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I. INTRODUCTION 

A premium calculation principle is a general rule tha t  assigns a 
premiunl  P to any given risk S. In tu i t ive ly ,  P is what  the insurance 
carrier charges (apart  from an expense allowance) for taking over  

the risk S (see [3], P. 85-87). Mathematical ly ,  S is a random variable, 
and 1 ) depends on S through its distributiort  function. The value of 
P may  be finite or infinite;  in the la t te r  cast  we speak of an mdn,- 
s~trable risk. 

A premium calculation principle is called addil, ive, if tile premium 
assigned to the sum of two independent  risks is the sum of the 
premiums tha t  are assigned to the two risks individually.  For  
example,  the variance principle, l ) = E[S] + ~ Var IS] (13 > o), is 
addit ive,  because the variance of tile sum of irtdepe~ldcnt random 
variables equals the sum of the wtriances. Addi t iv i ty  is a ve ry  
desirable proper ty ,  from a theoret ical  as well as from a pract ical  
point  of view (as pointed  out  by  Borch [2], p. 429). 

The variance principle is noL ent i re ly  sa t isfactory for various 
reasons. For  one thing it does not take account  of the skewness of 
,q (a risk whose distr ibution is skewed to the right seems to be more 
dangerous than  one with a symmetr ica l  distr ibution).  [rurthermore,  
it produces in some cases a premium 1' tha t  exceeds S with prob- 
abil i ty one (example: f3 = -3, S - =  o or IO, each with probabi l i ty  
i / 2 ) .  

In the sequel we shall focus our a t ten t ion  on. the principle of zero 
ulility (see [3], P. 86). Thus  we assume that  the insurance carrier  
bases his decisions on a ,ulilily funclio,Jt, i.e. a real valued function 
u(x), - -  co < x < + co, having the following i)roperties: 

(i) u(x) is cont inuous aim non-decreasing in x 
(ii) the right side der ivat ive  u'(x) is non-increasing in x 

(iii) u ( o )  = o 

( iv)  ~ ' ( o )  = I .  
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Any  such uti t i ty funct ion generates  a p remium calcula t ion prin- 
ciple: P is defined as the solution of the equat ion.  

El, , , (± '  - -  S)] = o. ( i )  

Thus  ,P is chosen such tha t  the expec ted  ut i l i ty  of the income 
P - - S  is zero. Proper t ies  (i) and (ii) s ta te  t ha t  the insurance car- 
rier is a r isk aver ter ,  while (iii) and (iv) have  the charac te r  of nor- 
malizing condit ions.  Because of (i) and  (iv) the solution of (I/ is 
unique.  I f  (I) does not have  a solution, S is uninsurable.  

2, AN IMPORTANT EXAMPLE: THE FAMILY OF EXPONENTIAL 

UTILITY FUNCTIONS. 

In this section we consider ut i l i ty  functions of the form 

~,(x) = ( I / a )  ( i  - - ~ - ~ * ) ,  a > o (2) 

with the unders t and ing  tha t  ,it(x) = x for a = o. Ill this case we can 
solve (I) expl ic i t ly  and find 

P = (z/a)  in  E[e~,,s'j = (r/a) In re(a) (3) 

for a > o  and  of course I ) -=E[S]  for ct = o ,  where m( . )  is the 

momen tgene ra t ing  function of 5". Thus  the p remium is readily 
found whenever  one knows the m o m e n t g e n e r a t i n g  funct ion of ,5. 
l;'or example ,  in the case where S has a normal  dis t r ibut ion,  In 
re(a) = ag, + (a2/2) ~-0, and  (3) reduces to the var iance  principle 
with ~ = (c~/2). 

The  p a r a m e t e r  a is a measure  of the insurance carr ier ' s  risk 
aversion.  The  larger a, the larger is the p remium for a given 1-isk. 
This follows f rom the l emma  below, in which 1)(a) denotes  the 
p remium,  as a funct ion of a, for a fixed S. 

Lemmtt: If  S is not a cons tant ,  and if IS(a) is finite for o _< a < A, 
then P ' (a )  > o for o < a < A. 

