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SUMMARY

1n this paper the authors renund of the known formulas for the double
lLaplace-Stieltjes transtorms of the ruin probabilities (i, £), where u 15 the
mrtial risk reserve and ¢ stands for the operational tnne, in the case of in-
dependent mteroccurence times and claim amounts such that the nter-
occurrence times arc dentically distributed K(f), ¢ - o, K(o) o, and the
claum amounts arc dentically distributed £2(3), - - o« -7 3 . =. For some
cases, where 1- - P(3) and 1 - A(¢) are exponential polynomials, numerical
inversions of the said laplace-Sticltjes transforms are made for a selection
of «- and #-values i combmation with satety loadings of various stzes and
signs Morcover, some values are given when 1 — (y) or 1 - - A(f) arc of
Parcto type and comparisons are made with the results when the Paveto
distributions arc approximated by suitable exponential polynomials.

1. INTRODUGCTION

The risk model considered is as follows:
The interclaim times £, {2, ... and the claim amounts Yy, Yo, ...
arc assumed to De mutually independent stochastic variables such
that the ¢;'s are identically distributed K(#), ¢ = o, A(0) == o, and
the Yj's are identically distiibuted P(y), — o0 < v << co. This
model is due to Sparre Andersen who presented it at the New York
Congress, 1957. An important particular case is the Poisson process
gencerated by the choice K{f) == 1 ¢~ where we withoul real loss
of generality may take 8 -— 1.

In the following we mostly restrict the distribution functions
K{(¢) and P(y) to belong to the classes

* Seminar presentation at the 1gth International Congress of Actuaries,
Oslo, 1972.
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Ply) = S}(I—e"’”)dV(a), yzo (1)
/o, y <o

_ S; T—e Py aw(E), t=o )
(o, t <o

respectively where V(x) and W(B) are distribution functions such
that V(o) = W(o) = o.

The class (1) was considered by Hilary .. Seal in his paper in
TSA 1969: “Simulation of the ruin potential of nonlife insurance
companies”’. The following particular cases were pointed out by
him:

i) Vie) = cla—1)giving P(y) =1 —e¢ ¥,y 20 (3)
i) Vi{a) = ——o*"'e " a > o0,iec. a [-distribution
(%)

giving P{y) = 1 — (1 —}—2) , x>0, y>0 9% 2 0, 1le. a
Y
Pareto distribution. (4)

Immediate generalizations of (3) and (4) are

) V() = S aqjele—oy), >0 5 ay=1

31 Fo01
giving P(y) = 1 — E a9, yzo (s)
F
iv) V'(x) > o and continuous for %> 0 (6)

Of course, it is easy to construct intermediate forms between
(5) and (6). A case related to (6) though not belonging to it is:

V(u):o,agg,b>1

. T
Slnz
V'(e) = a "t (ba—1)7H0 0 >

s

[N
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l.e. a Pareto like distribution, giving
s o1,

[ emdy )
MG’

i.e. a I-distribution with parameter 1/ < 1,

(This P(y) was considered by Bohman and Grandell & Segerdahl
in papers to appear in Skandinavisk Aktuarietidskrift.)

~%
The case (4} i.e. P(v) = 1 — (I + Z)
Y
has the mean value one if we choose y = »x — 1, x > 1, thus

P(y)=1—(1+ 24 >

®—1I

It is interesting—though trivial—to note that, if we here let
% — 00, we get
Ply)—>1—c",
that is, the simple exponential distribution is obtained as a limiting
case of a Pareto distribution. Of course, this fact is not surprising

since the ““dangerousness’” of the Pareto distribution tends to die
out when » becomes very large. (Usually one dcfines a Pareto

distribution by
X -
S I — (——-) X 2 Xo
Px) = Xo

(O x < X

If so, we must apply a simple translation before the limiting
process. Indeed letting x = x0 + 3, ¥ = 0 we get

I—(I—|—l)-x Yy 20
P(xo 4 y) = o

) y <o0.)
However, generalizing the above observation of the simple ex-
ponential distribution as a limiting case of a Parcto distribution, it

is easy to see that we may choose V'(a) in (6) such that we get a
distribution function P(y) which closely approximates an arbitrary
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member of (5). Conversely, it is obvious that an arbitrary member
of the class (1) may be arbitrarily well (in the sense of weak con-
vergence of probability laws) approximated by members of (5).
What we now have said about the class (1) is, mutatis mutandis,
true for the class (2) of interclaim time distributions.
Trom these observations the following conjecture seems natural.
Once we have mastered the numerical solution of the ruin problem

\P(y) =T1— X a4
$ (8)
(I"(l) s 1— X bt

]

for

then it is not too difficalt te go further to the numerical solution of
the ruin problem for

gf’(y) — [ (=" dV (a)

0

(K(t) = (1 — cm® IV (8)

Se—s

where I(a) and W(8) are not both just staircase functions.

