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ABSTRACT

Credibility theory is concerned with the problem of forccasting the mean
performance (claim {requency, total losses, ctc.) of an individual risk,
sclected from a collective of heterogencous risks, bascd upon the statistics
of the collective, and upon the individual’s experience data. The classic
results, derived by American actuaries in the 1920’s, were further streng-
thened by Bailey and Mayerson in 1950 and 1965, who showed that these
results were exact Bayesian for certain risk distributions. Bihlmann, in
1967, then showed that the credibility formulae were the best least-squares
linearized approximation to the exact Bayesian forccast, for gencral risk
clistributions.

This paper extends credibility thecory to the problem of forecasting the
distribution of individual risk, based upon collective statistics and individual
experience data. Although the problem is, mn principle, solved by finding a
Bayesian condiuional chistribution, this approach requires a detailed know-
ledge of collective structurc. The credible distribution, on the other hand,
requires fewer prior statistics, and 1s also a best least-squares linearized ap-
proximation to the exact Bayesian distribution.

I"'ollowing the theoretical development, detalled computational resulis
are given.

I. INTRODUCTION

Credibility theory is the name given to a method of experience
raling an insurance risk, which was developed by Amecrican actu-
aries in the 1920's. In the classic problem, one begins with a pool, a
collectrve of somewhat heterogeneous insurance contracts which are
grouped togcther to “spread the risk™; it is assumed that detailed
prior statistics are available from this pool. In particular, the fair
collecttve premdusn, E{E}, is the average value of the risk random
variable of interest, such as number of accidents per year, dollar
losses per unit exposure, etc.

Now supposc that a new insurance contract of unknown risk
characteristics is underwritten, and assigned to this pool. At the
beginning, the fair ndividual preminm changed would be just the
collective premium E{E}; however, as individual experience data
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X1, X2, ... ¥, is obtained over n years, this data would tend to
reflect more nearly the individual risk characteristics.

Using heuristic rcasoning on the pooling of data (and considering
only the number of claims per year), arguments were advanced in
the early literature for a fair experience premium for next year’s
risk, £, 41, based on a formula of the form

E{E 1| 20, %, o %} & (1—2) - EAEY 4 Z - (Safn),  (1.7)

with
V4!

Z = ;I‘N . (1.2)

Z was called the credzbility faclor; it provides for a mixing of the
fair collective premium, 1i{£}, and the sndividual sample mean,
Y xy/n, with increasing “‘credibility” attached to the latter as »
increases. The time constant N was essentially determined by trial
and error.

This credibility formula was successfully used in American
actuarial circles for more than 50 years, with innumerable variation
and elaboration. A full survey, with references, may be found in
Longley-Cook [11]. However, the modern theory of credibility
begins with the resurgence of Bayesian techniques and with the
works of Bailey [2] and Mayerson [12], who showed, under certain
assumptions regarding the structure of the collective of risks, that
(1.1) was an cxact formula. Finally, in 1967, Bithlmann [3] showed
that the credibility formula was the best least-squares linearized
approximation to the exact Bavesian forecast, and gave an explicit
formula for N in terms of collective second-order statistics (see
formula (4.6) below). A larger survey of this development is in [1g].

Since that time, other research has focused on credibility-type
forecasts of variance [4], the usc of auxiliary data in conditional
distributions [5], [6], the “IBNR triangle” of partial data develop-
ment [17], and multi-dimensional risks [19], {20].

The purpose of this paper is to extend the approach of credibility
theory to the problem of estimating the distribution of individial
visk, based upon collective statistics and individual experience data.
Although this problem is, in principle, solved by finding the
Bayesian conditional distribution, Pr{En41 < y | %1, x2, ... ¥n),
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this approach requires a detailed knowledge of collective structurc
for every y. We shall see that the credibility approach needs fewer
prior statistics for a fixed value of y, and leads to a simplified
prediction of credibility typc (1.1); furthermore, the credible
distribution is unbiased, and is a least-squares linearized {it to the
exact Bayesian distribution.

First, we consider in more delail the nature of the risk collective,
and results of least-squares theory we shall need in the scquel. Tol-
lowing the development of the credible distribution, we consider the
problem of forecasting the density, and show how, in the discrete
case, more complicated estimates can bec made. Various theorctical
propertics of the credible estimates arc presented, followed by
computational results for certain well-known distributions. Finally,
we briefly consider certain problems in moment estimation.

