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ABSTRACT 

This paper  presents a con t inuous  t ime version of  a stochasUc investment  
model originally due to Wdkle. The  model is const ructed via s tochasuc  
d~fferenual equat ions.  Exphclt  dis tr ibut ions are ob ta ined  m the case where 
the SDEs  are driven by B r o w m a n  mot ion ,  which is the con t inuous  ume 
ana logue  of  the ume series with white noise residuals considered by Wflkle 
In ad&t lon ,  the cases where the driving "no i se"  are stable processes and 
G a m m a  processes are considered.  
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1. INTRODUCTION 

Wilkie (1986) presented an investment  model  based on t ime series, which has 
since been updated  and extended m Wilkie (1995) This  paper  presents some 
con t inuous  t ime w m a n t s  of  Wflk~e's original model  usmg stochast ic  
differenual  equat ions  driven by a p p r o p r m t e  L6vy processes. There  is no 
single correct  con t inuous  ume equivalent  to the model  in Wdkle  (1986), the 
mm of  this paper  ~s to suggest some poss,ble ways of  const ruct ing the 
ana logous  cont inuous  time models  and to analyse these mathemaUcal ly .  It  
seems that  whatever  one takes to be the " r igh t "  cont inuous  ume equivalent  
o f  the Wflk~e model ,  similar methods  to those presented here can be used to 
analyse it. 

One reason one might be interested m a con t inuous  time model  ~s that  m 
a cont inuous  t ime setting one ,s free to choose  any  umt  o f  Ume and to model  
the state of  the var ious investment  variables  at any t~me, not  just  at discrete 
instants.  However ,  the rnaln a t t racUon of  cont inuous  ume models  ~s the,r 
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mathematical tractablhty; whereas the Wflkle model is mainly Intended for 
computer simulations, in the continuous tIme setting here many questions 
admit explicit answers which can be obtained in a simple way. Here, we 
concentrate on obtaining explicit &strlbutlons but other questions can 
undoubtedly be answered 

The model introduced in Wilkxe (1986) only makes use of  Gausslan 
(white noise) series, for our model the driving noises are allowed to have 
other distributions. 

2. DESCRIPTION OF THE MODEL 

In many ways, the model described here is the most direct and obvious 
continuous-time version of the model in WiIkle (1986), although some 
modifications are necessitated by the transition to a continuous time scale. 
We do not make any special claims about its appropriateness to practical 
situations beyond pointing out its similarity to the original Wflkle model 
whxch has by now gained w~de acceptance, at least m the world of insurance. 
The two main guiding principles behind the construction of the continuous 
time model presented here are firstly the analogy with the corresponding 
time series and secondly the similarities between certain features of the 
Wllkle model and other models which feature widely In different areas of 
financial modelling, occasionally we shall depart from an exact analogy wlth 
the time series to emphasise these similarities because the qualitative features 
common to all these models are of potentmlly greater interest Thus, it would 
be more approprmte to refer to the continuous time model presented here as 
respired by the Wllkle model, rather than "the continuous time Wllk~e 
model" The model should be treated as a "first draft" rather than a final 
version. As with the original Wllkle model, the model here is based on four 
processes (although these are not exactly the same as the ones in Wllk~e 
(1986)) and we describe each of  these in turn. 

Let Zi,  Z2, Z3 and Z4 be four Independent (not necessarily continuous) 
processes. Exactly what kind of processes are the Z, wdl be discussed later. 

1.1. Retail prices index and inflation 

Consider first a retail prices index, Qt ~ exp{Pt} We use an Ornsteln- 
Uhlenbeck type model for the process P. 

dPt = Ridt 
(1 1) 

dRt = -a~Rtdt  + qh(t)dt + o ' ldZ  1 (t) 

where al > 0, al E ~ and ~ is a (deterministic) positive periodic function 
with period h > 0. Here the process R plays the role of the continuous force 
oflnflatton. A direct translation of Wflkle's model would have ~ ~ constant, 
but in passing to continuous time it may be desirable to take into account the 
seasonal fluctuations in inflation over a year. The period h here corresponds 
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to a year m our umts of time (see Remark (i0 below) (To spell things out in 
a little more detail, supposing ~ constant, the process RI m (1 1) 
corresponds to Wflk~e's V logQ(t), the parameter al corresponds to the 
parameter WiIkle calls I - QA, ~ corresponds to QMU(I - QA) m Wilkie's 
original paper and cq plays the role of QSD). 