Two lines of approach offer themselves. The first one means that
we develop the formulas for (g) in a similar manner as for (8) and
then, as far as possible, use the same numerical tools as for (8). The
second approach would mean that we approximate the members of
(9) by suitable members of (8) and use the ruin probabilities for the
tatter as approximations of the ruin probabilitics for the former.
However, if we use the second approach we must be aware that the
asymptofic hehaviors of the ruin probabilities may be entirely dif-
ferent from the ones obtained by the first approach (See section 5).

2. TIIE FORMULA APPARATUS FOR THE RUIN PROBLEM IN CASLE THE
MODEL PRESENTED AT THE OUTSET OF THE INTRODUCTION IS USED
2.1 Generalities(Sece Thorin: Astin Bulletin VI: 1 and 2 or Skan-
dinavisk Aktuarictidskrift 1gyo: 1-2 and 1971: 1-2, 3-4.)
Notalions
() -= Y(n, ) -= ruin probability for an infinite period
$ (2, £) == ruin probabilily for a finite period, ¢, ¢(2, 0) 0
u = initial risk reserve
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¢ = gross risk premium per unit of time (¢ > 0)

(14, 2) = fc“ ded(u, 8), 2 = o, Re(z) £ o; $(1L, 2y =0,1 <O

€ <l

u) = U(u, 0)

§(s, 2) = 1T — [ es% dy Q(us, 2), Re(s) = 0 Re(z) <o

A(s, 2) = exp [f et d,M(u, z) 4+ 4 AM(o, z)], Re(s)
Re(z) <o "

B(s, 2) = oxp [— [ e5 du M, 2) — 1 AM(0, 2)], Re(s)

-—m

1A
o

\%
]

Re(z) <o

where

M(x, 2) =% (n) [ (P + o) — 1) dK"()
AM (o, 2) _ .ﬂ’[(O -+, 2) — M(0—, z). (In the cases treated in
this paper we have AM(o, z) = o0.)

With these notations we may write down the following funda-
mental formula [Note that 1 — &(s, 2) is the double Laplace-
Stieltjes tran: "orm of ¢(us, #)]

h S

2 Re(s) 5 0, Refz) <o (10)

®(s, 2) = 0.7

A

By continuity we also get ¢(s, 0) [Note that 1 — (s, o) is the
simple Laplace-Stieltjes transform of U(u) = $(u, 0)].

From formula (10) it is, in principle, possible Lo get $(u, £) by two
successive inversions. However, for the classes of distribution
functions characterized by (8) and (9) it is, in general, possible to
perform the innermost inversion analytically to such an extent that
the outer inversion is the only one which must be performed by an
inversion algorithm.

2.2 Stmplifications 1f P(y) = 1 — 5 aze™*Y but K(1) general
i

In this case (scec Thorin: Skandinavisk Aktuarietidskrift 1g71:
1-2) we have the simple formula
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S——O(.j

Als, 2) =

f 1

Relz) £ o, (r1)

§ — Sg4(2) ’

where sg(z), 7 = 1, ..., m denote the m roots in the right halfplane
of the equation

R(z —cs) p(s) = 1.
Here

k(z) = [t dK (1),

@

#6) = [ ewap(y) = Z Y

I — S/U.j

N 4§01

Herefrom we get, by expanding A(s, 2)/A (o, 2) in partial fractions,
that

(u, 2) = §. gilz)e™ @ (12)

where
T (1 — sey(2)fo)
g8 = T -, j=1I,...,m (13)
I (1 — s24(2)/s24(2))

v

An equivalent formula for g4(z) is

g1(2) =
L _ Blsy(), 2]

