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This paper proposes a multivariate generalization of the generalized Poisson 
distribution. Its definition and main properties are given. The parameters are 
estimated by the method of moments. 
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1. I N T R O D U C T I O N  

The univariate generalized Poisson distribution (GPD), introduced by CONSUL 
and JMN (1973), is a well-studied alternative to the standard Poisson 
distribution. CONSUL (1989) provided a guide to the current state of modeling 
with the GPD at that time, and documented many real life examples. GPD has 
also been making appearances in the actuarial literature (see GERBER, 1990; 
GOOVAERTS and KAAS, 1991; KLING and GOOVAERTS, 1993; AMBAGASPmYA 
and BALAKRISHNAN, 1994 etc.). A bivariate generalization was developed by 
VERNIC (1997) and was applied in the insurance field. 

The multivariate generalization that we present in this paper is derived from 
the GPD in a similar way with the BGPD. In consequence, the BGPD can be 
obtained from the MGP,,, for m = 2. In section 2 we present some properties of 
the MGP,,,. The method of moments is used in section 3 for the estimation of the 
parameters. In section 4 the particular case of the BGPD is considered together 
with its application in the insurance field, based on the paper of VERNIC (1997) 
and illustrated with a numerical example. Since the BGPD is well fitted to the 
aggregate amount of claims for a compound class of policies submitted to 
claims of two kinds whose yearly frequencies are a priori dependent, it is natural 
to consider that the MGPm is a good candidate for the aggregate amount of 
claims for a class of policies submitted to claims o fm kinds. 
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2. THE MULTIVARIATE GENERALIZED POISSON DISTRIBUTION 

2.1. Development of the distribution 

If N ~ GPD(A, 0), then its probabil i ty function (p.f.) is given by (CONSUL 
and SHOUKRI, 1985) 

f ( n ) =  P ( N = n )  = ~ ~A(A + n O ) " - t e x p { - A - n O } ,  n = 0 ,  1, ... 
(2.1) 

( 0, f o r n > q w h e n 0 < 0  

and zero otherwise, where A > 0, m a x ( - 1 , - A / q )  _< 0 < I and q > 4 is the 
largest positive integer for which A + Oq > 0 when 0 < 0. 

V~RNIC (1997) used the trivariate reduction method to construct  the 
B G P D  in the following way: let N,., i = 1, 2, 3, be independent generalized 
Poisson random variables (r.v.), Ni ,,~ GPD(Ai, Oi), i =  1, 2, 3, and let 
X = Ni + N3 and Y = N2 + N3. Then (X, Y) ,,, BGPD(Ai,  Oi; i = 1, 2, 3). 

Similarly, we obtain the m-dimensional generalized Poisson distribution 
by taking ( m +  1) independent generalized Poisson random variables, 
Ni ~ GPD(Ai, Oi), i =  O, ..., m, and considering X1 = NI + N o ,  ..., X,,, = 
N,,, + No. Then (X~, ..., X,,,),.. MGP, , (A ,  O), where A = (A0, Ai, ..., A,,,) 
and O = (00, 01, ..., 0,,). This method can be called the multivariate 
reduction method, as an extension of  the trivariate reduction method.  

It is easy to see that the joint  p.f. of  (Xi, ..., X,,,) reads 

p ( x ~ ,  . . . ,  x , , , )  = e ( x ~  = x ~ ,  . . . ,  x , , ,  = x , , , )  = 

min{xl , . . . , x , , }  

= Z f '  (Xl - k )  • . . .  " f m ( x m  - -  k ) f o ( k ) ,  (2.2) 
k=O 

where f ,  is the p.f. of  the r .v.  Ni. 
Using (2.1) in (2.2) we get 

,xm) I tl] 1 e x p  - :~ - F _ .  : , ;O j  • 

j = l  

Z k=o v=, (x:-  k)! ] 

k! exp k - 0 o  , 

xl ,  ..., x,,, = O, 1, 2, ..., 

where A = k Aj and O! = 1. 
j=O 

(2.3) 
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2.2. Properties of the distribution 

We will first make some remarks on the GPD.  
The G P D  reduces to the Poisson distribution when 0 = 0 and it possesses 

the twin properties of  over-dispersion and under-dispersion according as 
0 > 0 or 0 < 0. When 0 is negative, the G P D  model includes a truncation due 
to the fact tha t f (n)  : 0 for all n > q (see 2.1). In the following, the moments  
expressions and the other formulas for the G P D  are valid only for the case 
A > 0, 0 _< 0 < l and q : oo, as discussed in SCOLI_NIK (1998). This is a point  
frequently misrepresented in the literature. 

