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I. There is a general rule applicable to all insurance and reinsur- 
ance fields according to which the level of the so-called technical 
minimum premium should be fixed such that a certain stability 
criterion is satisfied for the portfolio under consideration. The two 
bestknown such criteria are 

(i) tile probability that there is a technical loss in any of the 
future years should be less than a given percentage 

(ii) the probability that the company gets "ruined" i.e. initial 
reserves plus accumulated premiums minus accumulated claims 
becomes negative at any time of a given period in the future should 
be less than a tolerated percentage. 

Confining ourselves to criterion (i) in the present paper we may 
then say that tile problem of calculating technical minimuna 
premiums is broadly spoken equivalent with the problem of 
estimating loss probabilities. Since art exact calculation of such 
probabilities is only possible for a few very simple and therefore 
mostly unrealistic risk models and since e.g Esscher's method is not 
always very easy to apply in practice it might be worthwhile to 
describe in the following an alternative approach using results and 
techniques from Reliability Theory in order to establish bounds for 
unknown loss probabilities. 

It would have been impossible for me to write this 1)aper without 
having had the opl)ortunity of numerous discussions with the 
Reliahility experts R. Barlow and F. Proschan while I was at 
Stanford University. In particular I was told tile elegant proof of 
theorem 3 given below by R. Barlow recently. 

2. About ten years ago a group of American statisticians started 
to work on a subfield of Al)plied Probability Theory and Statistics 
which is now called Reliability Theory. For a detailed introduction 
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to this theory we refer to the book "Mathemat ica l  Theory of Reliabi- 
l i ty"  [z]. For  the purt)ose of the present note we only need to make 
the following remarks: 

Let us first look at a few definitions: 

- -Ti le  reliability of a syslem (of any kind) is usually defined as the 
probabil i ty that  the system is able to perform its function(s) during 
a given time period. Using the words of the authors of the book 
mentioned before, Mathematical  Reliability Theory is "a  body of 
ideas, mathemat ica l  models and methods directed toward the 
solution of 1)roblems ia predicting, est imating or optinlizing the 
probabil i ty of survivial, mean life, or, more geaerally, life distri- 
bution of compormnts or systems".  

- -Ano the r  key notion in Reliability Theory is the notion of 
failure rate. If the life t ime X of a given system is a non-negative and 
continous stochastic variable with distribution V(x) and density 
v(x) then the ratio 

I - -  V(x) 

is called failure rate (function). This notat ion corresponds to the 
intuitive interpretat ion because r(x)dx is the conditional probabili ty 
that  the system fails in the time interval (x, x + dx) given that  it 
was functioning up to time x Therefore, from a mathematica[  
point of view, the failure rate r(x) is identical with the force of 
mor ta l i ty  btz since tzzdx is the probabil i ty that  a man of age x dies in 
(x, x + dx). 

- -F ina l ly  a distribution V(x) is called 
I F R  (i.e., with increasing failure rate) 

if r(x) is nondecreasirlg in x 
and D F R  (i.e., with decreasing failure rate) 
if r(x) is nonincreasing in x 
"p rominen t"  examples of IFR-distr ibut ions are 

lx a t e - ~.~ (i) Gamma distributions with density v(x) = -p-~(~.x) 

where e ) 

(ii) normal distributions 
(iii) Weibull distributions with v(x) = ~ax = ~ e -'~*'= where = > z 
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impor tan t  D'FR-distr ibutions are 
(i) G amm a  distr ibutions with o~ ~< I 
(ii) \Veibull distr ibutions with ~ ~ I 
(iii) Pare to  distributions with v(x) = a(z + x ) -~ - ' ,  ~ ) o 

For  the exponent ia l  distr ibution V(x) = I - -  e-ax we get 

~e ~x 

r(x) --  -- bt : constant  

1.e., the exponent ia l  distr ibution belongs to both the IF R-  and the 
DFR-class. 

There are of course distr ibutions belonging to neither of these 
two classes. From an actuarial  point  of view the log normal dis- 
t r ibut ion is one of these "regrettable" examples. 