Because (I.1) is a hnear equauon, it ~s easy to solve exphcJtly, whatever 
our choice of drlwng noise Zj. The general version of lt6's formula for 
discontinuous semlmartmgales X states that f f f  ~s a continuous function 
w~th the necessary derlvauves, 

/0' /0' '/0'/,,Ix J(X,, t) - f (Xo,O) = /'(X,, s)ds+ J'(X,_,s)dX~ + 5 ,s)d[X]; 

+ Z ( X ~ , s ) - f ( X , _ , s ) - f ' ( X , _ , s ) A X , - g f  ( ,~ s)(AX,) 2 
O<,~_<t 

where AXe = X~ - X,_, J ~ Of /Ot, f '  -= Of /Ox etc. For th,s and other 
aspects of the general theory of stochastic integrahon with respect to 
senmnartmgales, we refer the reader to Protter (1990) and Roger and 
Wflhams (1987), wh,ch approach the subject in different ways. (Note that X 
is assumed to be right-continuous and can only have countably manyjumps,  
so the sum above is actually a sum over countably many values of s). 
Consider now the case that ] ( x , t ) = # " X r  We have f " _ = 0  and 
ff(X~_,s)AX~ =J(Xs, s)-J(X, ,_,s) ,  so the terms lnvolwng the jumps of X 
m It6's formula all vanish Therefore applying lt6's formula to e¢'~IR,, we 
obtain an exphclt formula for Rt: 

f0' /,,' R, = e-"~' Ro + e "'('-~)qS(s)d~+ ~le-"'('-')dZi(s). (1 2) 

From (1.2), we can find P~ = Po + fl  R¢ts and the resulting double integrals 
can be handled by interchanging the order of mtegraUon (e g. see Lemma 3 1 
m the sequel) 

1.2. Share yield process 

Wllkie (1986) next considers two inter-related processes: an index of share 
dividends and the d~wdend y~eld process. Let Yt denote the share dividend 
yield The continuous tune analogue of Wilkle's model would be 

It = Y, exp{X, + (R,}, 

w h e r e  dX, : - a 2 X t d l  + bldt  + cr2dZ2(t) 
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(Here,  Y, = Y0e-(A'0+~R0). In the sequel, this notat ion will be frequently used 
to denote  this kind o f " m o d i f i e d  lnihal con&t~on".)  Equat ion (1.3) admits an 
explicit solution similar to (1.2), namely 

= ---  + or2 e-azl '  " d Z 2 ( s ) .  (1 4) 
a2 / 

1.3. Share dividend process 

We next turn to the index o f  share dividends. Dr Our  model follows Wllkle 
in using an exponential ly &scounted "sum of  inflation effects". 

( f0' ) d ( l o g D , ) =  b2+/3A e-X'Rr_~ds+TR, dt+~lzdZz(t)+Tl3dZ3(t ). (1.5) 

In Wilkie's tmle series model,  the noise has a simultaneous as well as a 
lagged effect which is captured by moving average m the no~se. There  is no 
sensible equivalent  in the cont inuous  time context  for such a moving 
average. Another  feature of  the model (inherited from Wllkle) is the mixing 
o f  the driving noises for Yr and Dr. 

The share price St IS related to the dividends and the yield by $I = Dt/Yr 
it is interesting to note that the process St satisfies an equat ion o f  the form 

dSt = ctStdt + St(61 dZj (t) + 62dZ2(t) + 63dZ3 (t)), 

which has exactly the same form as the ubiqui tous geometric Browman 
mot ion  model of  share prices, except that the coefficient c, here takes a rather 
complicated form which revolves the whole path o f  the force of  inflation R 
up to time t, as well as the usual constant  drift terms 

Interchanging the order  of  integration, ~t ~s easy to see that 

/0'/0' /0' A. e a"R,_,,duds = (1 - e-a(t-"))R,du , 

therefore from (1 5) we have 

D, = D, exp{'q2Z2( t) + ' q 3 2 3 (  l)  + / 3 . f 0 ' ( l - e  ~('-"))R,,du+ T f 'R , , du+b2 t }  . 