In conclusion, we will assume for simplicity that 0 >  0. F rom 
AMBGASPITIYA and BALAKR1SHNAN (1994) we have the following formulas 
for N ~ GPD(A, 0): 
- the probabil i ty generating function (p.g.f.) 

F IN( t )=  e x p { -  ~ [ W(-Ot  exp{-O}  ) + 01} . (2.4) 

- the moment  generating function (m.g.f.) 

Mu(t)  = exp - - ~ [ W ( - 0 e x p { - 0  + t}) + 0] , (2.5) 

where the Lamber t  W function is defined as W(x) exp{ W(x)} = x. For  more 
details abou t  this function see CORLESS et al. (1996). 
- the first four central moments  

{ E ( N ) =  #1 = AM;  Var(N) = lZ2 = AM 3 } (2.6) 
/23 = A ( 3 M - 2 ) M  4; # 4 = 3 A  2 M 6 + A ( 1 5 M  2 - 2 0 M + 6 ) M  5 _ '  

where M = (1 - 0 )  -I .  

The probability generating function of the MGP,. 
Let now Hi(t) denote the p.g.f, of  the r.v. Ni, i = O, ..., rn. Then the joint  
p.g.f, of  (XI, ..., Xm) is 

HI,,, ( , , , , )  E tl (tl t,,,) = 
• ~ = . . .  ~ . . .  I m • . .  

: r I , ( , , ) . . . . .  n, , , ( , , , , )rt0( , ,  . . . .  t,,,). (2.7) 

Using (2.4) in (2.7) and assuming that Oi > O, i = O, ..., m, we have 

II(tl ,  ..., t m ) = e x p  - -~i - ~0 W -Ooe-°° l -I  t ̀  - A . 
i=1 i= l  , /  
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The moment generating function of the MGPm 
I f  the m.g.f ,  o f  Ni is Mi(t), i = O, ..., m, then the m.g.f ,  o f  (Xj,  ..., Xm) is 

M(t, ,  ..., t m ) =  E(exp{ttX, + ... + t , , , X , , , } )  = E(e t'N' .... et"N"'e (''+'''+"')N°) 

= M,( t l )  • ..." M,,,(tm)MO(tl + ... +t,,,). (2.8) 

Us ing  (2.5) in (2.8), the jo in t  m.g.f ,  is given for  Oi > 0, i = 0, ..., m, by 

M(t , ,  ..., t , , , ) :  

-Oo xp - a  . 

i=1 i=1 

Ooments ) 
Let  #r, ....... = E (Xj - EX]) ° be the (rt ,  ..., r,,,) 'h cent ra l  m o m e n t  o f  

\ j = l  

t O.) the k th cent ra l  m o m e n t  o f  (Xz, ..., X,,). T h e  e q u a t i o n  for /zr ,  ........ g iven t k 
Nj, j = 0, ..., m, resul ts  as fo l lows 

#r~,...,r,,, = EIfiU =' ( N j -  E N j +  N o -  EN0)O] = 

= E rj (Nj - ENj)b(No - ENo) °-b = 

L j=, .=  !~ 

= ~ rj .z(/)) #(0! (2.9) 
(i,,...,/,,,)=(0,...,0) kj=l ij t 0 J ~--]~(o_/A 

]=1 

F r o m  (2.6) and  the i n d e p e n d e n c e  o f  Nj , j  = 0, ..., m, we a lso  have  for  Oi > O, 
i = 0, ..., rn, 

EXi = AiMi + AoMo 
Var(Xi) = A i M ~ + A o M g  ' i =  1, ..., rn, (2.10) 

and  f r o m  (2.9) we have ,  for  e x a m p l e  

/-L[ IO...O = /LO...OlO...OlO...O = /£~0) = AoMo 3 

P, l ll0...0 = lL0...0J0...010...010...0 = #(30) = A0(3M0 -- 2 ) M  4 

(2.11) 

#al...I = /Z~ ) 
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Marginal distributions 
The margina l  d is t r ibut ions  are 

P( Xi = r) -- P( Ni + No = r) = Ao)~iexp{-(~0 + Ai) - rOo }. 