3. After this very  short excursion into Reliabil i ty Theory  we 
re turn to our insurance rat ing problem. Following the remarks  made 
in section x we are concerned with the problem of est imating loss 

probabili t ies Ft(x) of the form 

= "z P,,y) P( )09 
n , , o  

where Ft(x)  = I - - . F d x  ) = Prob. ( tota l  of c la ims ar is ing in 
(o, l) exceeds the premium x) 

l'7,(t) = prohabi l i ty  tha t  there arc .n claims in (o, l) 
V(x) = distr ibution of the individual  claims amount  
-17(,*) (x) = z - -  V(,O (x) where V(m (x) denotes the n-th con- 

volution of V(x) 
(assuming mutual  independence between the individual claims as 
well as independence of these claim amounts  t ime from t) 

Unfor tuna te ly  there are only a few very  special cases - -and  
most ly  unrealistic cases- -where  it is actual ly  possible to calculate 
Fdx ) in an exact  manner.  Besides tha t  the classical approximat ion  
technique, namely Esscher 's  method,  is not always easily applicable 
to pract ical  situations. Therefore it might be worthwhile  in the 
following to look into an a l ternat ive  approach which leads to upper 
limits for F d x  ) provided tha t  

(Xl)" Poisson-distr ibuted 
(i) p , , ( a ) -  e -x' 

n ! number  of claims 
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(ii) V ( x )  is I F R  

(iii) tx, = f xdV(x) and V-2 = J" x2dV(x) are given. 

I t  is easy to see that  it is actual ly possible to calculate limits of 
this sort if we mention the following two results from Reliabil i ty 
Theory :  
a) Barlow and Marshall [2] have calculated (sharp) upper  limits 
U(y, bt2) with the p roper ty  that  

v-(y) ~< u(y,  ~0), ), >~ o 

for each IFR-dis t r ibut ion  V(x) with ~1 = I alld given Eze. 
b) The convolut ion of any two IFR-dis t r ibut ions  is again I F R  Ix]. 
(But the corresponding theorem for DFR-dis t r ibut ions  does not 
hold t rue as can be verified eg . ,  by  convolut ing two Gamma 
distr ibutions with I/2 < o~ ~< I) 
using these results we get 

(+5) F,(x) ~< X (xl),, x e -) '  U I 
,, o .n! ritz ~' 

where ,2 = I x e _  bt~. 

As a numerical i l lustration to this section we have calculated a 
few values in Appendix No. i. 

4. Sometimes we may  prefer to work with a specified distril)ution 
V(x) ra ther  than just  assuming that  V(x) belongs to a class of dis- 
tr ibutions such as the I 'FR class considered above. But  then we run 
into difficulties again if the convolut ion powers V(r0 (x) of V(x) can 
not be calculated as nice and explicite mathemat ica l  expressions 
(e.g., in the case of the Pareto  distribution). In such a si tuation the 
following result may  be of some help: 

T h e o r e m  I :  The inequalities 
P,,(nR(x/n)) <~ (>~) V~n) (x) <~ (>~) F,,(R(x)), n = I, 2, 3 . . . .  

hold true for the n-th convolut ion V(n)(x) of an I F R  (DFR) 
distril)ution V (x) 

n -  I . 

where P , (y)  = ! 

I o for y ~ o 
.¢ 

and R(x) -- - -  log V(x) = J" r(~) d~, (hazard function). 
U 
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As a concrete example we may  take the Pareto distril)ution 
ll(x) = (i + x)-~' which is D'FR. In this case we have R(x) -- o~ log 
(I + x) and nR (x/n) = n~ log (~ + x/n) 

and therefore 

P,,(~. log (I ÷ x)) < V<'~)(x) ~ P.,,(~, log (I 4 -x /n ) )  

with regard to pract ical  calculations we remind that  

. - ~  . 

. /  
l o 

Since the probabilit ies P.,z(y) are tabulated,  it is easily possible 
to calculate the above bounds even without  using a computer .  

In Appendix  2 we have given a few numerical  values for the 
probabi l i ty  of loss F~(x) calculated on the basis of this theorem as- 

suming a Poisson-Pareto  model i.e. pn.(I) Xn c -x and V(x) 
n! 

= 0 + -~ : ) -~  

For  the actual calculation a F O R T R A N  program has been used 
wri t ten t) 3, J. Ho f mann  of Swiss Reinsurance Company,  Zurich. 