(1.6) 

where D, is a constant  determined by Do and R0 in a similar manner  to Y, 
(see Remark  (iv) m §1.5 below). 
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1.4. Consol yield process 

Finally, we have the yield on consols C;, 

/o' Ci = ~p e -° '  R1-sds + C.e  v,, (1.7) 

dVt = - a 4  Vtdt + cradZ4(t), Vo = v 

The equat ion for V in (1.7) admits an exphclt  solution for the same form as 
(1 2) 

1.5. General remarks on the model 

(:) We do not clam3 that the method in (1.1) is the most appropr ia te  way to 
model seasonal effects m inflation - it ~s one simple and obvious way to do ~t 
without  destroying the most  a t t ractwe features of  the Ornste ln-Uhlenbeck 
process but we could equally plausibly let cr~ be a periodic function as well 
and we would still be able to obtain an exphc~t solution as before 

(ii)  Some remarks on the time scale of  the cont inuous  time processes here 
and their relationship with their dlscrete-tmle counterpar ts  in Wflkle (1986) 
might be useful Typically these cont inuous  time processes run at a much 
faster speed than their dlscrete-txme eqmvalents:  for example,  ff the unit of  
time in Wflk~e (1986) is years, the unit o f  time here might be centuries, so 
that h = 0.01 would correspond to a year. This is essentially an artifact of  
the dlscreuzat lon in passing from cont inuous  time to discrete time. If we 
were to dlscreuze (1.1) in multiples of  h using first-order Euler approxima-  
tion together with the approximat ion  P t -  Pt-h = f,t_h R s d s  .~ hR,_h and 
noting that 4~(t)= q~(t-  h ) =  q~ = constant ,  we would recover the Wilkle 
model provided we rescale time by defining R~ := R;,;. For  example,  
assuming that Z~ ~s Browman motion for simphc~ty, the first-order Euler 
discretlzatlon o f  (I.  1) is 

R; - R, -h  = - a l h R z _ h  + Oh + ~1 (Z~ (t) - Z l  (t - h)), 

which can be rewritten as 

R, = (1 - alh)Rr-h  + qSh + aj ~ Wr 
(1.8) 

+ - , )  + w , ,  

where we have put  a = 1 - alh, # = ~ /a l  and W, = (Zi (t) - Zi (t - h)) /x /h .  
Note  that W;,, W2;,, W3;, . . . .  are i.~.d, s tandard Gausslan random variables. 
Defimng R, := R;,, we obtain from (1.8) the AR(1) time-series model of Wllkle: 

R, =/L + a(R;_, - It) + 6-, W,, (1.9) 
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where al = ~lx/h. The calculations at (2.5) and (2.6) below and the 
subsequent  discussion illustrate this point in greater detail Observe that the 
corresponding paralneters  m ( I . l )  are rescaled in the appropr ia te  way with 
this time change'  hi = hal and a'l = al,v/h Because the parameters  are 
automatical ly  scaled accordingly once a time scale has been chosen, such 
comparisons  with the discrete time-series are usually irrelevant from a 
practical point  of  view; in practice, one would choose a suitable time scale 
and then fit the model to data directly without  reference to any discrete-time 
model and if one wished to do simulation, one would choose a dlscretlzauon 
for its numerical efliclency rather than for its consistency with another  
discrete-rime model.  The same comlnent  apphes to all the other  processes 
discussed above 

(ui) For  our  choices ofZi, the process R will have a s tat ionary distribution. 
Th r oughou t  this paper, we assume that the imtial condi t ion R0 is some fixed 
number  as in (1.2) However ,  it is also possible to let R0 be a random 
variable with the s tanonary  dis t r ibunon,  m which case R would be a 
s ta t ionary process. The same can be said of  all the other  processes which 
have s ta t ionary distributions. 

(iv) Because the processes X and R in (I.3) are not spatially homogeneous ,  
the initial values X0 and R0 cannot  be absorbed Into Y, and so separate 
parameters  for the initial values are needed The same applies to the 
processes D and C. Also, Wdkm (1986) has an extra drift term of  the form 
c dt appearing in the equat ion for Vt in (I.7) but we have omitted it here 
because ~t is clear from the explicit formula for Vt that c can be absorbed 
into the two parameters  v and C,, and so serves no addlnonal  purpose 

1.6. L6vy processes 

We are mainly interested in the case where the "no ise"  processes Z, are 
symmetric L6vy processes, that is processes with s tat ionary independent  
increments ( "Symmet r ic"  m this context  just means that Z and - Z  have the 
same law.) We end this section by briefly recalhng some results about  L6vy 
processes which we shall need in the sequel. Let Z be a ( symmemc)  L~vy 
process. Since Z has s t anonary  independent  increments, its characteristic 

