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ABSTRACT

This paper proposes a multivariate generalization of the generalized Poisson
distribution. Its definition and main properties are given. The parameters are
estimated by the method of moments.
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1. INTRODUCTION

The univariate generalized Poisson distribution (GPD), introduced by ConsuL
and JAIN (1973), is a well-studied alternative to the standard Poisson
distribution. ConsuL (1989) provided a guide to the current state of modeling
with the GPD at that time, and documented many real life examples. GPD has
also been making appearances in the actuarial literature (see GERBER, 1990;
GoOoVAERTS and KaAs, 1991; KLING and GOOVAERTS, 1993; AMBAGASPITIYA
and BALAKRISHNAN, 1994 etc.). A bivariate generalization was developed by
VERNIC (1997) and was applied in the insurance field.

The multivariate generalization that we present in this paper is derived from
the GPD in a similar way with the BGPD. In consequence, the BGPD can be
obtained from the MGP,, for m = 2. In section 2 we present some properties of
the MGP,,. The method of moments is used in section 3 for the estimation of the
parameters. In section 4 the particular case of the BGPD is considered together
with its application in the insurance field, based on the paper of VERNIC (1997)
and illustrated with a numerical example. Since the BGPD is well fitted to the
aggregate amount of claims for a compound class of policies submitted to
claims of two kinds whose yearly frequencies are a priori dependent, it is natural
to consider that the MGP,, is a good candidate for the aggregate amount of
claims for a class of policies submitted to claims of m kinds.
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2. THE MULTIVARIATE GENERALIZED POISSON DISTRIBUTION
2.1. Development of the distribution

If N~ GPD(\,0), then its probability function (p.f.) is given by (CoNsuL
and SHOUKRI, 1985)

1 n—1 Yy —
M:pw:n):{,ﬂxmnm exp{-A—nf), n=0,1

0, forn>gqgwhent <0

(2.1)

and zero otherwise, where A > 0, max(—1,-A\/q) <8 < | and ¢ > 4 is the
largest positive integer for which A + 64 > 0 when 6 < 0.

VERNIC (1997) used the trivariate reduction method to construct the
BGPD in the following way: let N;, i = 1, 2, 3, be independent generalized
Poisson random variables (r.v.), N;~ GPD()\,6;), i=1, 2,3, and let
X=N,+ Njand Y = Ny + N;. Then (X, Y) ~ BGPD(/\,‘,H,'; i=1, 2, 3)

Similarly, we obtain the m-dimensional generalized Poisson distribution
by taking (m+ 1) independent generalized Poisson random variables,
N;~GPD(),6;), i=0, ..., m, and considering X, = N, + Ny, ..., X, =
Nu+ No. Then (X, ..., X,,) ~ MGP,,(A,0), where A= (X, A1, ...y An)
and © = (6y, 6, ..., 8,). This method can be called the multivariate
reduction method, as an extension of the trivariate reduction method.

It is easy to see that the joint p.f. of (X|, ..., X,,) reads

P(X1, oy Xm) =P(Xy=x1, oy Xy =Xp) =

min{xy,..., ¥}

= > filxi=k) e Sl = K)o(K),  (22)

k=0

where f; is the p.f. of the r.v. N,
Using (2.1) in (2.2) we get

p(xy, ., Xp) = ﬁA)exp{—/\—i,\‘ﬂj}-
min{xy,...,vy} /\)0 xj—k—1
T (fy )

k=0

Lot ool (Ze )}, 23)

Xy ey Xy :0, y 2, veey

where A= 3" A;and 0! = 1.
Jj=0
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2.2. Properties of the distribution

We will first make some remarks on the GPD.

The GPD reduces to the Poisson distribution when § = 0 and it possesses
the twin properties of over-dispersion and under-dispersion according as
# > 0 or 8 < 0. When 6 is negative, the GPD model includes a truncation due
to the fact that f{n) = 0 for all » > ¢ (see 2.1). In the following, the moments
expressions and the other formulas for the GPD are valid only for the case
A>0,0<8<1andg = oo, as discussed in SCOLLNIK (1998). This is a point
frequently misrepresented in the literature.

In conclusion, we will assume for simplicity that 6 > 0. From
AMBGASPITIYA and BALAKRISHNAN (1994) we have the following formulas
for N~ GPD(\,6):

— the probability generating function (p.g.f.)