1 (Ai +jOi) i-I _ j ! ( r - j ) !  (~o + ( r - j ) O o ) r - J - t e x p { - j ( O i  00)}, i =  1, ..., m. 

In part icular ,  if Oi = 00 = 0, this reduces to Xi ~ GPD(Ai  + Ao, 0). Else- 
where,  Xi is not  a G P D .  

Remark .  F r o m  the deve lopment  o f  the MGPm,  it is easy to see tha t  if 
(X~, ..., Xm) ~ MGPm(A,  O), then for any  {fi, ..., ik} C {1, ..., m} with 
2 <_ k < m, (Xi~, ..., Xi,)  ",, MGPk(A ' ,  e ' ) ,  where A' = (A0, Ai,, ..., Ai,) and  
0 ' =  (0o, Oi,, ..., Oil). 

For  k = 1 the remark  is no t  a lways  true. But if we consider  the par t icular  
case 0o = 01 . . . . .  0,,1 = 0, then fi 'om (XI, ..., X,,,) ,,~ M G P m ( A ,  O) it 
follows tha t  X, ,-, GPD(Ai + ~o, 0), i = 1, ..., m. 

Recurrence relations 
The margina l  p.f. can be c o m p u t e d  using the univar ia te  general ized Poisson 
dis t r ibut ion,  as it is seen f rom 

p(O, ..., O) = e x p { - ~ }  

m / 
p(O, ..., O, xj, O, ..., O )=J ) (x j )  I I f . ( O )  f o ( O ) =  

j i=1 
i¢-j 

=j ) ( . x ) ) ex l ) { - (A  - Aft}, j =  I, ..., m, xj > O. 

Given these probabil i t ies,  for xj > O, j =  l, ..., m, we have the fol lowing 
recurrence relat ion 

min{x~,...,x,,} 
p(.,-, , . . . ,  x,,,) = ~o ~ × p { ( m  - l ) ~ }  

k=O 

(,~o + kOo) k-I  
exp{-kOo}.  

k~ 

m ~ p ( 0 ,  ..., o, a~.- k, O, ..., 0)) .  
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3. ESTIMATION OF THE PARAMETERS: METHOD OF MOMENTS 

Let (xj i ,  ..., Xmi), i =  I, ..., n be a r a n d o m  sample  o f  size n f rom the 
popu la t i on .  We  will a s sume tha t  the f r equency  o f  the m- tuple  (s~, ..., s , , )  is 
ns,,....,.,,, for  sl, ..., s,,, = 0, 1, .... We recall tha t  ~ n,.,,...,.~,,, = n. Also  

SI + . . .  ,Sin 

I n+...+.~)+...+ = Z ns] ,...,s,, 
{s~lk=l,...,m, k#j} . (3.1) 

n+...+s,+...+~)+...+ ---- ~ ns,,...,s .... i < j 
{s~:[k=l ,...,m, k~j, k¢i} 

We deno te  

I 1 
.~j = - ~,sjn+...+s~+...+ 

n ~ , j= 1, . . . ,  m ,  ( 3 . 2 )  

1 Z ( s j - -  ~ = - xj)'n+..+.,:,+...+ 
n s~ 

and, with the notat ions in (3.1) 

/ ' xi.~)" = n Z sisjn+...+s,+...+~)+...+ , i < j 
St v~)" 

1 
XiXjNk = - ~ SiSjSkn+...+s,+...+sj+...+s~.+...+ , i < j < k tl 

Si~S.I~Sk 

It  is easy to see that  

#o...olo...010...0 = E ( X i X j )  - ' E ( X i ) E ( X j ) ,  i < j  
, j 

o , o . . o l o . . . o , o . . o  = E ( X i X j X k )  - E(Xi )E(Xk) - - , 

' ; * - E ( X i X k ) E ( X j )  + 2 E ( X i ) E ( X j ) E ( X k ) ,  i < j  < k 

so we can use the sample  m o m e n t s  

{ /2o...ol.o...ojo...o = x ix j  - xiY:j , i < j 

/2o...o~o...o~.o...oio...o = 7 ~ i ~  - x ix j  xk  - x ixk  .'cj - x jxk  Y,i + (3.3) 