, WZ, t~ (0) function must take the form E [e ' J  = e ' for some function ~, called 
the L&v evponent of  Z. The L6vy-Khlntchlne forlnula says that 

") 
~(0)'-~0"-02-~-1('10-~-2 ./{Iq<l} / (1 -c  t°*-lOX)l/(dx)-{-/{'],]>l} (1 -c  '°v)I/(dx) (] 10) 
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for a, ~ E R (if Z is symmetr ic ,  a = 0) and for some o--finite measure  u on 
\{0} satisfying . / m i n ( l , x 2 ) u ( d x )  < oo. The  measure  u is called the Ldvy 

measure of  Z. (To put  readers on more  fmmhar  ground,  consider  the 
s~tuatlon when o- = a = 0 and suppose that the total mass A of  u, .~ = f ~ u ( d x )  
is fimte. Then the LOW process Z with such a L~vy measure  is just  an 
ord inary  c o m p o u n t  Po~sson process whzch j umps  occurr ing as a Polsson 
process of  rate k and whose jump-s ize  dis t r ibut ion is ~ - Iu (dx ) .  In the case 
that the integral o f  u dwerges  near  0, Z wdl have mfimtely m a n y  small j umps  
m a finite tlrne-interwll At  the other  extreme, If u ~ 0, there are no j u m p s  so 
we just  have Brownlan mot ion  and ~,b is the same as the exponen t  for a 
normal  d l s t n b u t m n  ) 

F r o m  the L 6 v y - K h m t c h m e  formula  we can deduce the exact form Z must  
take. it turns out that  Z must  be a hnear  combina t ion  of  a Brownlan  mot ion  
(the cont inuous  part)  and a pure - jump process independent  o f  the Brownian  
part .  Specifically, let Q (dr, d.v) be a Pmsson  measure  on (0, cx~) x R {0} with 
expec tahon  measure  & x u (here d; denotes  Lebesgue measure) ,  then 
(assuming a = 0 m (I.10)) we have the L6vy d e c o m p o s m o n  

Z, = ~rB, + J, + A, ( 1.11 ) 

where, co r responding  to each of  the three terms in (1.10) respectively, B is a 
Browman motmn,  J is the pure-jurnp martingale J, = ~  w __ . _ "  -' x(Q((O,t],dx)-tu(dx)) Jim <l  
a n d  A Is the f imte-vanatmn jump process A, =j]l.,.,,,xQ((O, tl, dx). The 
processes B, J a n d  A are independent A more detaded t'?ela-'t'~ent can be found in 
Protter  (1990) and Rogers and Wdllams (1987) also contains a race direct 
construction o f ( l . l  1). Because of  independence, we lose no generality m treating 
separately the cases where Z is a Brownlan mouon  and where Z ~s a pure-jump 
process We do th~s m the next two sectmns 

3 EXPLICIT DISTRIBUTIONS IN THE Brownlan  CASE 

I f  the Z, are all Brownlan mot ions ,  all the processes described m the previous 
section are either Ga us s m n  processes or exponent ia ls  o f  Gauss lan  processes 
Since in order  to specify the law of  a Guass lan  process one only has to 
specify the mean and the covar lance,  the results o f  this section are essentially 
trivial. 

Recall that  for a Brown,an  mot ion  W, f~f(s)dWa = B(J~J(s)2ds) where 
B is some other  Brownlan m o t m n .  Applying  this result to (I .2)  gw6s 

f0' ( e2¢'tt- 1-) (2.1) R, = e-""Ro + e-"'(t-')dP(s)ds + °le-"'tBl \ 2-cq 



84 TERENCE CHAN 

where Bi is a Brownian motmn.  Hence, Rt has Gausslan distribution with 
mean 

[' #R(I) = e-°'tRo + e-a'(t-;)fb(s)ds (2.2a) 

and variance 

-R(,) =~C- e-2°") -27  ' (2.2b) 

(In 2.2a,b) we have used the fact that  B, is Gaussmn with mean 0 and 
variance t). Similar results hold for the other  Ornste ln-Uhlenbeck type 
processes X and V introduced in Sectmn 1. 