Ix(7) = exp{—%[W(—et exp{—6}) + 9]} . (2.4)
— the moment generating function (m.g.f.)
Mn(1) =exp{——3[W{—9exp{—0+t})+9]} , (2.5)

where the Lambert W function is defined as W(x) exp{ W(x)} = x. For more
details about this function see CORLESS et al. (1996).
— the first four central moments

E(N) =p =AM ; Var(N) = py = AM? (2.6)
p3 = ABM = 2)M* ;g = 3NME + A(15M? — 20M + 6)M° '

where M = (1 —6)™"

The probability generating function of the MGP,,

Let now II;(r) denote the p.g.f. of the r.v. N;, i=0, ..., m. Then the joint
p.g.f. of (X|, ..., Xm) 1S

H(tl’ T "”) :E([Il"l T [;:"') ZE(IIIVI et tr[x'"(tl T tnl)No) =
:Hl(fl) Co Hm(’m)r[O([l . [m)- (27)

Using (2.4) in (2.7) and assuming that §; > 0, i =0, ..., m, we have

(1), .., ty) = exp{—- Z% w(—itie”") — = W( Boe % Hz,) - )\}

i=1 !
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The moment generating function of the MGP,,
If the m.g.f. of N;is M(1), i =0, ..., m, then the m.g.f. of (X1, ..., X,,) is

M(t, ..., ty) = Elexp{ti X1+ ... +1mXp})= E(e"N' C e""N"’e("+"'+’”')N°)

=M (t) - ... - Mp(tw)Mo(t1 + ... +1). (2.8)
Using (2.5) in (2.8), the joint m.g.f. is given for §; > 0,i =0, ..., m, by
M1, .., 1) =

”‘1 AI 1244
exp{— ZEW(—(),-@xp{—H,- +4}) —/0\—2 W(—OO exp{—Oo + Z r,}) - )\} .
=1

i=1 !

Moments m
Let p,,, .. = E| [T (X; — EX;)" | be the (r(, ..., r,)™ central moment of

J=1
(X1, ..., Xi). The equation for y,, . given ;L,((’) the k" central moment of

.....

Nj, j=0, ..., m, results as follows

trvccam = E| [T (N = ENj+ No — ENo)?| =
=]
m rj r ’ N
= HZ (,‘j)(Nf — EN;)"(No — ENg)" ™"
| /=1 =0 J

(F1yeeestm) m , 0 o
B Z H <[J> i | H . (2.9)
(i1 yernim)=(0,...,0) \Jj=1 7 Z(’J—"J)

,,,,,
=

From (2.6) and the independence of N;, j = 0, ..., m, we also have for 8, > 0,
i=0, .., m,

EX; = \M; + MMy .
{ Var(X;) = A3 ISWVER i=1, ..., m, (2.10)
and from (2.9) we have, for example
(
11100 = 40..010..010..0 = M(ZO) = A M}
F1110..0 = #0...010..010...010..0 = uﬁ‘” = M(3My — 2)M]
! - . (2.11)

' 0
L Kl = ,Uu(n)
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Marginal distributions
The marginal distributions are

P(X;=r)= P(N;+ Ng=r) =X exp{—(Xo+ A} —rbo}

' Z/—'_—(rl——j)'(/\' +j0,-)j_l(/\o +(r —j)90)'—j—'exp{—j(9,- -6}, i=1, .., m

=

In particular, if 8, =6y =6, this reduces to X; ~ GPD(X; + Xy, 8). Else-
where, X; is not a GPD.

Remark. From the development of the MGP,,, it is easy to see that if
(X1, ..., Xw) ~ MGP,(A, ©), then for any {i, ..., ir} C {l, ..., m} with
2<k<m (Xi, ..y Xi) ~ MGP(A', ©'), where A’ = (X, Ajj, ..., ;) and
©' = (6o, b, ..., 8;).

For k£ = | the remark is not always true. But if we consider the particular
case Oy =0, = .. =60, =0, then from (X, ..., X,) ~ MGP, (A, ©O) it
follows that X, ~ GPD(M\;+ X, 6), i=1, ..., m.

Recurrence relations
The marginal p.f. can be computed using the univariate generalized Poisson
distribution, as it is seen from

p(0, ..., 0) =exp{—A}

m

p(0, ., 0, x;, 0, .., 0) = fi(x) | []4(0) | o(0) =
J =1
i#

=fj(,\‘j)exp{—(/\ - /\J-)}, j=1 ., m x>0

Given these probabilities, for x; >0, j=1, ..., m, we have the following
recurrence relation

min{xy,...xm} / m
p(x1, oy X)) = doexp{(m—1)A} Z (/Hp(o, . 0,x;—k, 0, ...,0))-
k=0 j=1

(Mo -Hc@o)k—l

S — exp{—Kfo).