+2Yc,~'2j~2k, i < j < k 
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T h e  g e n e r a l  m e t h o d  
The classical method of  moments  consists of  equating the sample moments  
to their populations equivalents, expressed in terms of  the parameters. The 
number  of  moments  required is equal to the number of  parameters which 
equals 2(m + 1). For  example, using (2.10), (2.11), (3.2) and (3.3), we can 
choose the following 2(m + 1) equations 

{ .~j = :~jMj + :~oMo 

^ 3 
~110...0 = '~0M0 

filllO...o = Ao(3Mo - 2)Mg 

Denoting a - - -  

, j =  1, . . . ,  m .  

filllO...O, the solution of  the system is 
~110...0 

I + x /1  + 3a 
M o -  

3 
FL1 io...0 

Ao - M~ 

V/6-~.-/2,,o...0 ' J = l '  ' "  m' 
M j =  J Y o ~  

Aj - "~j - AoMo 
Mj 

We used the fact that 0 < I, so M = ~ > 0. 

(3.4) 

P a r t i c u l a r  c a s e :  0o = 01 - - 0,,, = 0,  s o  M o  = M I  - -  - M , , ,  = M .  

Method 1. The number  of  parameters is now (m + 2) : A0, ..., A,,, and M, so 
we can use the following equations: 

{ 2j=(/~i+ Ao)M { M-l+x/i + 3 a  
3 

#110...0 /~110...0 = A0 M 3  ,with the solution A 0 - -  M 3  

"~J A0 /21110...0 = A0(3M-  2 )M a Aj = ~ -  

, j =  1, . . . ,  m .  

M e t h o d  El. Another  possibility is to use the method of  moments  in 
combinat ion with the zero cell frequency method. If  we denote by 

fo...0 = n0...0 the frequency of  the cell (0 . . . . .  0), we can consider the system 
n 

I. fo...o = exp{-(Ao + ... + A,,,)} 
II. ~j = ()v + ,Xo)M , j = 1, ..., m. 
t i t .  ~ = ()'S + ~o) M~ 
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We have here (2m+ 1) equations. By summing equations I and H 
separately, we get 

IV'k£'=(kAJ+mA°) \j=l 

, j =  I, ..., m. 

V. j = l k # =  (kAj+mA°) 

Dividing the two relations gives M2= \j=162 j 
solution V =t 

From equation I we have 

- In fo...o = Ao + ~ Aj, 
j=l 

and using equation IV we are lead to 
PH 

- In Jo...o = Ao + ~ Z £J - mAo , 
j 1 

so that 

- I  

) Z v J  + h, &0  o 

j=l 

Then, from equation II we have 

, hence the 

(3.5) 

(3.6) 

I Aj=--~.~j- A0, j =  i, ..., m. (3.7) 

Finally, the solution (M, A0, Aj, j = 1, ..., m) is given by (3.5), (3.6) and 
(3.7). 

Remark. In method I1, the estimation of M is based on the empirical 
moments from all m variables, while in method I only three variables are 
taken into consideration by flit10...0. 
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4. PARTICULAR CASE: BIVARIATE GENERALIZED POISSON DISTRIBUTION (BGPD) 

Considering m = 2, the multivariate generalized Poisson distribution reduces 
to the bivariate generalized Poisson distribution. The BGPD was introduced 
by VERNIC (1997) and was applied in the insurance field. The distribution 
was fitted to the aggregate amount  of  claims for a compound  class of  policies 
submitted to claims of  two kinds whose yearly frequencies are a priori 
dependent.  A comparative study with the classical bivariate Poisson 
distribution and with two bivariate mixed Poisson distributions has been 
carried out, based on two sets of  data  concerning natural events insurance in 
the U.S.A. and third party liability automobile insurance in France. The 
conclusion, after applying the ~2 goodness-of-fit test, is that the BGPD fits 
better to the data, so it can be considered as a valid alternative to the usual 
bivariate Poisson or mixed Poisson distributions. For more details see 
VERNIC (1997). 

