
ACCOUNTING FOR INDIVIDUAL OVER-DISPERSION 
IN A BONUS-MALUS AUTOMOBILE INSURANCE SYSTEM 

BY 

M E N G  SHENGWANG, YUAN WEI 

Department of Statistics 
Renmin University, Beffing, China 

A N D  

G.A. WH~TMORE 

Faculty of Management 
McGill University, Montreal, Canada 

ABSTRACT 

Individual automobile insurance claims are characterized by over-dispersion 
relative to the Poisson model. In addition, claim propensities vary among 
individuals in any insurance portfolio. This paper presents a model which 
takes account of both characteristics. The model employs the negative- 
binomial distribution as the distribution for individual-level claims and a 
Pareto distribution as the distribution for claim propensities within the 
portfolio. The paper shows that the resulting model is tractable and has a 
number of attractive properties which make it suitable for this application. 
The fit of  the model to actual claim numbers for automobile third party 
liability insurance is examined and found acceptable. Bayes theorem is then 
applied to this model to calculate illustrative optimal premiums under the 
Bonus-Malus System (BMS). 

1. INTRODUCTION 

The Poisson distribution has a long history in insurance as a model for claim 
counts for individuals. Actual experience shows, however, that the 
distribution of  claim counts in repeated observations for a single individual 
tend to have greater dispersion than can be accounted for by the Poisson 
model. This characteristic is certainly observed in the field of  automobile 
insurance. It also has been known since the earliest studies of  insurance that 
the propensity to make claims differs among individuals. In automobile 
insurance, these differing propensities are explained by a variety of 
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personality, health, physical and environmental risk factors for individual 
policyholders that are not accounted for by premium-related risk adjust- 
ments. 

In the next section, we propose the negative-binomial distribution as a 
model for individual automobile insurance claims that can account for over- 
dispersion relative to the Poisson model. We then take account of  variation 
in individual claim propensity by assuming that the mean number of  claims 
is distributed across individual policyholders according to a Pareto 
distribution. The section examines the properties of  this mixture model 
and shows that it is both mathematically tractable and suitable for this 
application in a number of respects. Section 3 presents a demonstration of 
the fit of  the model to actual claim numbers for automobile third party 
liability insurance. In Section 4, Bayes theorem is applied to this model to 
calculate illustrative optimal premiums under the Bonus-Malus System 
(BMS). 

2. NEGATIVE BINOMIAL-PARETO MODEL 

We assume that the number of claims K of an individual policyholder in a 
given time period follows a negative binomial probability distribution 
NB(It, r) with probability function 

£ ( r + k )  rrit k 
P(k l i t )=  F(r)k! (r-l-it) r+k for k = 0 ,  I, ... (2.1) 

Parameter # > 0 is the mean number of  claims in the period, i.e., 
E(KI# ) =i t ,  and, hence, measures the individual's claim propensity. 
Parameter r > 0 is an unknown constant that is assumed to be the same 
value for all individuals. The variance of the number of  claims K is given by 

The quantity It/r in (2.2) determines the extent of over-dispersion in the 
negative binomial model relative to the Poisson model. This quantity is 
proportional to the mean number of  claims It and inversely proportional to 
the parameter r. Thus, the negative binomial model implies that over- 
dispersion increases with the mean number of  claims It. Moreover, 
parameter r governs the responsiveness of  over-dispersion to this mean 
number. The larger is r, the smaller is the degree of  over-dispersion. In the 
limit, as r tends to oe, p(k[It) in (2.1) tends to a Poisson distribution with 
mean It. 
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The probability distribution of the mean parameter ~ among policy- 
holders in the insurance portfolio is assumed to be a Pareto distribution with 
the following density function. 

F ( s ~ + s r + l )  rS'+t# <-I 
f ( # )  = F(s~)F(sr + 1) (r + #)s~+sr+l (2.3) 

We denote this Pareto distribution by Pareto (~, r, s). Parameter ~ > 0 is the 
mean of the distribution, i.e., E(#) = 4. Parameter r is the same parameter 
that appears in the negative binomial distribution in (2.1). Parameter s > 0 
measures the homogeneity of claim propensities among individual policy- 
holders, with larger values of s implying more uniform propensities. As s 
increases, the density function f ( # )  becomes more concentrated and, in the 
limit, tends to a degenerate distribution centered on ~. This parameterization 
o f f ( y )  is somewhat elaborate but facilitates interpretation of the portfolio 
effect, as we shall explain shortly. We choose a Pareto distribution for 
several reasons. It is conjugate to the negative binomial distribution which 
makes it mathematically tractable, It is right skewed and unimodal which 
makes it suitable for describing the variation that is typically found in the 
mean claim parameter of individual policyholders. Finally, it has consider- 
able mathematical flexibility for fitting different distribution patterns. This 
three-parameter version of the Pareto distribution is sometimes called the 
generalized Pareto distribution. Klugman et al. (1998:574) give some 
properties of this distribution. 