2. THE Risk COLLECTIVE: BAYESIAN RESULTS

Consider a collective of heterogeneous risks, such as an insurance
portfolio, in which each member is characterized by a risk para-
meter, 8. Tor a given value of 0, the claims experience (number of
claims or total value ol claims) for a certain time period or ex-
posure base ¢ is a random variable, £;. with known distribution

Pyx]0) = Pr{g, < x| 0} t=1,2, ...). (2.1)

In what follows, it will be assumed that the &; are mutually
independent, given 0; the (discrete or continuous) density of (2.1)
will be indicated by p,(x | 0).

If the true value of an individual parameter 0 = 6, were known,
then the fair premium would be:

E{E | Op} = [ xdPy(x | 0p) (2.2)
for any time period ¢.

If 07 were not known, it would still be possible to infer a fair
premium for an individual risk, provided that a prior distribution,
U("), on the collcctive risk parameter was known, and if experience
data (& = x| ¢==1,2,...,n) werc available for this individual.
By the usual Bayesian argument, the forecast distribution of next
year’s risk would be the conditional distribution:
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Loy |21, %2, .0, %) = Pr{Ep <y lm, %, ..., %}

[ Paay 16) T ol | 6) dU(0)

= A - (2.3)
[ 10 pule | 0) AU®)

which is known to be the unbiased, least-squares estimate of
Py iy | 07), given the experience data x — {x1, Xz, ... %y}

The fair experience premirm would then be:
E{€n+1] 2} = [ ydPuaily | ). (2.4)

The statistical literature emphasizes the behavior of the densitv
of O posterior lo x, given by:

11 pue | 6) €U(D)
AU,0]| %) = ~= - — —— - (2.5)
Ifll pe(xe | 9) AU(8)

It is known (sce, for example DcGroot [7]), that for fairly ar-
bitrary priors, Uy(0 | x) is approximately normal with mecan 0O,
variance proportional to ™", for large cnough #, and converges to
the degenerate distribution at 0 == 07 as # -— . Thus the forecast
distribution (2.3) also converges to P(y | 97) for almost every y.

These Bayesian calculations are laborious, except for certain well-
known conjugate-prior families of priors and likelihoods, such as
Beta-Binomial, Gamma-Poisson, Normal-Normal, etc. (See for
example [7]). Furthermore, the problem in insurance and other
applications is that, although detailed statistics may be available
from the mixed collective distribution:

Pix) = Eoly(x [0) - [ I4(x]0) dU(6), (2.6)

there is very little information available on the internal structure of
the collective, between different risks. Thus a full Bayesian fore-
casting is impossible without additional distributional assumptions.
In the sequel, we shall dcal only with time-invariant collectives,
for which 2(x|0) = (x| 0) (v, and we shall consider the
problem of providing a credibility-type approximation to (2.3). The
theoretical basis for this approximation is in least-squares theory.
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3. LEAST-SQUARES THEORY

Suppose we have a vector-valued random variable » from whose
observations w wc are trying to predict another random variablc 7
through a forecast function f(w@). Assuming the joint distribution
Py, w) = Pr{n <y, 0 <w} is known, the classical norm to
evaluate the forecast is the mean-squarce crror:

= [(y—/[(w)dP(y, w). (3-1)

It is known that the integrable function f© which minimizes (3.1)
at value 70 is the conditional mean:

fo(e) = E{n | @ = w}, (3-2)
where E is defined with respect to the measure 2. However, in
many cases the exact conditional calculation is too difficult and an

approximate forecast function f is sought. Since compiction of the
squarc shows that

[ =10+ [ (fo(w) -— /()2 dP(w) (33)
1° == V{n} — Vf*(0) = EuV{n | ©}

for any f, then the approximate forecast is also a least-squares fit to
the conditional mean, and one may select arbitrary paramecters in
the approximation to make the integral in (3.3) as small as pos-
sible, or work directly with (3.1).

A typical choice of an approximate forecast is a linear function

[(w) = ay + X aswy. (3-4)
In this casc it is well known that the optimal parameters a; arc

given by solutions of linear equations of the form:

2 Cloy, o) - a5 = Cl{n; o (V1 #0) (3-5)
1550

with aj selected so as to make the average forecast Ejf(w)} un-
biased, e.g.,

E{f(0)} = E{1}; ap = E{n} — X afE{ey}. (3.6)

1#0
The prior variance of the optimal lincar forecast is:

V() = X SaaiClo; o) = ¥ aClnof  (37)
i,)5¢0 i£0
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and the approximation error turns out to be:
[— 10 = V[ow) — X a;j C{n; o}. (3.8)
IEY
As before, all operators are defined on the measure P = P(y, w).

