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I. INTRODUCTION

A premium calculation principle is a general rule that assigns a
premium £ to any given risk S. Intuitively, P is what the insurance
carrier charges (apart from an expense allowance) for taking over
the risk § (see 3], p. 85-87). Mathematically, S is a random variable,
and I’ depends on S through its distribution function. The value of
£ may be finite or infinite; in the latter case we speak of an unin-
surable visk.

A premium calculation principle is called additive, if the premium
assigned o the sum of two independent risks is the sum of the
premiums that are assigned to the two risks individually. For
example, the variance principle, P = E[S] 4 8 Var [S]1 (B > 0), is
additive, because the variance of the sum of independent random
variables equals the sum of the variances. Additivity is o very
desirable property, from a thcorctical as well as from a practical
point of view (as pointed out by Borch [2], p. 429).

The variance principle is not entirely satisfactory for various
reasons, For one thing it doces not take account of the skewness of
S (a risk whose distribution is skewed to the right secms to be more
dangerous than onc with a symmetrical distribution). Furthermore,
it produces in some cases a premium /7 that exceeds S with prob-
ability one {(example: § = .3, S = 0 or 10, cach with probability
1/2).

In the sequel we shall focus our attention on the principie of zevo
wtility (sec [3], p. 86). Thus we assume that the insurance carrier
bases his decisions on a wtilily function, i.c. a real valued function
u(x), — o0 < ¥ < + o, having the followmg properties:

(i) »(x) is continuous and non-decreasing in x
(i1) the right side derivative #'(x) is non-increasing in x
(iii) #(0) = o

(iv) 2'(0) =
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Any such utility function generates a premium calculation prin-
ciple: P is defined as the solution of the equation.

E[u(l> — S)] = o. (1)

Thus P is chosen such that the expected utility of the income
P> — S is zero. Properties (1) and (ii) state that the insurance car-
rier is a risk averter, while (iii) and (iv) have the character of nor-
malizing conditions. Because of (i) and (iv) the solution of (1) is
unique. If {1) does not have a solution, $ is uninsurable.

2. AN IMPORTANT ExaMrLi: THE FaMILY OF EXPONENTIAL
UTtiLity FUNCTIONS.

In this section we consider utility functions of the form

w(x) = (1/a) (1 — e~ %), a>0 (2)
with the understanding that «(x) = x for a = o. In this case we can
solve (1) explicitly and find

P = (1/a) In E[e*¥] = (1/a) In 1(a) (3)
for & > o and of course 17 = E7S] for a = o, where m(.) is the
momentgenerating function of S. Thus the premium is readily
found whenever onc knows the momentgenerating function of S.
For cxample, in the case where S has a normal distribution, In
m(a) = ay. + (a?2) s*, and (3) reduces to the variance principle
with B = (a/2).

The paramecter ¢ is a measure of the msurance carrier’s risk
aversion. The larger 4, the larger is the premium for a given risk.
This follows from the lemma below, in which 2’(a) denotes the
premium, as a function of a, for a fixed S.

Lemma: 1f S 1s not a constant, and if I’(a) is finite foro < a < 4,
then P’(a) >oforo <a < A.
Proof: For o < a < A we have
, E [Se*)
1) ((L) = (I/(l) _[)((l) + (I/d) ]; [-eaS] (4)

and

E 52 us\ L‘ S aS™\ ¢
(1/a) (@21(@))' = e ( L )

Eleas] ~ \ E[ees]
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The last expression is positive (it is the variance of the Esscher
transform of S). Thercfore, a2P’{a} is an increasing function in «,
vanishing at @ = o. Hence a2/”’(a) and P’(a) are positive for
0 < a < A.Fora=oonefinds from (5) that P'(0) = } Var[S5].*)

3. CHARACTERIZATION OF ADDITIVE PREMIUM
CALCULATION PRINCIPLES

Theorem: A utility function satisfying (i)-(iv) generates an ad-
ditive premium calculation principle, if and only if it is of the
form (2), i.e. if it is lincar or cxponential.

Proof: 1) If u(x) is of the form (2), then additivity holds
Let @ > o and suppose that Si, Sz arc two independent, insurable
risks with premiums P, P, (all other cases are trivial). Then the
premium P of S; + Sz is
P = (1/a) In E[e*51*59] = (1]a) In E[e*5'] + (1/a) In E[a%S"] (6)
=11+ P

2) If additivity holds, then u(x) is of the forin (2)

We prove this in two steps. First, we show that cvery Poisson
distributed risk S is insurable. Second, we derive a functional
cquation whose solutions arc necessarily of the form (2).