Proof: For  o < (t < A we have  
E [,Sc"sj 

~"(a)  = r/a)  J'(a) + (~/a) E [~s] (4) 
and 

(~/a) (a2P'(a)) El ~,,s.] \ - ~ 7 ~  / • (5) 
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The last expression is positive (it is the wtriance of the Esschcr  
t ransform of S). Therefore,  aZP'(a) is an increasing funct ion in a, 
vanishing at a = o. Hence a2P'(a) alld P'ta) are posit ive for 
o < a < A. For  a = o one finds from (5) tha t  P'(o) = ~ Var IS].*) 

3. CHARACTERIZATION OF ADDITIVE PREMIUM 

CALCULATION PORINCIPLE.S 

Theorem: A uti l i ty function sat isfying (i)-(iv) generates  an ad- 
dit ive premium calculat ion principle, if and only if it is of the 
form (2), i.e. if it is l inear or exponential .  

Proof: t) f f  ,u(x) is of the form (2), then additivily holds 

Let  a > o and suppose tha t  S,, $2 are two independent ,  insurable 

risks with premiums P1, P2 (all o ther  cases are trivial). Then the 
premium P of Sj + So is 

P = ( I /g )  In E[e "(s' +s¢] = (I/a) In EE e"s'] + (I/a) In EEa "s=] (6) 

= l ) t  + Pe 

2) I f  addilivity holds, lhel~ u(x) is of lhc form (2) 

We prove this in two steps. First,  we show tha t  every  Poisson 
dis t r ibuted risk S is insurable. Second, we derive a funct ional  
equat ion whose solutions are necessarily of the form (2). 

Slep c~) Let  Sq be the Bernoulli  risk with pa ramete r  q" Prob  
[Sq = o] = I - -  q, P[Sq = I] = q. Le t  Pq denote  the corresponding 
l)remium. By linearizing u(x) to the right of x = 0 and x = - - I ,  
one recognizes tha t  

Pq 
li~n -- - - , u ( - -  I). (7) 
q- ~0 q 

Now let S.q denote  the Binomial risk with parameters  ~a, q and 
let .Pnq be the corresponding premium, Because addi t iv i ty  holds, 
we have 1).~,q = nI)q. Thus (I) reads 

n 

x = o.  ( s )  
a 0 

*) For  a more  ex tens ive  dibcussion o[ the  exponen t i a l  u t i l i t y  h m c t i o n s  
the  reader  is referred to [6]. Also, the re  he wdl  f ind an  a l t e r n a t i v e  
cha r ac t e r i z a t i on  of th i s  family.  
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Let  k > o  and let ~ ;-coo, q ->o with , n q = X = c o n s t a n t .  
Taking this limit in (8), using (7), and dividing by  e -x we obta in  

'H,(--- ) ,¢ t ( - -  I )  - - -  k) =: O, (9) 
L 0 

This shows tha t  a Poisson dis t r ibuted risk Sz (with pa ramete r  ),} 
is insurable and has premium P~. =- - -  Xu(-- z). F rom (9) we see 
also tha t  the values of the function u(x) for positive arguments  are 
complete ly  de termined by  tho values for negaliv(, arguments .  

.Step b) For  z > o let .b'zz - zS),. By  arguing as in a) one sees tha t  
Szx is insurable and has premium Pzx = - - X u ( - - z ) .  Consequently,  

L k~ u ( - -  Xu( - -  2 ) -  - zk) = o (IO) 

0 

for all ?, > o, z > o. If we different iate  (zo) twice with respect to X 
from the right and set ?, = o, we obtain the functional  equat ion 

qt,(--- 2Z) - 2 I / ( - - -  Z) ' l ' ( - - -  Z) t "H"(O) ' / , t(---Z) '2 :- 0 ( IX )  

for z > o. Such an equation has a unique continuous solution (for 
z > o) satisfying the bounda ry  condition u(o) = o. Hence u(x) is 
necessarily of the form (2) with a . . . .  u"(o).  