The marginal distribution of K, the number of claims in the period for a 
randomly chosen policyholder from the insurance portfolio, is obtained 
from the distributions in (2.1) and (2.3) by integrating over the mean 
parameter iL as follows. 

p(k) = p(kl~) f (~)d# -- 

We refer to this marginal 

r (s¢  + sr + l)C(r + s r  + l)F(s¢ + k ) F ( r  + k )  

r(s~)C(sr + l )F(r)F(r  + sr + s~ + k + i)k! 

(2.4) 

distribution as a negative binomiaI-Pareto 
distribution and denote it by NBP(ff, r,s). We note for later that the 
probabilities for this distribution are readily computed recursively using the 
following properties. 

p(0) = r(s¢ + sr + l ) r ( s r  + r + 1) (2.5) 
F ( s r +  l ) P ( s ~ + s r + r +  1) 

p ( k + l )  ( r + k ) ( s ¢ + k )  for k - - 0 ,  1, ... i2.6) 
p(k) ( k + l ) ( s ¢ + s r + r + k + l )  
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The NBP model has characteristics that are consistent with those of  
traditional models for insurance claims but it also has new features that 
allow it to capture important aspects of  real insurance portfolios. Moreover, 
it is a tractable model that lends itself to useful operational interpretation. 
We now look at the NBP distribution more closely. 

1. It is known that a negative binomial distribution may be derived from 
a Poisson distribution by letting the Poisson mean parameter have a 
gamma distribution. It is this characterization, in fact, which has been 
used in the insurance literature to justify the use of  the negative 
binomial distribution as a model that accounts for variation in claim 
propensity. Here we use this same rationale for explaining individual 
over-dispersion. The negative binomial distribution in (2.1) is a 
gamma mixture of  Poisson distributions where the gamma mean 
parameter is # and its shape parameter is r. 

2. We have already noted that parameter r controls the extent of over- 
dispersion of  the individual claim distribution. As r approaches cxz, the 
individual claim distribution approaches a Poisson distribution. In 
addition, however, as r increases, the Pareto distribution for # in (2.3) 
approaches a gamma distribution with mean parameter ~ and shape 
parameter s~. It follows therefore that, as r approaches cxz, the NBP 
distribution in (2.4) approaches a negative binomial distribution 
NB(~, s~). 

3. The NBP distribution also approaches a negative binomial distribu- 
tion NB((,  r) as s approaches (x~, i.e., as claim propensities become 
more uniform in the portfolio. Thus, the negative binomial distribu- 
tion for the number of claims is a special case of the NBP model under 
two different scenarios - when there is no over-dispersion or when 
there is no variation in claim propensity. 

4. If both r and s approach infinity, the NBP model reduces to the simple 
Poisson model (with mean parameter O. 

5. The NBP model uses conjugacy to extend the Poisson model in two 
aspects. The negative binomial model for individual claims in (2.1) 
follows from the conjugacy of  the Poisson and gamma distributions. 
The NBP model in (2.4) follows from the conjugacy of the negative 
binomial and Pareto distributions. 

Admittedly, the mathematical convenience ofconjugacy is no guarantee that 
individual over-dispersion and variation in claim propensity have precisely 
the distributional forms implied by the NBP model. The negative binomial 
and Pareto distributions, however, are plausible models for these 
phenomena and are likely to capture their influence to a good approxima- 
tion. 

