2 2) to V, shows that 1t 1s Gaussian with mean

—a3!

jy(t) = ve

1 — C,—Zu.;l
VV(’) = 0-‘2‘( 2(‘4—)

The distribution of C, 1s the convolution of normal and log normal
distributions and the results (2.2) and (2 7) show that C; has mean

and variance

vl
5/ /)L'_p(’_s),LLR(S) ds-{-C,,e’“'([H""(')/z
0
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and variance

p€2a? (a1 — p)* — (ay + p)(pe™ 2" + are™2") + day pe=(+r)
a 2(ar = p)*(ar + p)
+ C2(32/z;/(l)+v|/(l)(el-y(l) _ 1)

It 1s also possible to specify the {ull multivanate structure of R, Y and D using
the methods here. Since R, Y and D are either Gaussian or log Gaussian, their
Joint law s specified once we have the covariances Cov(R,logY,),
Cov(R;,log D) and Cov(log Yy, log D;). For the most part, we only need to
know the covariance stucture of the process 1— R, which 1s given by

et — |
E[R R, = pr(1)pir(s) + E[HH,] = jir(£)pr(s) + 0110_""( 5 >
1
iIf s < t Thus, for example,
{
E[R, log D,] = 11 (1)(log D, + bat) + / (B+v — Be N TNE[R,Ry] ds
Jo

and we can then substitute the relevant previous results mto the above
expression. In addition, we also need the covariance of X, and Z,(¢), which is
given by

o2l _ |
E°[X,Zy(1)] = o2¢”“ min (C—, t)
2(12

using the covariance of Brownian motion. The detailed computations of the
covariances are left to the reader.

4, EXPLICIT DISTRIBUTIONS IN THE DISCONTINUQUS CASE

There have been some suggestions that Gaussian noisc terms are not entirely
appropniate for these models and that more reahistically, the noisc should
have jumps In this section, we perform the same analysis as in Section 2 on
the assumption that the Z, are symmetric pure-jump Lévy processes.

From the analysis in Section 2, 1t 1s clear that once we know what the law
off(;/‘(s)Zv ds 1s for fixed ¢ (where f{s) or f{1, s) 15 a suitable function and Z 1s
a generic Lévy process), we can obtain the necessary explicit distributions. It
all turns out to rest on the following simplc lemma allowing the interchange
of order of integration.

LEMMA 3.1: Let f and g be Riemann-integrable functions. Then the laws of

[16) st azias ad [ et) [ 1) asz,
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are the same for each fixed t and the common law s given by

|:Cxp{—19 / (u) / f(s dsc/Z,,}]—e\p{ /7,/)0g F(u)])du}

(3.1
where 1 is given by the Lévy-Khinichine formula (1.10) and F(u) = (')' f(s)ds

The proof, although not very pretty, uses only well-known standard results
in the theory of stochastic integration and Lévy processes and is presented 1n
the Appendix.

Remarks

(1 The above lemma 1s trivial if Z has finite variation, for then the integral
Jo8(s)dZ, exists as an ordinary Riemann-Stielfjes integral. Changing the
order of integration as for ordinary integrals, we actually have the much
stronger result that

P (J,/(s) [y g(w)dZ, ds = [ g(u) [, f(s)dsdZ, Vi)=1.

When Z has infinite variation, the integral with respect to Z 1s a “"genuine”
stochastic integral. In this case, we have to emphasise that Lemma 3.1 holds
only for fixed r; the two integrals clearly cannot have the same law as
processes since the former 1s a process of finite variation while the latter has
infinite vanation.

(1) Since ¢ 1s a fixed parameter in the present context, Lemma 3.1 holds
cqually if we allow fand g to also depend on ¢, which we need to do for some
of the processes considered earlter.

(ur) Note that a simple special case of (3.1) 1s that

lE[exp{—iH./O.l G(r.u) dZ,,}] - exp{— /()’d)(GG(I,u))du} (32)

for any (Riemann-integrable) function G.