4. CONNECTION WITH THE COLLECTIVE T H E O R Y  OF RISK 

Encouraged  by  the result of the preceding section we shall from 
now on assume tha t  an insurance carrier determines premiums on the 
basis of an exponent ia l  ut i l i ty  function. Thus  suppose tha t  a com- 
pany  consis tent ly applies formula (3) for a certain constant  value 
a > o. W h a t  is the resulting probabi l i ty  of ruin ? Of course, the 
answer to this quest ion depends on various factors, such as the 
initial surplus, the definit ion of ruin, and the dis tr ibut ion of the 
risks included in the portfolio. However ,  if we settle for the know- 
ledge of tile adjuslment coefficient R (in [I] it is called " insolvency 
cons tan t" ) ,  and the resulting inequal i ty  for the probabi l i ty  of ruin, 
the answer is surprisingly simple: A comparison of (3) with formula 
(12.25), P. I44, in [I], reveals immedia te ly  tha t  R = a. Th~l,s ~f a 
company ~tses (3) consis[enlly, il s imply  means thai it choses the 
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premiums in order lo mai,~tain a consta,nt adjustment coefficie~zt 
R = a for the portfolio, which guarantees a probabibity ofr21in less than 
e -Rz (x = initial surplus). 

5" CREDIBILITY THEOR'," 

In this section we assume tha t  a risk is an element of a heter- 
ogeneous collective (see [3], chapter  4), each risk having an un- 
known label 0. Let  S(0) denote the risk for known value of 0, and 
let dl, V(0) be the distr ibution of 0 in the collective. Applying the 
principle of zero uti l i ty with exponential  ut i l i ty  function we 
obtain 

P(0) = (I/a) In E[ea's'(°)j risk prcmiuln (I2) 

.P = ( I / a ) in  { J" E[e a.s(°)] dW(0)} collective premium. (i3) 

Notice tha t  l ) -  J" P(O)dW(O) is positive (.]ensen's inequality).  
This difference might be interpreted as the "ffluctuation par t"  of 
the loading contained in P (the part  tha t  is due to the randomness 
of 0). 

Credibility premim~s are obtained hy replacing dkV(0) in (~3) by 
a conditional distribution, determined by  whatever  information is 
available about  a given risk. To illustrate this, let m; discuss the 
special case "credibility for  frequency". 

Suppose tha t  the distribution of S is obtained by weighting 
compound Poisson distributions, where the weighting takes place 
with respect to the Poisson parameter  0 > o alone: 

:S Prob [,5' < x~ := e o F,~(x)dW(O).  (14) 
- k !  

o k n 

Thus we assume tha t  the underlying collective is homogeneous 
with respect to the claim amounts  (their distr ibution F(x) being 
independent  of 0 and of time), but  inhomogcneous with respect to 
the claim numbers. The structure function W(0) plays the role of a 
prior distr ibution on 0. Fur thermore  suppose tha t  ~ -= J" e az dF(x) 
is finite. From (I3) and (14) we find tha t  the collective premium is 

: ,  = in {I dw(0)}. 
Now suppose tha t  we are faced with a risk of which we know the 

total number  of claims, say N, tha t  occurred in the last t periods 
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(all other information is irrelevant under our assumptions). For the 
posteriori distr ibution W(0; t, N) we find that  

dW(O; t, N)  ~ e -°~ O N dW(0). (16) 

By  subst i tut ing this in (15) we obtain the credibility premium 
P(I, N) 

P(t, N) = (I/a) In o ® (i7) 
J" e-°t0N dW(0) 

n 

Let  us now examine the question of insurability, i.e. the question 
whether the expressions in (15) and (17) are finite. Two cases have 
to be distinguished. Let  

~(l) = I e°E*-~-*l dw(0) .  

a) w(t) < oo for all t > o. 

In that  case (I5) and (17) are finite and the risk is insurable at 
any  time. 

b) w(l) < co for l > to > o, ze,(t) = c~ for t < 1o. 

In this case the risk is not insurable before time lo, and it is in- 
surable any  time after to (no mat te r  what  the claim experience is). 
The question of insurabil i ty at t ime to cannot he answered wit]aout 
making any further  assumptions about  W(O). (Observe tha t  the 
finiteness of ¢ implies tha t  w(t) is finite for large enough values 
of t). 

Thus our results can be summarized as follows' 

A risk m a y  or m a y  no! be i.nsurablc at the begimdng.  B u t  i f  it is in- 

surable at one point  in  l ime, it will  s lay insurable forever. 