A(0, 2) [k(z — cszy(2))p" (s2(2)) — ok’ (z — cszy(2)) plses(2))] s05(2)”
j=1I,...,m (14)

"

Note that if K(t) = 1 — Z be™Pt, we have &(z) = Z b
A 1—(2/Bo)’

vl

and the sg(z)’s may be found as the s roots in the right halfplane
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of a polynomial equation of the (m + »):th degree. Note also that
in this case

s — osyl?)
B(s,2) = I_I Y (x5)
— os1y(2)
m H _ 6
Ao, 2) =[] =2 o TP (x6)
LSl 1 —k(z)
where siy(2), 7 = , %, are the # roots in the fleft halfplanc of
I-—k(z—cs)p )

2.3 The ruin formulas if P(y) = 1 — } e~ dV (a) where V'(a) s
strictly positive and continuous for « > o, but K(t) general

First, we observe that

ps) = f o_LflV(a) which represents a Sticltjes transform.
a—S

Known properties of this transform (sce Widder: The Laplace
Transform, Princeton 1946) ensure that p(s) is regular and analytic
in the entire s-plane if we exclude the non-negative real axis. If
we denote the boundary values of f(s) on the two sides of the
positive real axis by p*(x) and p~(x) we have p+(x) —p (x) =
2w 2x V'(x) for almost all x > o. Thus Im p+(x) = w xV'(x).

As a generalization of formula (12) we get—provided certain
rather mild conditions on p(s) and k(z)—the following formula

T2 =
I . jﬁ’ . BI(x, 2) V'(x) e %% d.: o
. k(z — cx) [(k(z ) — Re p*{x) ) + (Im ﬁ*(x))z]
+ Zgye) o7 (17)

where sgy(z) are the roots in the right halfplane excluding the
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positive real axis of the equation T — &(z — ¢s) p(s) === 0. The said
roots constitute at most a countable set. Here

g1(z) =
B(s25(z), 2)

{0, 2) Th{z — csy(z)) P'(s25(2)) — ch'(z — csog(2)) plses(2))] s25(2)

Nole that for z negative veal theve are 10 s25(2)’s so in this case only
the tntegral in (17) appears. This is also true for a subregion of the
left z-halfplane enclosing the negative real axis. Sometimes this
subregion coincides with the entire left z-halfplane. We shall mecet
such cases in our numecrical examples. Note also that for z negative
real the denominator of the integrand cannot vanish for x > o
since Im pt(x) — mal’'(x) > 0. For a general 2z, however, the
denominator sometimes vanishes. In these cases a certain caution is
needed. Generally speaking, the vanishing denominator indicates
that the actual z lies on a curve in the z-plane such that the crossing
of it either entails the generation of a new term in the Z-cxpression
of (17) or entails the suppression of such a term depending on in
which direction the crossing is made.

2.4 Numerical observations

Of course, for numecrical purposes the formula (17) is only
managceable when we have simple cxpressions for B(s, 2) and
A(0, z). Since this is the case when

K({t) 1— X byePst
Jo1

as formulas (135) and (16) show we restrict ourselves to such K(£)'s
when we exploit formula (17).

However, the formula (12) may be used even if K(¢) has a more
general appearance, but then we must restrict P(y) to the form

I — X% aje ™Y,
7 1

In particular, for I’(y) = 1 — ¢~ % the formula (12) gives
E(?L, Z) = (I _ SQ(Z)) e~ us2(2)

irrespective of the shape of K(f). (Needless to say, the value of
s2(z) depends on K(¢).)
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Note the following simple formula

I
To=1—
Afo, 2)
which may be used as a check formula. In particular it is useful
when the formula (17) is applied. (In the case, not treated here,
when both K (f) and () arc discontinuous it is advisable to use the
following modified formula

(VeAM (0, 2)

T —_ 1 —
vo.z) =1 A (0, 2)

3. APPROXIMATION OF A MEMBER OF TIHE CLASS (I) NOT BELONGING
TO THE CLASS (5) BY A SUITABLE MEMBER OF THE CLASS (5)

For numerical purposes it seems advisable not to use more than
five terms in the approximant from the class (5). We then have at
most 10 paramcters to determine. It scems appropriate to assume
the mean value 10 be one for the distribution function, (), to be
approximated as well as for the approximant, P,(y). A pragmatic
way to determine the approximant is then the following.