Consider now the model described in Section | where the Z, are
symmetric Lévy processes with jumps. From the explicit formula (1.2) for R,
we see that to find the law of R, we can apply (3.2) with G(1,u) = gy e~
in which case we obtain

I
E[e "] = exp{—zﬁuk(l) —/ w(ﬁale_”'('_”))du} ,

where jiz(1) 1s as defined by (2.2a). In a similar way we can obtain the laws of
the processes X, U and V introduced 1n Section 1. For the law of ﬁ) R, ds, we
can dpPly Lemma 3 | with g(t,u) = ale*“‘(’ M, f=1 and for the law of

[ipe *" R, ds we can take g(f,u) = o™ (1=, f(t,5) = pe =9 In this
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way, we obtain the distributions of R, 8§, C, and log D, in a similar manner
to Section 2 However, the joint distribution is much more difficult to obtain

We end this section with a brief word on some specific examples of Lévy
processes one might choose to use in these models. We just mention two
commonly used Lévy processes. One 15 the symmetric a-stable process,
whose Lévy exponent 1s 9)(#) = |9]" and whose Lévy measure 1s

v(dx) = —gl—(l\' x #0,

|\_|l+n -

where C, = 77'T(1 + o) sin(ma/2). (Here 0 < o < 2; v = 2 corresponds to
the Gaussian distribution and @ = 1 gives the Cauchy distribution). Stable
distributions are examples of so-called heavy-tailed distributions One of the
disadvantages of stable processes 1s that they do not have higher order
moments than 1 (for o < | they do not even have a first moment) which may
cause awkward problems, for example, when we take exponentials of stable
processes as we are frequently doing in these models

Another commonly used class of Lévy processes which overcomes this problem

1s the Gamma process. A Lévy process Y 1s said to be Gamma with parameters
(@, 8 where o, > 01f P () < x) = T(a)™' 8 [ »*~'e~*dy. Hence

IE[e_'M’] = (ﬂ——f ig)ﬂ = cxp{—allog(l +g)} .

Note that such a process 1s non-decreasing, so to obtain a symmetric process,
we simply take two independent copies Y and Y and define Z = ¥ — ¥. The
process Z 1s therefore a symmetric Lévy process with Lévy exponent
¥(0) = alog(l +62/8%) and Lévy measure v(dx) = a|x| 'e ?Pldx. Looking
at the Lévy decomposition, since f{ A<t |x|v(dx) < oo, we see that Z has finite
variation and since j{|\|>l ]x|"u(d.\‘5 < 00, Z; has finite moments of all orders.
Applying Lemma 371 we obtain (replacing @ with 8 for convenience)

E[exp{_efolf(r—s)dz\}] :exp{—a/ol log(l —sz%%”) ds} (33)

e E[exp{—ﬂ/olg(u)/”[f(s) dst,,}]
= exp{—a/()llog(I - 92§2u)3 [/“[f(s) c/s]z) du} (3.4)

Although in gencral 1t 1s not possible to give exphcit formulae for the
integrals 1n (3.3) and (3 4) for our choices of f and g as in the preceding two
sections, the Laplace transforims (3 3-4) do give relatively simple expressions
for the moments, involving integrals which can be readily evaluated by
numerical means.
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5. CONCLUDING REMARKS

We have concentrated here on obtaining explicit formulae, both 1n the case
where our SDEs are driven by Brownian motions and in the case where they
are driven by symmetric Lévy processes with jumps. Of course, many other
questions — which we have not considered — do not admut explicit answers
and one must then resort to numerical solutions. It is not our intention here
to give a detailed quantitative analysis of numerical simulations of the
models presented 1n the preceding sections, as this could well constitute a
paper 1n its own right. We simply present some examples of numerical
simulations to give a feel for what these processes look like In the case of
SDEs driven by Browman motion, great advances have been made 1n recent
years in numertcal methods for solving them. For a comprehensive survey of
these techniques as well as an extensive bibliography on the subject, we refer
the reader to Kloeden and Platen (1992) By contrast, numerical methods for
SDEs driven by processes with jumps, such as stable processes, have recerved
far less attention until recently and the lhiterature on this subject 1s more
hmited: a systematic treatment 1n book form can be found in Janick: and
Weron (1993).