F rom (I.6) and (1.7), it is clear that the key to finding the distributions q 
of  D, and CI hes m obtaining the dls t r lbunon of  ]of(S)R~ds for 
statable (deterministic) functions f .  Since R IS a Gaussian process, so is I t ~ fdf(s)R; ds and so all we need to do is work out  the mean and variance fv 
of  d~f(s)R, ds. The mean is trivial: by interchanging the order  of  integration 
it is easy to see that the mean is just  d~f(s)/~R(s)ds We now turn to the 
variance Since the mean ~s irrelevant here, the variance is simply gwen by 

 ol/:o = :o' 1 
where we have put 

(e 2' ' ' -  1.) 
H, = crle-"~t Bi \- -~[t 

and we use the superscript in E ° to emphaslse that H0 = Bi (0) = 0. Using 
the covarlance of  Brownlan morion 1E (B;B,,) = min(s, u) and interchanging 
the order  of  lntegratmn, we get 

IE° [.£t fo'f(s)J (u)H,H,,du ds ] 

/o' /o = 2 f(~) f ( . )E (H .H , , )  d.d~ 

9 ~0t ~0 ~ ( e2atu- | )  = 2<. J (s)e-"" f(u)e-"'" \- 27,; au ds 

P u t t l n g f  ~ 1 in (2.3) gives the variance o f  1~ Rs ds to be 

_~._(t 2e "'t e -20'' 2~12) 
al 7 "q" a f  2a12 " 

(2.3) 

(2 4) 
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At thas point, at may be instructive to compare these results wath the 
analogous ones for the AR(I)  tune series (1.9) The rnean and variance of  
~ i - i  R, has been obtained by Hurhmann  (1992) and Wnlkm (1995). Keeping 
to our no tanon  estabhshed in (1.9), the mean of  the accumulated force of  
mflatnon E l= ,  R, as 

ta  + (k0 - / 0  a(l  - ~,') (2 5) 
l - a  

while an the continuous model the mean J~ R~ ds as (assuming ~b = const.) 

• i Ro - It ltR(s)ds = l.a + [1 - e -a''] , (2 6) 
. a l  

where IL = ~/al as before. We see ammedlately that (2 5) and (2.6) have the 
same form. To check that they tn fact agree, recall that to obtain the tame- 
series (_1.9) from (1.1), we dascretlzed tune into steps of  size /7 Therefore x-,r/h e__,,=l hR, ns precisely the Rtemann-sum approx~maUon to f~ R~ds. According ~-.t/h tO the formula (2.5), the mean of  z_.,=l hR, is 

#t + (Ro - It)h a(1 - a '/h) 
l - a  

= lit + (Ro-#) (1  .-2fflh'~ I i -  ( 1 -  alh)r/hl 
al / 

Ro - l~ e-,,r] ILt + [1 - 

as h ~ O, which as precasely the mean of  f~I~ds given by (2 6). Slmdarly, 
Hurhmann  (1992) gives the variance of  ~,_~ R, as 

~ [ 2 a ( l -  a t ) +  a2(l - a2')] 

(1 2 ) 0 2  t 1 - ~, i - - 7  J ' 

whmh has the same form as (2 4). 
It as just as easy to obtain the dtstr ibutmns of  the other processes m our 

model Putting f ( s ) =  pe-P('-') m (2 3) we get that j~e -r'l'-')& ds has 
Gaussmn distribution wath mean 

't Pe-P('-r) ILR(S) ds (2.7a) 

and variance 

P°'~( (a ' -p)2-(a '+p)(pe-2a' t+a'-~-2-[ ' t )+4atpe-(a '+') t )al  2T~ 7 ~ a l  + p) (2.7b) 
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Putting f = ~3+7- f i e  -'x(~-~) also gives an exphclt expression for the 
I 

variance of ~.]o ( 1 -  e a('-~))R, ds+ 7 ]o R, ds, although this ls too messy 
to write down here - the formula is simphfied somewhat by choosing 7 = 0 
and slmphfied considerably by choosing 7 = -/3, for this would then reduce 
to (2.7b). The full covanance structure of the process t ~ JoJ(s)R, ds can 
also be obtained m this way 

Armed with these results, we can now state the dlstnbuuons of interest. 
We have already found the distributions of Rt and Pt = fo R, ds (see (2.2) 
and (2.4)). Applying the results (2 2) to the process X, we get from (1.3) and 
(1.4) that log I"1 has Gaussmn dlstrlbuhon with mean 

and variance 

log Y, + Xoe-a2, + bl ( 1 -  e-"2t~ -~ / + ¢~(,)  

¢2vR(O + ~ )-~ # • 

For the dwldend index D, the result (2.3), with J ( s ) = / 3 + ~ , - / 3 e  -:<t-'), 
together with the analogous results (2.2) for U gwe that log Dr has Gaussmn 
dlStrlbtmon with mean 