We choose five y-points, y,, ¥5, - .., ¥, among them y, = o and
1 = T, In a suitable way and require the following equalitics to be
fulfilled.

I-— Pa(yvy) = 1— DP(yy),

T —Pus) dy = [ (x— Ply)) dy,

Yj Yr

Jj—=0,1,...,4

(The equations for § = o only mean that the total probability
mass and the total mean value coincide for Pq(y) and P(y). For
7 =1, ..., 4 the equations imply that not only the distribution
functions coincide in y; but also the parts of the mcan valucs
relating to (yj, @).)

Of course, the procedure may also be used to approximate a
member of class (5) with too many terms by a member of class (5)
with at most five terms.
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4. EXAMPLES CHOSEN FOR THE NUMERICAL ILLUSTRATION

For P(y) we choose
I) the simple exponential 1 —¢~¥
IT) Scal’s Pareto example 1 — (1 4 2y) %2
III) a five terms exponential approximant of IT by the use of
Yo =10, ¥, = I, ¥y = I0, y3 = I00, ¥, = 1000.

For K(¢) we choose
A) the Poisson choice 1 —¢~¢
B) the Sparre Andersen choice T — 0.25¢~%4% — 0.75¢~ 2
C) the analoguc of Seal’s Pareto example 1 — (1 + 2£)~%/*
D) the five terms exponential approximant of C, analogous to
I11.

All the distribution functions listed have mean values equal to
one. In the case IT we have

z’:

) 3/2 _ [x\3/2
pPrx)=1+4+x—2 <ﬁ> e~ol? j y te¥dy 4+ 21w <_> e%I?
2 : 2
For ¢ we choose 0.90, 0.95, ..., 1.25, 1.30, 2.00
For # we choose 0, 100, 1000, 10.000
For ¢ we choose 100, 1000, 10.000, ©0.

We do not illustrate all the possible combinations of our choices.
In particular we only illustrate the choices of ¢ £ 1.10 for the d.f.
pairs IA, IB, IITA, IIIB and ¢ = 1.05 for the d.f. pairs IC, ID,
IIA, 118,

In a special table, proposed by Mr. Bohman, we also illustrate
ITTA in combination with ¢ = 0.98, 0.9¢9, 1.00, 1.01, 1.02, 1.03, 1.04
for some values of % and ¢.

5. ASYMPTOTIC BEHAVIOR OF {(#) FOR 2 — 00

If we choose IIT for I°(y) then we know that there are a strictly
positive value R and a constant 0 <<C < 1 such that forc¢ > 1

V) ~Ce Re, 34— o0
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On the contrary if we choose IT for P(y) then we know that
forc > 1

I C1

$lu) ~

@ I _?:
—— [r—Poldy = =+ 2w b

The asymptotic behavior of {(u) for » — co is thus entirely
different for II and I1T though III otherwise is a good approximant
to 11.

6. NUMERICAL METHODS

The calculations are carried out in two main steps, first the
calculation of {(x, z) from the formulas given above and then the
evaluation of Y(u, #) from J(u, z) by a numerical inversion.

As stated carlier the formulas make usc of the roots of the
equation I — k(z —cs) p(s) = o. 1f both the d.if. of claims and
the d.f. of interclaim times arc of the exponential type this equation
becomes polynomial with complex coefficients. To solve it an
algorithm is used, which is based on the Newton-Raphson method,
generalized by K. Nickel in ‘“Die numerische Berechnung der
Wurzeln eines Polynoms”, Numerische Mathematik, 1966, pp. So-
98. It must be observed that the algorithm is operating well only if
the starting value is fairly good. It is therefore convenient to use the
roots 74(2) (v =1, 2, ..., n)—obtained for a fixed value of the
parameter ¢ and a certain value of the argument z—as the
starting values when solving the equation for a succeeding value
z 4 Az, where | Az | is not too large.

If at least one of the d.f. ’s involved is of the Pareto type, the
equation is non-polynomial and a special generalization of the
Newton-Raphson method is used. The method is described by
Froberg: “Introduction to Numerical Analysis”, Addison-Wesley,
1965, pp. 23-24, and makes use of the function and its first four
derivatives. Even in this case a starting value has to be carefully
chosen.