It is sometimes not realized that the above approximation is a
linearization only in terms of the parameters a;, and not necessarily
in terms of the observables. For, suppose there is an underlying
vector random variable £, with observations x, and there arc known
transformations

n=goE);, w=gE G=12...) (3-9)

Then the above theory applies directly to the prediction of go(£)
by a forecast function

f{x) = a0+ ,f a,84(%), (3.10)

by making the obvious extension of the operators in (3.5) and (3.6).
In many cases a further simplification results if the g;() are func-
tions of only a single component of &.

Another modification of linear least-squares theory occurs when
one constrains the variables:

coan + 2 cja; = Constant. (3-.11)
I#£0

Here one defines a Langrange multiplicr u, adds p-co to the
definition (3.6) of ag, and adds u(c, — coE{w,}) to the 7th equation
of (3.5); w is then adjusted until (3.11) holds.

A special case of the above occurs when a subset of the a5 (5 # o)
are constrained to be equal to each other. One can show that the
columns in the constraint matrix [C{&;, &;}] corresponding to the
common a; are first added together to form the coefficients of the
common variable a.; then the coefficients of the rows corresponding
to the constrained subsct (in both the constraint matrix and the
RHS, [C{n; &:}]) of variables arc aggregated by addition into a single
equation, thus making the system (3.5) again squarc. If there were
m equations, and 1 < r < m variables are sct equal to cach other,
the resulting system is (m-—7 4- 1) X (m—7 + 1), and the coef-
ficient of a, in its own row consists of the sum of #2 old coefficients.
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All of these constraints incrcase the mean-square error.

Finally, we make the obscrvation that superposiffon holds, i.c.
suppose we have made a linear forccast of a certain random variable
71 by finding parameters {a;} from (3.5) using a RHS of C{1'; w,}.
We then repeat the process, {finding other sels of paramcters
{af |k =2,3,...}usinga RHS of C{#*; w;} (k=12,3,...). Not
only 1s only one inversion of the constraint matrix of (3.5) required
for all the parameter sets, but any lincar combination of predictands,
say of:

71’ = 2 C/an (3'I2)
k
will have optimal values
a; = X caf (j=o0,1,2,...). (3.13)
k

We now apply these results to the model of the collective.

4. THx CREDIBLE MEAN

In the collective model, there are underlying random variables
&1, 82, ..., &, Epqr which are mutually independent (and, hcre,
identically distributed), given 0, the risk parameter. To predict the
mean of the next observalion, given the n obscrved values & = x,
(¢ =1, ..., n), we takc the simplest case of (3.9):

=8y, op=86 (=1, ...,n). (4.1)
Using the fact that
{Vigloy (@ =)

C{&:; 0} = .7 )
{Qi E_»j I } ( 0 (Z #])' (4 2)
we find
:  V{&} = EoV{& |0} + VeE{& | 0} (=)
Clowq; = e . i . :
oot = eyt | 0); Elg 1 0)) -5 @9
The second case also holds for C{x; w;}.
If the &, are identically distributed (¢ = 1,2, ... # 4 1), we find
that the optimal 4; (j % 0) are identical, with:
a0 = E{E}[1 — nai] (4.4)
I V{& EgVIE 1B
4 = ——— N — {Q} 0 1E| }

w4+ N VoE(£] 0} 1T VoE(Z |0} (4-5)
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In other words, we get the classical credibility forecast:

R{Znil 2= £} ~ (@) = (1—2) B(E} + 7 |42 ) (4.6)

/

This result is due to Biihlmann [3].

Where necessary in the sequel, we shall distinguish the above—
given N and Z from others as

_ EoV{g| 0}
U™ VeEE | 0}
M
7y = T Ny (4.7)

the mean-credible time constant and credibility factor, respectively.
The corresponding forecast function in (4.6) will be referred to as
Ji(#). The forecast of the mean is a prior: unbiased,

Efm() = Efz} (4.8)
It is casy to show that the mean square error is:
= V{g} — Zpy VoE{E | 0}, (4.9)

so that error starts at V{£} (variance using the collective mean as
forecast), and decreases with increasing # to E¢V{& | 0} (irreducible
variance in sample mean). This error is, of course, a priors; Scction 8
examines the forecast behavior when 0 is known.