5. The above-mentio, led theorem turns out to be a special case 
of the following much more general inequalities. 

T h e o r e m  2 : 

a) If for two distr ibutions V(x) alld G(x) with V(o) = G(o) --= o the 
fullction R(x) = G- t (V(x) )  is convex then 

GI,,~ (JaR(x/n)) ~< l/l,,} (x) .~ G<'~ (R(x)) for ~, = ~, 2, 3, . . .  

b) If for two distributions V(x) and G(x) with V(o) = G(o) = o tile 
functiort R(x) = G- t (V(x) )  is concave thell 

G (•) (R(x)) .~ V(n) (x) ~ G(n) (nR(x/~,)) for n : z, 2, 3 . . . .  

Here G-t(y) s tands for the inverse of the dis tr ibut ion G(x). 
R(x) is usually called "generalized hazard funct ion".  This notion 

is used because in the special case where G(x) = z - -  e * 
9~ 

R(x) is equal to the hazard function R(x) = fr(~) d~, 
o 

r(x) being again the failure ra te  of V(x). 
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P r o o f  of T h e o r e m  2: 

(i) any function R(x) is called convex (concave) if 
R(o~ + ( I - - ~ )  y) .~ (>)od{(x) + ( i - - a . )  R(y) for all x, y > o 

and all ae[o, I 1 
(ii) if R(o) = o and R(x) convex and if x 7> y then yR(x) > xR(y) 

--- + I - -  o with - -  y • [ O , I ]  because we can write y = x x 

R(y) ~ ~ R ( x ) +  ( i - - ~  / R(o) and therefore 
x \ x /  

i.e. xR(y) ~ yR(x) qed. 

(iii) if R(x) is convex and R(o) = o then 

R(x + y) ~ R(x) + R(y) for x, y ~ o i.e. convexity implies super- 
addit ivi ty.  

Because assuming two values x and 3' with x > y and 

R(x + y) < R(x) + R(y) we would have 

Yy ( ~) (x + y ) w i t h  y x = - -  + I - -  - -e [o , I ]  and 
X X 

R(x) ~ -Y R(Y) + (I - -  ~) R(X + y) < -yR(y) x 

+ (l--#)[R(x)+R(y)] 
or o < xR(y) - -  yR(x) which contradicts (ii) qed. 

(iv) We now proceed to prove by induction that  

V ('') (x) ~ G <') (R(x)) if R(x) = G-J(V(x)) is convex. 

The s ta tement  is t lue for n = I by definition because of 

v o )  (x) = v ( x )  = G(R(x)  ) = G('> (R(x)  ). 

We assume tha t  it is also true for n - -  I in order to get: 
z 

V ('') (x) = ~ V (''-') (x - -  ~) dV(~) ~ ~G ("-') (R(x - -  ~)) dG(R(~)). 
0 

Using the SUl)eradditivity of R(x) proved irl (iii) we have 

R(x) > R(~) + e ( x  - -  ¢) or  R(x - -  ~) ~< R(x) - -  R(~) 
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i.e. V I'') (x) ~ f G ¢"- 0 (R(x) - -  R(~)) dG(R) (~)) = G In) (R(x)) qed. 
o 

(v) Proof  of G ( n ) ( n R ( ~ ) ) ~  V('n(x) i f R ( x ) = G - ' ( V ( x ) ) i s c o n v e x .  

The s t a t e m e n t  is again  true for n = I b y  def ia i t ioa  of R(x), we 
assume tha t  it holds also true for n - - z  and ca r ry  out the s tep 
from n - -  I to n as follows 

o 

o 

Using the convex i ty  of R(x) we m a y  write 

hecause of - -  + - 

or ( n - - z )  R ~ ) n R  - - R ( ~ )  leading to 

z 

n 

.nlz/n) 

(vi) Par t  b of the theorem can be p roved  in the same w a y  it con- 
vex i ty  of R(x) is replaced b y  concavi ty .  