/o' log D, + b2t + (/3+3,-/3e "\('-'))#R(s) ds 

and variance 

Applying (2 2) to Vr shows that it is Gausslan wtth mean 

/Lv(t)  = r e - " '  

and variance 

duds. 

vv(,/=d C - e-2"4"~2~ j 

The dmtributlon of C, ~s the convolution of normal and log normal 
dmmbunons and the results (2.2) and (2 7) show that Ct has mean 

~0 I pe-PU-s) ~R(S) ds + C,e #v(t)+''v(t)/2 
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and variance 

p~ o~ _(a, - p)2 _ (at + #)(____pe__~2"E'__+ a.2e-2P' ) + 4a,pe -(''+p)r 
al 2(al - p)2(al + p) 

-F C,2e2"v(r)+vv(r)(e w(r) - 1). 

It iS also possible to specify the full mulnvarmte structure of R, Y and D using 
the methods here. Since R, Y and D are rather Gaussmn or log Gaussmn, thmr 
joint law ~s specified once we have the covanances Cov(Rr, log Y~), 
Cov(Rr, logD,) and Coy(log Yr,logD,). For the most part, we only need to 
know the covarlance stucture of the process I~--..+R1, whmh is given by 

,) E[R,R~] = ttR(OttR(S) + E[H,H,,] = ItR(t)itR(S ) + cr~e-a"\ 

If s < t Thus, for example, 

1' E[R, log Dr] = p,R(t)(log D, + b21) + (fl + ~ - ~e-X('-'))E[e,e,] ds 

and we can then subsmute  the relevant prewous results into the above 
expressmn. In addmon,  we also need the covanance  of  X~ and Zx(t), whmh is 
given by 

[ e,,2 , _ ) 
- ~  ~ [ ~0[..J(/Z2(l)] 0"2 e-a2' ll]ln~- 2c~ 1 

using the covariance of  Browman motmn.  The detailed computat ions  of  the 
covariances are left to the reader. 

4. EXPLICIT DISTRIBUTIONS IN THE DISCONTINUOUS CASE 

There have been some suggestions that Gaussmn no~se terms are not enUrely 
appropriate for these models and that more reahstmally, the noise should 
have jumps In this secuon, we perform the same analysIs as in Secnon 2 on 
the assumpUon that the Z, are symmetric pure-jump L6vy processes. 

From the analysis m SecUon 2, It ~s clear that once we know what the law 
"1 

of J0 [ (.s')Z~ ds is for fixed t (where jr(s) orJ(t ,  s) Is a statable funcnon and Z Is 
a generic L6vy process), we can obtain the necessary exphc~t d~stnbutmns. It 
all turns out to rest on the following smaple lemma allow|ng the interchange 
of  order of  integration. 

LEM M A 3.1 : Let J and g be Rwmann-mlegrable Juncltons. Then tile laws o/ 

/o',/o /o' f ( s  g(,,) dZ .  ds and g(u) J(s)  (Is dZ.  
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are the same for each ftxed t and the common law ts gtven by 

E [exp{-iOfolg(u)f~f(s)dsdZ,, }1 = e x p { - f 0 ' , ( 0 g ( u ) [ F ( t ) - F ( u ) ] ) d u  } 

(3.1) 

where ~b is gtven by the L6vLI,-Khintchme formula (1.10) and F(u) = f~' f(s) ds 

The proof, although not very pretty, uses only well-known standard results 
in the theory of stochastic integration and L6vy processes and is presented an 
the Appendix. 

Remarks 
(t) The above lemma as trlvml if Z has fimte variataon, for then the antegral 
fo'g(s) dZs extsts as an ordinary Raemann-Staeltjes antegral. Changing the 
order of lntegrauon as for ordinary antegrals, we actually have the much 
stronger result that 

• I ~" t .I 1P (jof(s) fog(u)dZ,,ds= fog(U) L,f(s)dsdZ,, Vt) --  1. 

When Z has infinite variation, the integral with respect to Z as a "'genuine" 
stochastic integral. In thas case, we have to emphasase that Lemma 3.1 holds 
only for fixed t; the two integrals clearly cannot have the same law as 
processes since the former is a process of fimte varmtaon whale the latter has 
infinite variation. 

(u) Since t as a fixed parameter ua the present context, Lemma 3.1 holds 
equally if we a l lowfand  g to also depend on t, whach we need to do for some 
of the processes considered earher. 