The inversion of {(u, z) into Y(u, £) is performed with a method
given by Piessens in ““New quadrature formulas for the numerical
inversion of the Laplacc transform”, BIT, vol. 9, 1969, pp. 351-361.
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The quadrature is based on 25 points in the complex plane. As
pointed out by Piessens in Journal of engincering mathematics
5:1, January 1971, his method in the form used here may be ex-
pected to be successful only if the function to be inverted is regular
at infinity. This condition is satisfied in the present casces.

In general the number of correct decimals are four but in most
cases even five, '

Some results presented here have already been published by
Wikstad in Astin Bulletin VI:2, and some in a mimcographed
paper by Thorin and Wikstad presented at the Conference on
capitalization of risk ventures in Madison, Wisconsin, in Oct. 1971.
Some of the present figures differ slightly from those earlier pub-
lished due to improvements in the methods.

The computer programs used here are written in “full” FOR-
TRAN. The calculations have been performed on a CDC 6600. The
exccution time is about one minute or less per table.

7. NUMERICAL RESULTS

The (ay, a;); in 1T have been found to be

v (lv *y

I 0.6635948 3.675472

2 0.3114878 0.7116063

3 0.02405604 0.00447445

4 0.0008425574 0.009322980
5 0.00001823254 0.00049065620

All other results are presented in the tables 1-g.

8. CONCLUDING REMARKS

Of the two authors Thorin is responsible for the sections 1-5 and
Wikstad for the sections 6-7 including the attached tables. The
paper has been written as a part of the work carried out by the
Swedish committee for the practical applications of the risk theory
mentioned in Thorin’s paper in Astin Bulletin VI: 1. The detailed
derivation of the main new formulas in sections 1-5 will appear in a
forthcoming paper in Skandinavisk Aktuarietidskrift by Thorin.
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100
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100

1000

10000

LEVALUATION OF

TABLE 1

Claimdf.:P(y) = 1—c7¥
Intercluim time df.: K(f) = 1—e7¢

it

100

100
1000

100
1000
10000

100
1000
10000

€:=090  0.95
97908 96398
.00000 .00000
99976 99695
57207 .18715
00000 00000
1.00000 .99997
1.00000 99933
.52380 .00031
00000 00000
1.00000 1.00000
1.00000 1.00000
1.00000 1.00000
[ 00000 1.00000

TABLE 2

Claim d.f.: P(y) = 1—e7¥

Interclaim time d.f.: K(f) = 1 — 0.25¢

n

T00
1000

100
1000

100
1000
10000

100
1000
10000

¢ = 0.90

-

- -

97917
.00001

.00000

-99932

5991T

.00000

.00000
.00000

53359

.00000

00000
00000
00000

.00000

095

06944
00001

.00000

99614
20176
.00000

99996
99543
.00539

.00000

1.00000
I 00000
1.00000
[ 00000

RUIN

PROBABILITIES

[.00

-94300

.00000

98210

02749
00000

-09433
47622
.00000

00000

1.00000
1.00000
1 00000
1.00000

.00

95737
.00000

.00000

.08640
09321
00000

-99571
-53994
.00000

00000

1.00000
1.00000
I.00000
f.00000

-0.4¢

149
1.05 (.10
01852  .88497
.00000 00000
.94939 90882
00186  .00007
.00000 00000
95235  .90906
.00814  .000I0
Q0000  .00000
00000 .00000
.95238 .90909
.00814  .00010
.00000 .00000
.00000  .00000

—0.75¢7 "¢
1.05 I.10
94316 92714
.00000 .00000
.00000  .00000
.96862 .04578
.01962 .00290
.00000  .00000
97234 .94040
00110  .00448
.00000  .00000
00000 00000
97237 .94643
06139 004438
.00000 00000
.00000  .00000
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TABLE 3

Claimdf.: P(y) =1 —e7Y

Interclaim time d.f.:

100 o
100
1000

1000 o
100
1000

10000 o]
100

1000

10000

8
[=]