6. ] 'he theorem given in this section together  with a certain chain 
p rope r ty  of the U-family will be used latex on to improve  the tipper 
a~td lower bounds  tor convolut ion  powers of I F R  and D F R  distri- 
but ions s ta ted  in theorem z. 
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Firs t  we bor row from Reliabil i ty Theory  a notion of ordering lor 
d is t r ibut ion funct ions which is based on the definit ion of the 
generalized hazard  funct ion [27: 

Notation : 

If R(x) = G l(V(x)) is convex we say "V(x) is convex ordered 
with  respect  to G(x)" and write "V(x) ~ G(x)" or " V  ~ G". 

g c 

" [ ' h e o r e n l  3 : 

a) if G(x), H(x) and I/(x) are dis t r ibut ion funct ions with 

G(o) = H(o) = V(o) = o and V ~ H ~ G then 
c c 

G ('') nR )~ ~< H(") n. c, )z. ~< (x) ~< H <'') (S(x)) ~<G ('') (R(x)) 

for n = z, 2, 3, . . .  

b) if G(x), H(x) and V(x) are d is t r ibut ion functions with 

G(o) = H(o) = V(o) -= o and  G ~ H ~ V then 
g c 

((:)) G ('')(R(x)) ~ H ('') (S(x)) ~ V ("1 (x) ~ H (n) nS ~ G ('') n.R ~; 

f o r n =  1 , 2 , 3  . . . .  

where R(x) : G l(V(x) ) and S(x) : H i(V(x)) 

The  theorem says in other  words tha t  bounds for the convolut ion 
powers  of a given V(x) calculated on the basis of a diqtrubution 
G(x) can generany  be improved  if there is another  dis t r ibut ion H(x) 

which with respect  to convex ordering lies in between of G(x) and 
v(x). 

P r o o f  of  t h e o r e m  3, p a r t  b :  

\ \ ' e  write T(x) = G-~(H(x))  and use the abbrev ia t ions  G 'H(x) 
and TS(x) for G-~(H(x)) and T(S(x)). By definition we have  
TS(x) : G-11-I1-t-tV(x) - -  G- tV(x) : R(x). All the three funct ions 
R(x), S(x) and T(x) are convex 1)3; assumtion 

Applying  theorem 2 to G ~ H we get 

H (~) (S(x) > G/-) (;rS(x)) _-: g on ( R ( x ) )  

which proves  the left hand side of par t  a) 
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Furthermore using theorem 2 again we have 

\ \ - T - / /  
---G("( ( n R ( ~ ) ) q e d  

(Part a) is proved in the same way) 
Finally we would like to mention the following result proved by 

van Zwet r3] : 
The Gamma family forms a chain with respect to convex ordering 

ie. 
P,(x) -~ I"~(x) if and only if e ) ~. 

¢ 

This chain property together with theorem 3 and the fact that 
Gamrna distributions are easy to convolute are of great practical 
value for the calculation of bounds for V(n) (x). 

7. Final  Remarks 

We have tried to demonstrate in this paper how to use certain 
reliability techniques for the calculation of bounds for the probabili- 
ty of loss. The determination of such bounds is, however, by no 
means the only possible relationship between Reliability Theory and 
Insurance Risk Theory. In particular we would like to mention that 
there is also a useful way of getting bounds for probabilities of 
ruin [4]. Furthermore it seems that a great variety of statistical 
procedures developped in Reliability Theory could also be applied 
successfully to various practical illsurance prol)lems. 
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A P P E N D I X  NO. I 

U p p e r  b o u r l d s  f o r  t h e  p r o b a b i l i t y  of  l o s s  in, o/~ if t h e  i n d i v i d u a l  

c l a i m  is H Z R - d i s t r i b u t e d  w i t h  

0 3 

atld i f  the nunlber of claims is Poisson d is t r ibu ted w i th  paralneter  k. 

C 2 X = I X = 2 X = 3 X ~ 4 

k = l 0.25 42.0 26.0 [2.[  4.9 
0-50 44.9 26.9 13. 5 6.8 
0.75 40.7 23.5 ]4.7 9.2 
I.oo 36.9 21.I [6.5 ~).7 

X = 2 0.25 76.7 56.3 37.~ 2 J.o i~ 5 5.4 
o.5o 73 .0 54.3 37 .2 2.5.3 a5.2 8.3 
0.75 69.0 49 7 36 .5 25-2 I 7 3 ~o 5 
i oo 64.8 46 4 33 1 25 t 18.~ i 1.5 

), = 3 0.25 76.9 6o. 7 42.3 28.1 16. 7 
o 5 ° 74-t .5 '~ 7 42.3 32 2 20 4 
o 75 69 9 57 .0 43 7 33 4 22.5 
I oo 67.0 ,52 8 42 7 33 2 23.7 