(m) Note that a simple special case of (3.1) is that 

E[exp{-iO fo'G(t,u) dZ,}l  = exp{-  fo'~/~(OG(t,u))du } (32) 

for any (Rlemann-mtegrable) function G. 
Consider now the model described in Section I where the Z, are 

symmemc L6vy processes with jumps. From the explicit formula (1.2) for R, 
we see that to find the law of Rr we can apply (3.2) with G(t, u) = ~rle -"'(t-''), 
In which case we obtain 

FE[e-'°l~'] = exp{-tO#R(t) - f'~(Ocrle-a'(t-")) du} , 

where #k(t) is as defined by (2.2a). In a slmdar way we can obtain the laws of 
the processes X, U and V introduced m Section 1. For the law of f l  R~ ds, we 
can apply Lemma 3 1 with g(t,u)=crle-"~I1-"l,f - 1 and for the law of 
.loPe /'(I-")R, ds we can take g(t,u)=ffle-al(t-"),f(t ,S)=pe pC' s). In this 
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 Eexp{ 
and 

way, we obtain the distributions of  Rt, St, C, and log D, in a similar manner  
to Section 2 However ,  the joint  distribution is much more difficult to obtain 

We end this section with a brief word on some specific examples of  L~vy 
processes one might choose to use m these models. We .just mention two 
commonly  used L~vy processes. One is the symmetric c~-stable process, 
whose L~vy exponent  is "4b(0) = 101 <~ and whose L~vy measure is 

- d.¥, x # 0, 
I xl,-  

where C~ = 7r-JF(I + a)  sin(rr~/2). (Here 0 < a < 2; a = 2 corresponds to 
the Gaussian distribution and a = i g)ves the Cauchy distribution). Stable 
d l s tnbutmns  are examples of  so-called heavy-tailed distributions One of  the 
disadvantages of  stable processes )s that they do not have h)gher order 
moments  than I (for a _< 1 they do not even have a first moment)  which may 
cause awkward  problems, for example, when we take exponentials of  stable 
processes as we are frequently doing in these models 

Another commonly used class of L~vy processes whmh overcomes this problem 
is the Gamma process. A L6vy process Y ~s said to be Gamma with parameters 
(a,/3 where a , ~  > 0 if IP (Yi _< x) = F(a)-Jfl  '~ fo'y<'-ie-/~."dy. Hence 

( , 0 ' - ~ , ~ t  e x p { - a l l o g ( l + - ~ )  . '~ lE[e-'er,] 
= j 

Note  that such a process is non-decreasing, so to obtain a symmetric process, 
we simply take two independent  copies Yand  Y and define Z = Y -  Y. The 
process Z ~s therefore a symmetric L+vy process with L6vy exponent  
g,(0) = o~log(l + 02/fl 2) and L6vy measure u(dx) = a]xi-le-~l-'ldx. Looking 
at the LO W decomposit ion,  since f~, . Ixll/(dx) < cx~, we see that Z has finite 
v t / al< / arlatlon and since J/I.'-,* [ x] u(dvl < ~ ,  g,  has finite moments  of  all orders. 

Applying Lemma"3'~l'~we obtain (replacing 10 with 0 for convenience) 

Although in general it is not possible to give explicit formulae for the 
integrals in (3.3) and (3 4) for our choices of  J and g as in the preceding two 
sections, the Laplace transforms (3 3-4) do give relatively simple expressions 
for the moments ,  involving integrals which can be readily evaluated by 
numerical means. 
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5. CONCLUDING REMARKS 

We have concent ra ted  here on obta ining explicit formulae,  both  in the case 
where our  SDEs  are driven by B rowm an  mot ions  and m the case where they 
are driven by symmetr ic  L6vy processes with jumps .  O f  course,  m a n y  other  
quest ions - which we have not considered - do not admi t  explicit answers 
and one must  then resort  to numerlcal  solutions.  It is not our  retention here 
to give a detailed quant i ta t ive  analysis o f  numerical  s imulat ions of  the 
models  presented in the preceding sections, as this could well const i tute  a 
paper  in its own right. We simply present some examples  o f  numerical  
smaulatlons to give a feel for what  these processes look like In the case of  
SDEs  driven by Brownlan mot ion ,  great advances  have been made  in recent 
years in numerical  methods  for solwng them. Fo r  a comprehenswe  survey of  
these techniques as well as an extensive b lbhography  on the subject, we refer 
the reader to Kloeden and Platen (1992) By contrast ,  numerical  methods  for 
SDEs  driven by processes with jumps ,  such as stable processes, have received 
far less a t tent ion until recently and the l i terature on this subject ~s more  
bruited: a systematic  t rea tment  in book  form can be found in Janick~ and 
Weron  (1993). 