Now we wish to examine how the NBP model responds to claim 
experience. Consider a policyholder, drawn randomly from the insurance 
portfolio, who is observed to have the sequence of  claims kl, ..., k, over 
t periods. We assume that each claim number is drawn independently from 
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the negative binomial distribution (2.1) for that policyholder. The density 
function f(/z) in (2.3) serves as a prior distribution for the mean number of 
claims for the policyholder. We use Bayes theorem to derive the posterior 
distribution for the policyholder's mean number of claims, given this claim 
record, as follows. 

t 

f ( # l k , ,  ..., k ,)  ~x'f(llZ) H p ( k i [ , )  (2.7) 
i= l  

Letting c =  ~ i = l k i ,  the posterior distribution f ( i z l k l ,  ..., kt) remains a 
Pareto distribution but now with the updated parameters Pareto(fft, r, st), 
where 

~, = ~ s ¢  + c , (2 .80)  
s + t  

s, = s + t .  (2.8b) 

Observe that the parameter r continues to remain fixed. The result in (2.8b) 
shows that parameter s, serves as a time counter with s being the implicit 
time count implied by the prior densityf(/~). The parameter fit serves as the 
current estimate of the claim rate for the policyholder with ~" being the 
implicit claim rate implied by the prior density f (# ) .  

For a policyholder with the claim record kj, ..., k~, we are interested in 
the probability distribution for the claim number in the next period, namely, 
K = K~+i. It follows from (2.4) and (2.7) that the predictive distribution for 
K, given c and t, is of the form 

KIc , t ,~ N B P ( ( t ,  r, s t ) .  (2.9) 

Under a BMS, the policyholder's premium for period t + I would be set 
with reference to the parameters of this distribution, which reflect the 
policyholder's claim record. This distribution is readily computed using (2.5) 
and (2.6), with an appropriate substitution of the updated parameters. We 
note for later reference that the mean and variance of the number of claims 
under this predictive distribution are given by 

E(KIc ,  t) = fit, (2.10a) 

o~(KI c, t) = ~, + (s, + 1)~ + (r + 1)if, (2.10b) 
rst -- 1 
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3. F I T I ' I N G  T H E  M O D E L  TO A U T O M O B I L E  I N S U R A N C E  D A T A  

It would be ideal to have access to claim data at the individual level for 
multiple time periods (t > 1) in order to validate the negative binomial 
model for individual claim experience and the Pareto model for the 
distribution of claim propensity for the insurance portfolio. However, we do 
not have access to detailed claims data of this type. We do have access to 
published claim numbers for the automobile third party liability insurance 
portfolio of a Belgian insurance company for a recent year (Lemaire, 1995, 
page 25). The data and the fitted NBP distribution appear in Table 1. The 
frequency n(k) represents the number of policyholders in the portfolio for 
whom the insurer experienced k claims. The total number of policyholders is 
given by n = ~1,-n(k). 

TABLE I 

OI~SERVEI) AND FITTEI) CLAIM NUMBERS FOR THE N B P  DISTRIBUTION 

Claim number Observed Frequency Fitted Frequency 
k n(k) n~(k) 

0 96978 96980.0 

I 9240 9235.9 

2 704 702. I 

3 43 51.8 

4 9 3.9 

> 4 0 0.3 

Total 106974 106974.0 

The claim distribution in Table 1 corresponds to the marginal distribution 
p(k) in (2.4) and, hence, can be used to estimate the parameters if, r and s of 
the NBP model on the assumption that it is a valid model. We have 
estimated the parameters by maximum likelihood using the ml procedure in 
the statistical package STATA and obtained the estimates if=0.1011, 
? = 3.736 and } = 36.93. The standard errors for the parameter estimates 
provided in the maximum likelihood output show that r and s are not 
estimated with great accuracy from the marginal distribution p(k). The fitted 
values in Table 1 are computed using these parameter estimates. 

The estimation results give some useful insights into the claim 
distribution pattern. Given the estimate of r, we can gauge the extent of 
over-dispersion (relative to the Poisson model) for the claim distribution of 
an individual policyholder with any given mean claim rate #. The estimated 
mean of the fitted NBP distribution in Table 1 is ~ = 0.1011 claim per year. 
For a policyholder having this average claim rate, we see from (2.2) 
that # /?  = 0.1011/3.736 = 0.027. Thus, the variance is inflated by about 
3 percent relative to a Poisson model for this kind of policyholder. This is a 
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small effect. For a policyholder with a mean claim rate o f #  = 0.5 per year (a 
very extreme case), the over-dispersion amounts to #/~" = 0.5/3.736 = 0.13, 
which is still only a modest effect. The magnitude of over-dispersion for 
other automobile insurance portfolios remains an outstanding empirical 
question that we will examine in subsequent research. Another interesting 
result that can be inferred from the NBP parameter estimates is the extent of  
variation in the mean number of  claims among policyholders. The coefficient 
of variation of the density function f(p,) in (2.3) (expressed as a fraction) is 
given by 

1 

= ( ¢+" (31) C.Z. \¢(~; - -  1)] ' 

From our parameter estimates, C.V. is estimated to be 0.53 or 53%. This 
estimate suggests that there is substantial variation among individual 
policyholders in terms of  claim propensity. We also note that since 
k~ = 3.731 > l, it follows that the mode of  the density function f ( # )  lies 
away from zero. 