;', = 4 0.25 83.4 61.9 47.1 32.1 
0-50 74.9 63.7 50.2 36.4 
0.75 7z.8 60.5 5o.1 37.6 
t .oo 68.8 58.6 48.7 38.0 

), = 5 0.2,5 76.8 64.2 49.5 
o 5 ° 87 .[ 66. t 52.7 
o.75 83.9 64.8 52.9 
~.oo 71 7 62.7 52-3 

x =  4 x =  5 x = 6  

8.7 4 5  
I2.3 7-3 
149  9 6  
169  11. 4 
20.2 I2.1 6.8 4.0 
24. 9 16.1 i o  1 6 5 
27.5 18.9 13 o 8.8 
29.o 21 i 14.8 lO. 4 
35 .2 24.8 t5-o 9.3 
39.6 28 1 19 6 13.6 
43.6 3 ° 9 23 4 ~7 -o 
42.7 32.8 24 9 18 o 

X =  7 X ~  8 ~ ~ Q X = l (  
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A P P E N D I X  NO. 2 

Upper (U) alld lower bounds (L) for the probability of loss if the 
number of claims is Poisson and the individual claims amount is 
Pareto-distributed.  

~ 0 . 8 0  ~ ~ I .OO ~ = I 2 5  

U L U L U L 

X = O 2 5  X = I . O  .L36 . 1 3 5  . I 2 0  l I  9 . l o  3 . lOt  
x = 2.0 . i o2  . l o o  084 o8t  066 .062 

x = 4 o o71 o67 .o53 .040 .037 o33 
x = 8.o .047 .o4t  .o32 026 o [ 9  .o[5  
x = i 6 . o  030 024 .o r8  ot  3 009 .006 

), = o 5 ° x = t o .256 .253 .230 226 .200 . t 9 6  
x = 2 o .199 .19r  . I67  A56  .134 . t 24  
x = 4 o . t 4 4  .129 . I I 2  o,)5 o81 065 
x = 8.0 099 o79 07o o5o .o45 .o28 
x = 16 o .066 .044 .042 .02, t .o24 .Ol l  

X ~ I oo x = I .o  454 -447 .417 4 °8  .375 363 
x ~ 2.0 372 352 .325 299 273 .241 
x = 4 o  288 245 .235 .L85 . t81 . [27  
X = 8.0 .2I 3 .184 .160 .094 . t i t  .O52 

X = r6.o t53 079 lO 4 .o41 .o64 .o ]8  

= 2.00 x = ~.o .717 .705 .681 665 638 .615 
x = 2 o 635 597 .582 .53 ° .520 .452 

x = 4.0 .539 -446 .471 .354 .394 258 
x = 8 o 441 .277 .362 .182 279 .1o2 
x = 1 6 o  .351 . t 3 8  268 .069 188 028 

X = 4 o o  x = I o 93 ° 922 . 9 t 4  .9oi  .893 .874 
x - 2.0 89L 858 .863 .812 824 .75 ° 
x = 4 o 836 .731 .789 .638 727 .521 
x = 8.0 .767 .5x7 .698 .375 .61t 233 
x = 16 o 687 .265 .598 .137 .49[ o52 

I ~EFEREN CES 

It] R. }3ARLOW, F. PI¢OSCHAN a n d  L. F[UNTER, g { a t h e n a a t i c a l  T h e o r y  of  
R e h a b l h t y  T h e o r y ,  J o h n  \ V i l e y  a n d  Sons  

L2] R 13ARLOW a n d  W. \TAN ZWET, A s y m p t o t m  p r o p e r t i e s  of i s o t o n i c  e s t i -  
m a t o r s  for t he  g e n e r a l i z e d  f a i l u r e  r a t e ,  P a r t  I, B e r k e l e y  1969. 

[3] \V. VAN ZWET, C o n v e x  t r a n s f o r n l a t l o n ~  of r a n d o m  v a r i a b l e s ,  M a t h e -  
m a t m a l  Cen t r e ,  A m s t e r d a m  1964. 

[41 1l 3'Iom~v, S o m e  s tochms t i c  p r o p c r t m s  of a c o m p o u r d  r e n e w a l  d a m a g e  
mode l ,  O p e r a t i o n s  R e s e a r c h  1967(?) .  