In the special case where W(0) is the Gamnla-distr ibut ion with 
parameters  c and y, 

dW(0) ~ c-c0 0 v - '  dO (I8)  

we obtain very neat  formulas, i \  glance at  (16) shows that  W(0; 
t,, N) is also a Gamma-distr ibut ion,  with parameters  ct = c + t and 
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y~v = y + N.  Us ing  the lnomentgenerat i l lg  funct ion  of the G a m m a -  
distr ibution,  we obta in  f i o m  (I5) 

P(t,  N ) y + N  (¢--I) -- In I -  . (19) 
a c + t  

So if c > ¢ - - I  the risk is insural)le at al ly time. H o w e v e r ,  if 
c < ¢ - -  i ,  we  find ourse lves  in case b), and the risk is insurable 

on ly  after t ime to = ,~ - -  i - -  c. 

6. COOPERATION OF ~ INSURANCE COMPANIES 

In  this section we utilize an idea of B u h h n a n n  which he devel- 
oped in connection with quadra t ic  ut i l i ty hlnct ions  (see p. 197-2oo 
of [3] or [4]). Here  we assume tha t  each of n companies  works with 

an exponent ia l  u t i l i ty  function,  say with para lne te r  a, = (I/cq). 
Thus  

ut(x)  = o~ - -  0~ e '~1~' (i = I ,  2 . . . . .  n) (20) 

Le t  S be an a rb i t r a ry  risk. How should the n companies  split up 

the risk among  themselves  in order to be as compet i th ,  e as pos- 
sible, i.e. in order to minimize  t im tota l  pi 'elnium ) 

Let  f , ( S )  be the share tha t  is taken over  by  COlnpany no. i. 
n 

Obvious ly  we mus t  have  Ef t (S)  = S for all outcomeq of S. The  
i 1 

premium Pi of compal  U, i is the solut ioa  of E [ ' u i ( P ~ . - - f d j  = o, 

and we wan t  to milaimize P =  P~ + P-. + . . .  ÷ P , .  The  ar- 

r angement  { P , - - f ~ ( S ) , P o . - - f 2 ( S )  . . . . .  P , ~ - - - f , d S ) }  must  be a 
Pa re to  op t imal  par t i t ion  of 1 ) - - S  (if it was not  Pa re to  op t imal  

we could replace it by  a par t i t ion  

[]~1 - - ] 1 ,  ];2 --/2 . . . . .  ]~ .q - - /1 l}  s u c h  tha . t  .~[./~1(1-~[ - - f l ) ]  ) o and 

E [ u ¢ ( f i , - - f ) ]  > o for i = 2 . . . . .  n. Thus  fij ,  and  herel)y P,  could 
be reduced).  In the case of exponent ia l  ut i l i ty  functions,  all the 
Pa re to  op t ima!  par t i t ions  of P --- S are of the form 

{ h i - - ~ 1 S ,  k2--~-_S . . . . .  k , , -  ~nS} where hi, ko. . . . . .  k,, are ar- 
n 

b i t r a ry  cons tants  with E kt = P and  
t l 

~t = (~d~) with ~ = ~ i  + c~2 + . . .  + ~.,, (21) 
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as shown on p. 2o2 [71 (it might  also be derived as a consequence of 
Borch ' s  theorem,  see [21, [31, or [57). In our context ,  the k,'s are of 
course not a rb i t ra ry ,  bu t  ki = P,  and 

1~t =: c~i In E~e(ll~)sJ (22) 

Thus  the minimal  total  p r em i um  of S bccomes 

P ~ v. In E[e (l/a)s] (23) 

So we find: I f  the n companies cooperate in order io mi,Himize the 
lolal premimn, company no. i will take over (.doO S, and the resulting 
lolal ~bremium can be interpreled as the prem, i,u,m, of one single company 
worki~g with a~ cxpo,nc~lial utility f~t,nclion, with paramelcr o:. This 

result  corresponds to B u h l m a n n ' s  result  concerning add i t iv i ty  of 
levels of sa tu ra t ion  (see [3], P. 197-2oo) in the case of quadra t ic  
ut i l i ty  functions.  
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