Step a) Let Sq be the Bernoulli risk with parameter ¢: Prob
[Sy=0] =1—4q, P[S, = 1] = q. Let P, denote the corresponding
premium. By lincarizing #«(x) to the right of ¥ =0 and x = —1,
one recognizes that

e
lin — =-—u(—1). (7)
@ >0 q

Now let 5,4 denote the Binomial risk with parameters #, g and
let Ppq be the corresponding premium. Because additivity holds,
we have Py, = nl?;. Thus (1) reads

X Mgk (r—g)F w(nk,

i o

k) = o. (8)

*) Far a more extensive discussion of the exponential utility functions
the rcader 1s referred to [6]. Also, there he will find an alternative
characterization of this family.
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Let x>0 and let # >0, ¢ +~0 with ng = x = constant.
Taking this limit in (8), using (7), and dividing by ¢~* we obtain

@

-
Z 2 = — 1) = h) — 0. (9)

L !
L]

This shows that a Poisson distributed risk S, (with parameter 2)
is insurable and has premium /7, — -—Xu(— 1). From (g) we see
also that the values of the function #(x) for positive arguments are
completely determined by the values for negative arguments,

Step b) Forz >olet Sy - 25, By arguing as in a) onc sees that

Sz 1s insurable and has premium P, = - - au(— z). Conscquently,
Oy Ak
>_4 2 w— 2 u(—2z2)--zk) =0 (10)
Ao

for all 2 > o, z > o. If we differentiate (10) twice with respect to A
from the right and set » = o, we obtain the functional equation

w(—2z)- 2u(—z)u'(--2) | w0y u(-—2)? o0 {11)

for z > o. Such an cquation has a unique continuous solution (for
z > 0) satisfying the boundary condition 7{0) = o. Hence #(x) is
necessarily of the form (2) with a = -— 2"'(0).

4. CoxnECTION WITH THE COLLECTIVE THEORY OF Risk

Encouraged by the resull of the preceding section we shall from
now on assume that an insurance carrier determines premiums on the
basis of an exponential ntility function. Thus suppose that a com-
pany consistently applies formula (3) for a certain constant value
a >o0. What is the resulting probability of ruin? Of course, the
answer to this question depends on various factors, such as the
initial surplus, the definition of ruin, and the distribution of the
risks included in the portfolio. However, if we settle for the know-
ledge of the adjustment coefficient R (in [1] it is called “insolvency
constant’), and the resulting inequality for the probability of ruin,
the answer is surprisingly simple: A comparison of (3) with formula
(12.15), p. 144, in [1], reveals immediately that R = a. Thus if a
company uses (3) consistently, 1t simply means thal it choses the
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preminms in order lo mainlain a constant adjustinent coefficient
R = a for the portfolio, which guarantees a probability of ruin less than
e B% (x = imitial surplus).

5. CREDIBILITY THEORY

In this section we assume that a risk is an element of a heter-
ogeneous collective (see [3], chapter 4), each risk having an un-
known label 8. Let S® denote the risk for known value of 0, and
let aW(0) be the distribution of 0 in the collective. Applying the
principle of zcro utility with exponential utility function we
obtain

P(0) = (1/a) In E[ea’m” risk prentiam (12)
P = (1/a) In{ [ E[eaS®] dW(8)} collcctive premium.  (13)

Notice that I> — [ P(0) dW(0) is positive (Jensen’s inequality).
This difference might be interpreted as the “fluctuation part” of
the loading contained in P (the part that is due to the randomness
of 0).

Credibility premiins are oblained by replacing dW(0) in (13) by
a conditional distribution, determined by whatever information is
available about a given risk. To illustrate this, let us discuss the
special casec “credibilily for frequency”.