Fo r  simplicity, we present  some s imulat ions for the inflation process Rt 
only since of  the four componen t s ,  this is closest to the time-series model  o f  
Wdk~e Figure I shows three trajector,es of  the process Rt, I n  the case where 
the noise Z, is Brownlan mot ion.  The scaling used is such that  the time 
interval [0, I] co r responds  to a period of  50 years Specifically, in the context  
o f  R e m a r k  01) in Section 1, we have used h = 0.02 and m equat ion  (1.2) our  
choice of  q5 is O(t)  = b + ccos (27r t /h ) .  Since the picture is only intended to 
give a quahta t ive  indication of  how the process behaves,  the actual  
numerical  values on the vertical axes are not o f  any great importance:  the 
pa rame te r  values in Wllkle (1986) are used as a rough guide to the sort  o f  
values which might  be appropr i a t e  for the pa ramete r s  here - in part icular ,  
the pa rame te r  values of  Wdkle  are rescaled in the manner  discussed in 
R e m a r k  (il) o f  Section 1 

Th roughou t ,  we have taken the var ious  pa ramete r s  in our  models  as 
given quanti t ies  and we have said nothing abou t  the p rob lems  o f  their 
es t imat ion.  There  is some discussion of  this quest ion in §6.4 and §13.2 of  
Kloeden and Platen (1992) which IS especially relevant to the linear 
equat ,ons  which appea r  repeatedly in our  models.  
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FIGURE I SAMPLE PATH REALIZATIONS OF THE FORCE OF INFLATION PROCESS R, 

A P P E N D I X  P R O O F O F  L E M M A  3 I 

Cons ider  first the integral l (s)  = J'~ g(u) dZ,, Take  a sequence  o f  p a r t m o n s  
(u~,0 001 ttk+ ,j o f  the interval [0, t], such that supk 1.~'~, - t,~;')[ ~ 0 as n ~ oo. 

It is k n o w n  that,  as n ---, oo,  

I . ( . )  . dZ,, = g~uk ) t L U ' k + , ) -  Z(,,~' ~ g(, ,)  

m probabi l i ty  u m f o r m l y  in s over the tn'ne interval [0, t] (see Protter (1990)) .  
Therefore ,  there is a subsequence  (n,) such that / , , , ( s )  ---, l (s)  a lmos t  surely as 
l + oo and wnthout  loss o f  general i ty  we can assume that / , , ( s )  + I (s )  a lmost  
surely.  Next ,  take a dnfferent sequence  o f  successwely  refining part~tmns o f  

r (,,,) (.,)~ [0, //] and call this [5 , 5 + 1 ) '  Put 

t > , -  
~(~) >.(.)  
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" (") t) -~ F ( t )  - F(u~ '')) as n ~ oo.) (Of course, FmtUk , 

hfn. lira ~ - ~ J ( s S ' " ) ) / "  ('') (,,,)N .... . o , , _ ~ - - . - . t ~ ; + , - ~  ) Z 

= f ( s )  g(u) dZ,, Us 

and so for fixed n, 

t Sj+I __~,n)) 
• "') <l 

We then have 

gc"k ) 

= E  exp ~ - ,0  Z / (''}'~ f ' - "  (') " 
f 
< gtu~ ) t~ t . ,+ , ) -z(&))  
t u~ ") _< t g.,l_>.l?l 

_ - r [  e x p , ' _ /  ( , 1 ) ( , 1 )  (.,) (.) 

u{~. ") _< t 

u(/, n) < t 

as m----, oo. In the above calculation, we have used the s ta t ionary 
independent  increments proper ty  o f  Z and the fact that 
IE[e -m(z'-z,)] = e -(t-gO(O). Letting n --+ ~ m (AI)  then gwes the r ight-hand 
side of  (3.1). 

For  the integral f g g ( u ) £ f ( s ) d s d g , ,  we know that 

'''' Jo' I mtUk+ , -- Z(u~'0)) --+ g(u) f ( s )  dsdZ,, 
k 

almost surely as n --+ oo (passing to a subsequence if necessary) A similar 
calculation as m (A l) easily yields the identity (3. I). 
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