For simplicity, we present some stmulations for the inflation process R,
only since of the four components, this 1s closest to the time-series model of
Wilkie Figure 1 shows three trajectories of the process R,, in the case where
the noise Z, 1s Browman motion. The scaling used 1s such that the time
interval [0, 1] corresponds to a period of 50 years Spectfically, in the context
of Remark (n) 1n Section 1, we have used # = 0.02 and 1n equation (1.2) our
choice of ¢ 1s ¢(t) = b+ ccos(2m1/h). Since the picture 1s only intended to
give a qualitative indication of how the process behaves, the actual
numerical values on the vertical axes are not of any great importance: the
parameter values in Wilkie (1986) are used as a rough guide to the sort of
values which might be appropriate for the parameters here — n particular,
the parameter values of Wilkie are rescaled in the manner discussed in
Remark (i1) of Section 1

Throughout, we have taken the various parameters in our models as
given quantities and we have said nothing about the problems of their
estimation. There 1s some discussion of this question in §6.4 and §13.2 of
Klioeden and Platen (1992) which 1s especially relevant to the linear
equations which appear repeatedly in our models.
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FIGURE | SAMPLE PATH REALIZATIONS OF THE FORCE OF INFLATION PROCESS R,

APPENDIX PROOF OF LEMMA 31

Consider first the integral I(s) = [; g(u)dZ, Takea sequence of partitions

(u,(("), u,(";l] of the interval [0, ¢}, such that sup, |ukJrl — 4" 50 as n > .

It is known that, as n — oo,

L) = 3 o) (202 - 26i) — [ sty az

u,(‘") <y

in probability uniformly in s over the time interval [0, ¢] (see Protter (1990)).
Therefore, there 1s a subsequence (n,) such that I, (s) — I(s) almost surely as
1 — oo and without loss of generality we can assume that 7,(s) — /(s) almost
surely. Next, take a different sequence of successively refining partitions of

[0, 7] and call this [s<"" ‘"’>) Put

] j+|

() m (m) (1)
E,,uk, Zf( )(_}+l_sj )

('") n)
EX ZHA
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(Of course, F,(ul”,1) — F(1) — F(u\") as n — 00.) We then have

iy S (5) (- 7) S e (20 - 20)

m) < W < gm)
k =7

/ f(s / u) dZ, ds

and so for fixed n,

E|oxpt =05 /(") (57 —5") 3 #(d”) (2042 - 2(4™)

,("I)S’ “in)sv/(m)
n) (n n) (m m (m
=IE |exp —10Zg<u )(Z(u,\+I Z(u, ) Z f( ))(J'H_J )>
(") <t (m)>”
5
= exp{—(ugil —u,((”)>1,b[9g(u,(\")) ,,,(uk ,t)]}
u <y
<
=exp{ — Z (”221 —u,(\,"))'qb[(?g( ) ,,,(u,(\ ),t)}
wM <y
S
—expd = > () —ul" ) o) (F(0) - F™) )| (41)
W<y
PR

as m — oco. In the above calculation, we have used the stationary
independent  increments property of Z and the fact that
E[¢ 7%~ %)] = ¢ =% Letting n — oo 1n (Al) then gives the right-hand
side of (3.1).

For the mtegral [;g(«) [\ f(s)dsdZ,, we know that

S et (k) - Fu) (202 - 204) [ st [ 19dsaz,

almost surely as » — oo (passing to a subsequence if necessary) A similar
calculation as 1n (A1) easily yields the identity (3.1).
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