Suppose that the distribution of S is obtained by weighting
compound Poisson distributions, where the weighting takes place
with respect to the Poisson parameter 0 > o alone:

. o
Prob [S < ] == f Z e oﬁ F*E(x) dW(6). (14)
s ko0 )

Thus we assume that the underlying collective is homogencous
with respect to the claim amounts (their distribution IF(x) being
independent of 0 and of time), but inhomogcnecous with respect to
the claim numbers. The structure function W(0) plays the role of a
prior distribution on 0. Furthermore suppose that ¢ = [ 4= @l (x)
is finite. From (13) and (14) we find that the collective premium is

P = (1fa) In{ [ LP-1 aw(0)}. (15)
Now suppose that we are faced with a risk of which we know the
total number of claims, say &V, that occurred in the last ¢ periods
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{all other information is irrelevant under our assumptions). For the
posteriori distribution W(0; ¢, N) we {ind that

AW(0; t, N) ~ ¢~ 0N W (0). (16)

By substituting this in (15) we obtain the credibility premium
P(t, N)

[ OP-1-00N gW(6).
P@, N) = (1/a) In-*— — ——— | (17)
[ e %N dW(0)

Let us now examine the question of insurability, i.c. the question
whether the expressions in (15) and (17) arc finite. Two cases have
to be distinguished. Let

w(l) = [ P-1-0 ().

a) w(t) < coforallt > o.

In that case (15) and (17) arc finite and the risk is insurable at
any time.

b) w(t) < oo fort >to >0, w(t) = oo for £ < to.

In this casc the risk is not insurable before time ¢y, and it is in-
surable any time after fo (no matter what the claim experience is).
The question of insurability at time /o cannol be answered without
making any further assumptions about W({8). (Obscrve that the
finiteness of ¢ implies that w(!) is finite for large cnough values
of ).

Thus our results can be summarized as follows:
A visk may or may nol be insurable at the beginning. But if il is in-

surable at one point in lime, 1t will stay insurable forever.

In the special case where W(0) is the Gamma-distribution with
parameters ¢ and v,

AW (0) ~ ¢~ 67~ df (18)

we obtain very neat formulas. A glance at (16) shows that W(9;
t, N) is also a Gamma-distribution, with parameters ¢, = ¢ 4- £ and
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v~ = v + N.Using the momentgenerating function of the Gamma-
distribution, we obtain from (r5)

{1 —

! c+ ¢

y N
P(t,N) = ~
a
So if ¢ > ¢ — 1 the risk is insurable at any time. However, if
¢ < ¢ —1, we find ourselves in casc b), and the risk is insurable
only after timefo =¢ — 1 —C.

- (19)

6. COOPERATION OF # INSURANCE COMPANIES

In this section we utilize an idea of Buhlmann which he devel-
oped in connection with quadratic utility functions (see p. 197-200
of [3] or [4]). Here we assumec that each of # companies works with
an exponential utility function, say with parameter a; = (1/ay).
Thus

atg(%) = ey — oy €% (i=1,2 ...,n) (20)

Let S be an arbitrary risk. How should the # companics split up
the risk amonyg themselves in order lo be as competitive as pos-
sible, i.e. in order to minimize the total premium?’

Let fi(S) be the share that is taken over by company no. i.

Obviously we must have X f;(S) = S for all outcomes of S. The
i 1

premium P; of company 7 is the solution of Efw(P;-— fi)] = o,
and we want to minimize P> = I’y + Pa + ... +~ P,. The ar-
rangement {P; — fi(S), Pe—f2(S), ..., Pu-=/fu(S)} must be a
Pareto optimal partition of I>—S (if it was not Pareto optimal
we could replace it by a partition

{131 — /1, ];z _f_ e, 1;,, ——f“} such that E[ul(ISL ——ﬁ)] > o0 and
E[ui(];i — )] =ofori=z2,...,n Thus I-;l, and hereby P, could
be reduced). Tn the case of exponential utility functions, all the
Parcto optimal partitions of /> -— S arec of the form

{/n—C;S, ko —CaS, ..., k,,—CnS} where ki, ke, ..., &y are ar-

bitrary constants with X &y = J2 and

t 1

L= (at/a) with e = o1 a2 4+ ... + a, (21)
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as shown on p. zoz [7] (it might also be derived as a consequence of
Borch’s theorem, see (2], [3], or [5]). In our context, the %;'s arc of
course not arbitrary, but k; = P; and

Py =: oy In E[eM95] (22)
Thus the minimal total premium of S becomes
P — o 1n E[¢!®5] (23)

So we find: If the n companies cooperate in ovder io minimize the
total premium, company no. v will take over (a;fo) S, and the vesulting
lotal preinivm can be interpreted as the premiin of one single company
working with an cxponential utility function with parameler «. This
result corresponds to Buhlmann’s result concerning additivity of
levels of saturation (see [3], p. 197-200) in the case of quadratic
utility functions.
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