We have also compared the fit of the NBP model with two competing 
mixture models that have been proposed in the literature for claim 
distributions, namely, the pure negative binomial model and the Poisson- 
inverse Gaussian model. As we noted earlier, the negative binomial model is 
a special case of the NBP model in which either r = cxz or s = oo. The fitted 
distributions for the pure negative binomial and Poisson-inverse Gaussian 
models are taken from Lemaire (1995). Table 2 shows chi-square goodness- 
of-fit statistics for the three models, subject to pooling categories so that all 
expected frequencies n#(k) are 2 or more and at least 80% are 5 or more. The 
chi-square statistics are based on maximum likelihood estimates derived 
from the full frequency distribution. The table shows the chi-square statistic 
for each model, as well as its degrees of  freedom. All of  the chi-square 
statistics are significant at the 5% level, indicating that all models show a 
lack of  fit. We comment shortly on why this may be so. The Poisson-inverse 
Gaussian model has the smallest chi-square statistic but by a small margin. 
There is little basis for choosing among the models in terms of  their fit to the 
observed frequencies. 

T A B L E  2 

COMPARISON OF FIT OF THREE MODELS 

M o d e l  Chi-square Stat is t ic  

Nega t ive  B inomia I -Pa re to  X 2 = 6.74, d f  ~ I 

Nega t ive  Binomia l  X 2 = 9.15, d f  = 2 

Po i s son - lnve r se  G a u s s i a n  X 2 = 6.25, d f  = 2 



334 MENG SHENGWANG, YUAN WEI AND G.A. WHITMORE 

There is one feature of the data set in Table 1 that may explain the apparent 
lack of  fit. We note that the frequency counts n(3) = 43, n(4) = 9 and 
~=5 n(k) = 0 in Table 1 exhibit an unnatural pattern. The pattern suggests 
that perhaps administrative or other actions by the insurer (including 
warnings or suspensions of coverage) may have prevented claim numbers in 
excess of 2 from following their 'natural' statistical pattern. The sudden drop 
to zero of frequency counts for 5 or more claims is surprising. We cannot 
verify our suspicions about this pattern. We note, however, that a distortion 
of frequency counts would expose the measures of fit to suspect frequencies 
n(k) for k > 2. This effect may explain the lack of  fit of all models. The 
possible distortion of  larger frequency counts argues for parameter 
estimation based on a truncated version of  the NBP distribution but there 
are too few degrees of  freedom here to allow the truncated version to be 
tested for fit. 

4. APPLICATION OF M O D E L  IN SETTING AUTOMOBILE INSURANCE PREMIUMS 

The expected value principle for calculating an insurance premium sets the 
premium equal to P(c, t) = (1 + p)E(KIc, t) where E(K[c, t) is the expected 
number of  claims in period t + 1, conditional on the policyholder having 
made a total of  c claims in an earlier experience period of  length t. The 
constant p is a multiplicative loading factor for the premium. For the NBP 
model, the expected value E(K[c,t) is given in (2.10a). Setting a new 
policyholder's premium to 100, i.e., P(0, 0) = 100, we can calculate the 
relative premiums 100P(c, t)/P(O, 0) for various experience conditions (c, t) 
under the BMS rule. These relative premiums are shown in Table 3. Tables 4 
and 5 show comparable relative premiums for the pure negative binomial 
and Poisson-inverse Gaussian models taken from Lemaire (1995, pages 165 
and 169). 

TABLE 3 

B M S  RELATIVE PREMIUMS FOR THE N B P  MODEL BASED ON THE EXPECTED VALUE PRINCIPLE 

Years Total  claims c 

t 0 1 2 3 4 5 6 

0 100 

1 97.36 123.45 149.53 175.61 201.69 227.78 253.86 

2 94.86 120.28 145.69 171.10 196.51 22[.93 247.34 

3 92.49 117.26 142.04 166.82 191.59 216.37 241.14 

4 90~23 114.40 138.57 162.74 186.91 211.08 235.25 

5 88.08 111.67 135.26 158.86 182.45 206.05 229.64 
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The NBP model has several other noteworthy features in the context of  BMS 
automobile insurance pricing. 