In the following, we will consider another  example, based on the accident 
data  of  CRESSWELL and FROGATT (1963), with XI as the accidents in the first 
period and )(2 as the accidents in the second period. The data are given in 
table 1, first row in each cell. 

The summary statistics for these data  are: 

,7~ = 1.0014, .72=1.291,  ~ =  1.1935, ~ =  1.5961, 

fLi1 = 0.3258, f~21 = 0.365. 

Under  the hypothesis (XI , ) (2 ) ,~  BGPD(Ao, AI, A2; 00, 01, 02), we have 
from (3.4) 

{ 0 0 = 0 . 0 2 8 6 ,  0 , = 0 . 1 0 5 7 ,  0 2 = 0 . 1 2 0 0 }  
A0 = 0.2987, A1 = 0.6206, ~2 = 0.8653 " 

The theoretical frequencies in this case are given in table 1, second row in 
each cell. After grouping in 32 categories: (i,j)i=o..a;j=O..5; (0..4, 6 and above); 

(5 and above, 0 and above), we obtain ,2 Xob.,. = ~ (obs - th)Z/th = 25.935 and 

a significance level (P-value) verifying 0.45 _< & _< 0.75. So the distribution is 
adequate. 

We will now consider the particular case 00 = 0~ = 02 = 0, so that we 
have the hypothesis (Xt , ) (2)  ~ BGPD(Ao, AI, A2; 0). From (3.5), (3.6) and 
(3.7) we have 0 = 0.0935, A0 = 0.2778, Ai = 0.63, A2 = 0.8925, and the 
theoretical frequencies are given in table 1, last row in each cell. For  the same 
categories we have X 2 = 23.6082 and 0.7 < & < 0.85, so this particular 

o b s  - -  - -  

distribution fits even better than the general one. 
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T A B L E  I 

COMPARISON OF OBSERVED AND THEORETICAl. FREQUENCIES 

Xz 
0 1 2 3 4 5 6 7 

Xn 

0 117 96 55 19 2 2 0 0 291 

118.843 91.204 44.710 1 7 . 9 5 9  6.460 2 . 1 7 1  0.697 0.217 282.261 

117 95.100 46.748 18.088 6.081 1.865 0.537 0.148 285.567 

1 61 69 47 27 8 5 I 0 218 

66.356 85.419 51.437 23.005 8.820 3.087 1.019 0.324 239.467 

67.132 84.165 50 .881 22.205 8.065 2.608 0.780 0.220 236.056 

2 34 42 31 13 7 2 3 0 132 

24.834 38.319 30.090 1 5 . 5 7 7  6.505 2.402 0.822 0.267 118.816 

24.976 37.584 30.048 15.739 6.427 2.249 0 . 7 1 1  0.209 117.943 

3 7 15 16 7 3 1 0 0 49 

7.871 13 .249  12.124 7.260 3.386 1 . 3 4 1  0.480 0 . 1 6 1  45.872 

7.694 12 .602 12.004 7.911 3.849 1 . 5 1 6  0.520 0.162 46.258 

4 3 3 I I 2 1 I I 13 

2.287 4.040 3.860 2.610 1.676 0.616 0.226 0.079 15.394 

2.138 3.685 3.774 2.927 1.799 0.844 0.327 0 . 1 1 1  15.605 

5 2 I 0 0 0 0 0 0 3 

0.632 1.149 1.142 0.816 0.464 0.220 0.090 0.033 4.546 

0.558 0.995 1.075 0.910 0.647 0.382 0.176 0.068 4.811 

6 0 0 0 0 I 0 0 0 1 

0.169 0.313 0.319 0.236 0.140 0.071 0.031 0.012 1.291 

0.140 0.255 0.285 0.255 0.198 0.136 0.079 0.036 1.384 

7 0 0 0 1 0 0 0 0 I 

0.044 0.083 0.086 0.065 0.040 0.021 0.010 0.004 0.353 

0.034 0.063 0.072 0.067 0.055 0 . 0 4 1  0.028 0.016 0.376 

224 226 150 68 23 I1 5 I 

E 221.036 233.776 143.768 67.528 27 .491  9.929 3.375 1.097 708 

219.672 234.449 144.887 68.102 27 .121  9.641 3.158 0.970 
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