100
1000
10000

¢ = 1.05

.98158
00214
.00000

-99460

47194
.00000

09782
79521
02222
00000

99854
.86266
23126
.00000

K() =
I.10

97739
00125
.00000

.99129
.32876
.00000

-99439
.56403
.00076
00000

-99460
-57976
.00450
.00000

TABLE 4

Claim d.f.: P{y) =1—e¢7¥

Interclaim time d.f.: K(f) =

1"t

100 o
100
1000

1000 o
100
1000

10000 o]
100

1000

10000

100
1000
10000

¢ =105

.98001

.00245
.00000

99445

.46060
.00000

99769

.78401
.01832
.00000

.09841
85126
20271

00000

I.10

-97664
.00181
.00000

.99096
31499
.00000

.99403
-54401
.00053
.00000

-99422
.55805
.00309
,00000

1— (1 4 2t)7%*
1.15 I1.20 1.25
.97247 .96680 .96036
.00072 .00040 .00022
.00000 .00000 .00000
98653 .98020 .97242
20382 .II145 .05372
.00000 .00000 00000
.98872 98143 .97299
.32031 .15350 .06546
.0000I .00000 .00000
.00000 .00000 .00000
.08876 .98145 .97301
.32132  .15352 .00546
.00001 .00000 00000
.00000 .00000 .00000

b

2 a,(1 —e %)

1
I.I5

.97163
.00126
.00000

.98590
.19036
.00000

.98805
.29920
.00000
.00000

.98808

129999
.00001

.00000

T.20

.06586
.00083
.00000

97920

.10093
.00000

.08036
13780
.00000
.00000

.98038

137871
.00000
.00000

1.25

-05932
.00051
.00000

97104
104705
00000

-97154
.050651
.00000
.00000

.97156
05651
.00000
.00000

1.30

95317
.00012
.00000

96347
02304
.00000

.96370
.02560
00000
00000

06372
.02560
.00000
.00000

1.30

.95200
.00030
.00000

.96176

01952
00000

.06193
.02139
.00000
.00000

96194
.02139
.00000

.00000
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100

I000

= TO000

Claim d.1.:

LOO

1000

= TO000

U

100
1000
10000

100
1000
10000

100
1000
10000

100
I000
10000

"

100
L1000
10000

100
1000
10000

100
1000
I0000

I00
1000
10000

TABLE 5

Claim df.: P(y) = 1 — (T + 29) %2

Interclaim time d.f.: K(f) =1 — ¢t

€ ==1.05 I.I0

79920
.03805
.00IT4
.00004

.88563
23248
01169
.00036

.92605
47161
09197
00354

.95238
65777
.36209
13710

85141
.04057
00115
.00004

91698
-24550
01181
.00036

-94674

48584
.09345
.00355
.96578
66784
36467
13729

77388

03639

.00113
.00004

85434
19599
.OLI17
.00035

.88g50
.36553
07112
.00339

.00g09
47654
.20754
.07010

1.15

-74925
03488
.0011I3
.00004

52348

.16855

01070

.00035

85390
-29369
05824
00327

.86957
.36842

14349
04095

TABLE 6

¢ =-1.05 I1.T0
83197
.03870
.00IT4
.00004

-89355

20648

.00127
.000335

91964

-37749
.07197
.00340

93393
.48682
.20881
.07016

.15

812067
.03702
.00114
.00004

86994
.17702

.01079
.00035

89266
-30329
05879

00327

.90420
.37720
14421
04697

Ply) = 1— (1 4 2y)7*"

Interclaim time d.f.: K(f) = 1 —o0.25¢

PROBABILITIES

1.20  I1.25 1.30
.72548 .70265 .68080
03351 .03226 .031712
.00II2 .00112 .00IIX
.00004 .00004 .00004
79372 76534 .73848
14747 .13004 .11760
.01029 .00992 .00957
.00035 .00035 .00035
.82023 .78871 .75930
.24364 .20740 .18021
04952 .04321 .03841
.00315 .00304 .002905
.83333 .80000 .76923
29808 .24925 .21363
.10921 08801 .07365
03527 .02824 .02354
"4 0.75¢
1.20  1.25 1.30
79366 .77505 .75692
.03549 .034IT .03284
00rI13 .00II3 .00L12
.00004 .00004 .00004
.84668 .82408 .80230
15439 .13667 .12251
.01037 .00999 .00964
.00035 .00035 .00035
86663 .84178 81817
25134 .21367 .18540
.04990 04348 03862
.00315 .00303 .00295
.87637 .85025 .B2569
.30533 .25524 .21805
.10967 08834 07390
.03528 .0:825 .02355
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2.00