62 RALUCA VERNIC

3. ESTIMATION OF THE PARAMETERS: METHOD OF MOMENTS

Let (xy; ..y Xmi), i=1, ..., n be a random sample of size n from the
population. We will assume that the frequency of the m-tuple (s, ..., $) 18
Hgi,sm fOT 81, oy 8, =0, 1, ... We recall that Y n, , =n. Also
Py = 2 TP
{se|k=1,...,m, ksj} (3 l)
Ry dsirosybt = Z Agosm s 1<J
{selk=1,...m, k#j, k#i}

We denote

1
Xj=- E St st

n&
N i , o J=1, e, m, (3.2)
af = ;Z (sj - i‘j)'ll+...+.\-,+...+
S/

and, with the notations in (3.1)

1 .
XiX; = p E SiSip st st s <
S0,8

1
XiXjXp = = E SiSiSkNpe. st bsybobsit ot L<J <K
nxiysjysk

It is easy to see that
H0..010...010..0 = E(X:X)) —\E(Xi)E(Xj)’ i<j
$40..010...010...010..0 = E(XiX;Xy) — E(X. X)) E(Xi) — E(XGX)E(X) -,
—E(XiXk)E(X)) + 2E(X)E(X) E(X), 1<j<k
so we can use the sample moments
f0...010...010..0 = XiX; — XiX;, (<
ﬂo...o;o...o;o...olo...o = XXXy — NiX; Xg — XXk X, — XX X+ (3.3)

+2X‘,')_Cj,\_‘k , I<j< k
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The general method

The classical method of moments consists of equating the sample moments
to their populations equivalents, expressed in terms of the parameters. The
number of moments required i1s equal to the number of parameters which
equals 2(m + 1). For example, using (2.10), (2.11), (3.2) and (3.3), we can
choose the following 2(m + 1) equations

X = /\ij + MMy
67 = M} + Ao Mj

. , Jj=1, ., m
fit10..0 = AoM} /
fitno..o = M(3My — 2)M}
Denoting a = ltAmo...o’ the solution of the system is
k110...0
( 14+ 1+ 3a
My=—————
Ao
=1, .., m (3.4)
M;
Aj
\
We used the fact that § < 1, so M = 15> 0.
Particular case: g =0, = ... =60,,=0,so Mg=M= ... =M, =M.

Method I. The number of parameters is now (m+2) : Ay, ..., Ay, and M, so
we can use the following equations:

A_’jZ(/\i+/\0)M =1+V3I +3a

fin0..0 = MM> with the solution ¢ 3, =100 j=1, _ m.
_M?

firnno..o =X (3M —2)M* /\j=%—/\o

Method [I. Another possibility is to use the method of moments in
combination with the zero cell frequency method. If we denote by

fo.o= % the frequency of the cell (0, ..., 0), we can consider the system
1. foo=exp{—(o+ ... +An)}

I, x;=(N+ )M
I 6% = (N + M)M°

, J=1, ..., m
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We have here (2m+ 1) equations. By summing equations [/ and I/
separately, we get

V. Z:\:J (Z/\ +m)\0)
! =1
m n

V. Yot = (2A,+m,\0>M3
J=1 J=1

-1
m nm
Dividing the two relations gives M? = (Z{&}) <Zi‘j> , hence the
j:

solution
m m -1
v = ( )( ;-,> | 6.3)
=1 =l

From equation / we have

m

~Info.o=Xo+ > N,
=

and using equation /¥ we are lead to

m

X 1 _
—In fo.0 = Ao +sz=l:‘\'j —mkgy,

so that

=— < Z\,Hn fo. 0) . (3.6)

Then, from equation /I we have
A==%—-X,/j=1, .., m (3.7

Finally, the solution (M, Ao, A;, j=1, ..., m) is given by (3.5), (3.6) and
(3.7).