1. Tables 3, 4 and 5 reveal one striking characteristic, namely, that the 
NBP model provides for more moderate (i.e., lower) relative premiums 
for policyholders with some claim experience. This characteristic can 
be explained by the fact that individual claims follow a Poisson 
process in both the pure negative binomial and Poisson-inverse 
Gaussian models. The NBP model, in contrast, assumes that 
individual claim experience will be over-dispersed relative to a Poisson 
model and the over-dispersion is larger for policyholders with larger 
mean claim rates. Therefore, extreme individual claim counts are more 
likely under the NBP model than under one based on a Poisson 
mixture. More moderate relative premiums are the result. 

TABLE 4 

BM8 RELATIVE PREMIUMS FOR THE NEGATIVE BINOMIAL MODEL BASEl) ON THE EXPECTED VALUE PRINCIPLE 

Years Total claims c 

t 0 I 2 3 4 5 6 

0 100 

I 94.07 152.69 211.31 269.92 328.54 387.16 445.77 

2 88.81 144.15 199.49 254.83 310.16 365.50 420.84 

3 84.11 136.51 188.92 214.33 297.73 346.14 398.54 

4 79.88 129.65 179.42 229.19 278.96 328.73 378.49 

TABLE 5 

BMS RELATIVE PREMIUMS FOR THE POISSON°INVERSE GAUSSIAN MODEL BASED ON THE EXPECTED 

VALUE PRINCIPLE 

Years Total claims c 

t 0 I 2 3 4 5 6 

0 100 

I 94.24 149.58 225.39 316.09 415.46 519.41 625.81 

2 89.37 139.14 206.71 287.49 376.17 469.16 564.49 

3 85.19 130.41 191.31 264.03 344.02 428.07 514.37 

4 81.55 122.98 178.37 244.44 317.23 393.85 472.64 
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2. BMS pricing is financially balanced because it can be shown for the 
NBP model that 

E(K) = E{k , ..... k,}[Eg(K[kl, ..., k,)]. (4.1) 

3. As an insurer gains experience with a policyholder (more precisely, as t 
increases), the posterior Pareto distribution for /z in (2.7) becomes 
concentrated around its mean value fit which, in turn, approaches c/t 
as t increases. Hence, for large t, the posterior estinaate of the 
policyholder's mean claim rate will be approximately c/t, the empirical 
claim rate. 

4. If the variance principle is used for setting an insurance premium in 
the NBP context, the policyholder with claim experience (c, t) will pay 
the following premium 

P(c, t) = E(KIc, t) + A~(K]c, t) , (4.2) 

where A is the safety parameter. Tables 6 and 7 show BMS relative premiums 
using this pricing principle in conjunction with the NBP model. The values 
of A used for the computations are 0.235 and 1.88, respectively, which 
correspond to safety loadings of 25% and 200% of the net premium. The 
latter represents an extreme assumption. Even so, however, the tables show 
that the relative premiums differ little from those in Table 3 that were 
calculated under the expected value principle. Thus, the choice between these 
two premium calculation methods makes little difference under the NBP 
model. 

TABLE 6 

BMS RELATIVE PREMIUMS FOR THE NBP MODEL BASED ON THE VARIANCE PRINCIPLE WITH ~ = 0.235 

Years Total  claims c 

t 0 I 2 3 4 5 6 

0 100 

I 97.33 123.58 149.89 176.28 202.74 229.27 255.87 

2 94.80 120.36 145.99 171.68 197.44 223.27 249.17 

3 92.40 117.31 142.28 167.32 192.42 217.58 242.81 

4 90.12 114.41 138.76 163.17 187.64 212.17 236.77 

5 87.95 111.65 135.41 159.22 183.10 207.03 231.02 
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TABLE 7 

BMS RELATIVE PREMIUMS FOR THE NBP MODEL BASED ON THE VARIANCE PRINCIPLE WITH ~ = 1.88 

Years Total claims c 

t 0 I 2 3 4 S 6 

0 100 

I 97.26 123.88 150.74 177.84 205.17 232.75 260.56 

2 94.67 120.56 146.69 173.04 199.61 226.41 253.44 

3 92.21 117.42 142.85 168.49 194.34 220.41 246.70 

4 89.88 114.44 139.20 164.17 189.34 214.72 240.30 

5 87.66 111.60 135.74 160.07 187.60 209.32 234.23 
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