46511
.02130
.00105
.00004

.48881
-04938
.00665
.00033

-49645
.06280

01571
.00208

.50000
06935
02232
.00707

2.00

.56026
.02219
.00106
.00004

.58004
05065
.00668
.00033

.58633
.06408

.0I575
.00208

-58925
07062
02236
.00707

I0
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NUMERICAL EVALUATION OF RUIN PROBABILITIES

100

1000

TO0O0O0

8

Claim d.f.: P(y) = Z ay(1 — e™%Y)

Interclaim time d.f.: K({) = 1 — 0.25¢

100

1000

10000

8

TABLE 7

5

Claim d.f.: P(y) = 3 ay(x — ¢~%¥)

Interclaim time d.f.: K(f) =1 —e¢~¢

(See also Table g)

¢

100
1000
T0000

100
1000
10000

100
1000
L0000

100
L1000
10000

"

100
1000
10000

100
1000
10000

100
I0CO
10000

100
1000
10000

¢ = 090 0.95
.87986 .85466
04172 .03992
.00T13 .00I13
.00001 00001
.96941 -94596
434571 -34602
01241 01202
00014 .000T4
-99837 08754
06048 81950
37068 19754
00251 00208

T 00000 I 00000

1.00000 I.00000

1.00000 1.00000

T1.00000 T.00000

TABLE 8

¢ = 0.90
.91089
04457
00114
00001

97730
45557
01251
.00014
.99870
96036
37962
00253
{.00000
1.00000
1.00000
1.00000

0.95

89272
04245
00114
.0000T

.06081
.36502
01210
.00014

99094
82709
20346
.00209
1.00000
1.00000
1.00000
1.00000

1.00

.82g00
.03835
.00113
00001
.91786
.28170
. 01169
.00013

.96167
. 62563
12747
.00176
1.00000
1 00000
1.00000
I 00000

-0.4¢
1.00
.87387
04060

.00LT4
.00001

-94074
-29719
01176
00013

.97261
63980
.13005
.00177
I.00000
1.00000
1.00000
1.00000

7.05
80331
.03694
.00112
.00001
.88742
23479
L0TT41
.00013
.02684
.46802

.09938
.00152

-95238
.65168

35372
02890

—0.75¢7 %
105
85462
.03898
.00II3
.0000T

.91853
24697
01147
.00013

94748
.48228
.10045
.00152
96589
66184
.35613
.02921

T.10

77794
03569
.00I12
00001

.85634
19972
01118
.00013

-89043
-36353
.08487
.00133

-90909
47017
.2030T
.00801

I.T0

83524

03753
.00113

.00001
89532

20929

01123
.00013

92057

37519

.08540
.00133
93414
.48026
20414
.00807



NUMERICAL EVALUATION OF

TABLE ¢

RUIN PROBABILITIES

Claim d.f.: P(y) = Z ay(t — ¢~ %¥)

Interclaim time d.{.: K(f) =1—e¢7!

(See also Table 7)

% = 1000
T ¢ = 0.98
500 .00576
1000 o1181
2000 02482
@ 1.00000

% = I0000

T c =098
50000 .02008
100000 06379
200000 .19062

© 1.00000

% = 100000

T ¢ = 0.93

5000000 .52496

10000000 .99557

20000000 99985

@ 1.00000

0.99

-

—

-

00575

01175

02448
.00000

-99

01751

.05089
.13802

00000

-99

.06436
.55615
97234
00000

1.00

-

-

-

.00573

01169

02417
.00000

00

0T534

04090
09993
00000

.00

00160
01994
09227
.00000

[.01

.00572
01163
.02388
-75745

.0T350
03311
07276
.31822

I.01

0000t

00004
.00005
.00000

.02

00571
01157
02361

-59904

1.02

01194
.02701
05339
-13727

00000
.00000

.00000
.00000

1.03

.00570
.0I1152

.02335
49013

1.03

010671

.02220

03963

.07220

1.03

.00000

00000

.00000
.00000
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I.04
00569

01147
02311

41193

1.04
.00046

.01838

02984

04357

1.04

.00000
.00000
.00000
.00000