Remark. In method /[, the estimation of M is based on the empirical
moments from all m variables, while in method 7 only three variables are
taken into consideration by fij110..0.
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4. PARTICULAR CASE: BIVARIATE GENERALIZED POISSON DISTRIBUTION (BGPD)

Considering m = 2, the multivariate generalized Poisson distribution reduces
to the bivariate generalized Poisson distribution. The BGPD was introduced
by VERNIC (1997) and was applied in the insurance field. The distribution
was fitted to the aggregate amount of claims for a compound class of policies
submitted to claims of two kinds whose yearly frequencies are a priori
dependent. A comparative study with the classical bivariate Poisson
distribution and with two bivariate mixed Poisson distributions has been
carried out, based on two sets of data concerning natural events insurance in
the U.S.A. and third party liability automobile insurance in France. The
conclusion, after applying the x? goodness-of-fit test, is that the BGPD fits
better to the data, so it can be considered as a valid alternative to the usual
bivariate Poisson or mixed Poisson distributions. For more details see
VERNIC (1997).

In the following, we will consider another example, based on the accident
data of CRESSWELL and FROGATT (1963), with X, as the accidents in the first
period and X; as the accidents in the second period. The data are given in
table 1, first row in each cell.

The summary statistics for these data are:

% =1.0014, % =1291, & =1.1935 45 =1.59%l,
jiry = 0.3258,  fis = 0.365.

Under the hypothesis (X1, X2) ~ BGPD(X, A, Az; 6o, 01, 62), we have
from (3.4)

6o = 0.0286, 6, =0.1057, 6, =0.1200
Ao =0.2987, X =0.6206, A, =0.8653 [

The theoretical frequencies in this case are given in table 1, second row in
each cell. After grouping in 32 categories: (/,/),=9_4. j=0_s; (0..4, 6 and above);

(5 and above, 0 and above), we obtain x2, = Y (obs — th)?/th = 25.935 and

a significance level (P-value) verifying 0.45 < & < 0.75. So the distribution is
adequate.

We will now consider the particular case 6y = 8, = 6; = 6, so that we
have the hypothesis (X, X3) ~ BGPD()\y, A\i, Ay; 6). From (3.5), (3.6) and
(3.7) we have 6 =0.0935, A =0.2778, X, =0.63, Ay = 0.8925, and the
theoretical frequencies are given in table 1, last row in each cell. For the same
categories we have x2, =23.6082 and 0.7 < & < 0.85, so this particular
distribution fits even better than the general one.

ACKNOWLEDGEMENT

The author is grateful to the referees for their helpful advice in revising the
paper.



66

RALUCA VERNIC

TABLE |

COMPARISON OF OBSERVED AND THEORETICAIL FREQUENCIES

X :
X, 0 1 2 3 4 5 6 7 by
0o 117 96 55 19 2 2 0 0 291
118.843 91.204 44710 17.959 6.460  2.171 0.697 0.217 282.261
117 95.100 46.748  18.088 6.081 1.865  0.537 0.148  285.567
I 61 69 47 27 8 5 1 0 218
66.356 85419 51.437 23.005 8.820  3.087 1.019  0.324  239.467
67.132 84.165 50.881 22.205 8.065  2.608 0.780 0.220  236.056
2 34 42 31 13 7 2 3 0 132
24.834 38.319 30.090 15.577 6.505  2.402 0.822 0.267 118.816
24976 37.584 30.048 15.739 6.427  2.249 0.711 0.209 117.943
3 7 15 16 7 3 1 0 0 49
7871 13.249 12.124 7.260 3.386 1.341 0.480 0.161 45.872
7.694 12,602 12.004 7911 3.849  1.516 0.520 0.162 46.258
4 3 3 1 1 2 1 | 1 13
2.287  4.040 3.860 2,610 1.676  0.616 0.226 0.079 15.394
2138 3.685 3.774 2.927 1.799  0.844 0.327 0.111 15.605
5 2 1 0 0 0 0 0 -0 3
0.632 1.149 1.142 0816 0464  0.220 0.090 0.033 4.546
0.558  0.995 1.075 0910 0.647  0.382 0.176 0.068 4.811
6 0 0 0 0 1 0 0 0 1
0.169 0313 0.319 0.236 0.140  0.071 0.031 0.012 1.291
0.140  0.255 0.285 0.255 0.198  0.136 0.079 0.036 1.384
7 0 0 0 1 0 0 0 0 1
0.044  0.083 0.086 0.065 0.040  0.021 0.010 0.004 0.353
0.034  0.063 0.072 0.067 0.055  0.041 0.028 0.016 0.376
224 226 150 68 23 11 5 1
Y 221036 233.776 143.768 67.528 27491  9.929 3.375 1.097 708
219.672 234.449 144.887 68.102 27.121  9.641 3.158 0.970
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