5. THr CREDIBLE DISTRIBUTION

We now consider the central problem of this paper, which is to
find a credibility approximation to the true distribution of the next
observation:

Py il(y efl‘) = ZJ"{ZII-H Y i 6’/'} (51)

The analysis is greatly facilitated if we use the generalized least-
squares formulace (3.9) (3.10) and set:

N = gol&n 1) = I(y —2n 1) (5-2)

for a fixed value of y, where [(-) is the unit step, unity for non-
negative arguments, zero otherwise.
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The optimal predictor of 1, in terms of £ = & (now referring to the
first # samples only), is by (3.2):
fole) = E{n &=} = By —Eun | &= 2}
= Py &= x}, (5-3)
the Bayesian conditional distribution! Thus, a credibility forecast
of type (4.5) will approximate the Bayes distribution, if suitable
transformations (3.9) can be chosen. (5.2) above suggests we also
choose

wg = I{y — &) (t=1,...,n) (5.4)

Using the independence and identical distribution properties of
the collective described previously, we find the (prior) moments:

E{n} = E{a) = P(); (5.5)

{L(y) (x — P(y)) =)

Cov {1} o5} = [ VoP(y | 6). (¢ #7) (5-6)

(The last case also covers Cov {n; »;}). These results should be
compared with (4.3). It follows, as for the mcan, that the optimal
coefficients a;(¢ 72 0) arc identical, and we obtain the credible
forecast distribution:

Ply 1§ =2}~ f(x)

=(1—2) Py + 72 |~ T (5.7)

with
PR E—PO) 8
T n - N Vol(y | 6) - - L (5.8)

Notice how the classical form remains the same; the forccast is a
mixture of the collective estimate of the distribution, P{y), and of
the sample distribution, X [{y — x;) [n. The credibility factor is an
increasing function of %, of classical form, but with a different time-
constant, N, which in this case depends upon the chosen valuc of

v. And, lim Z — 1.
n—>0
To distinguish the above results from other credibility formulae,

and to cmphasize the role of y, we shall henceforth refer to the

10
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above time-constant as Np(y), the credibility factor as Zp(y), and
the forecast function as F(y | x).

A priori, the mean forecast is unbiased:

E{I'(v | E)} = P(y), (5.9)
and the mean-square error is
I=P(y) (1 — P(y)) — VoP(y | 9) . Zp(y). (5.10)

Incidentally, it is casy to see that the credible estimate of the
complementary distribution, Py |x} = Prifyq >y |§ =5} is
the same as (5.7), with the same credibility factor, but with P(y)
replaced by P¢(y), and the complementary sample distribution used.

6. HisTORICAL REMARKS; AN ExAcT RESuULT

The form of the credible distribution has already been hinted at
in other works. Whitnev [18] in 1918 begins with a normal distri-
bution of ‘‘class hazard” and, using a mixture of arguments re-
miniscent of later Bayesian and maximum likelihood techniques,
finds a credibility form to mix “‘the indicated (individual) risk
hazard”” with P, ‘“‘the indicated class hazard”. He obtains /7 of
form (5.8), with, as onec approximation,

N — {J(L_ P) (6.1)

e? !

e2 being the (normal) “variation of hazard within the class”. “We
now come to the most difficult question of all, the determination
of 2. It is obviously impossible to determine ¢ statistically in each
case. Some general assumptions must be made regarding its form
and valuc”. [18] Whitney goes on to arguc for €2 varying as >*,
while others argued for N a constant. (Sec the discussion to [12],
p. 123-4).

The formula (4.5) for the credible mean ol the Beta-Bernoulli
family, as derived by Bailey [2] and Mayerson [12], is also sug-
gestive:

. m(L - m)
N = - io’z_ ~--1 (6.2)
where 7 and 62 arc the mean and variance of “P(H), the prior
probability (one is) willing to assign to A", the hypothesis. [12]
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In fact, after reflection we sec that estimating probabilities is a
form of Bernoulli trial, in which we count cach sample as a “success”
or ‘“failure”, depending on which side of y it falls; the long-run
frequency of success (which is the mean success) must be the
probability sought. Our contribution is thus to point out that (5.7)
and (5.8) arc thc minimal-variance cstimators for an arbilrary
distribution of “class hazard”.

Perhaps it is not surprising that the only distributions of P(x | 0)
and U(8) which the author has been able to find for which (5.7) is
exact Bayesian are thce Bernoulli (x| 0) — Beta(0 | «, £) families,
for which:

_ O —E{0Y

Nel) = =g S i=et s =on)  (69)

Credibility is already only an approximation for slightly cnlarged
families, such as Binomial-Beta, or Bernoulli-Arbitrary U(-).

7. COMPUTATIONAL CONSIDERATIONS

What has been accomplished with (5.7), as compared to the
minimal variance Bayesian prediction (2.3) ? In the first place, the
exact calculation requires knowledge of the structure of the prior
and likelihood for all valucs of the observables, for all 6. Practically
speaking, this restricts the computations to the conjugate-prior
familics of distributions.

The credible forecast (5.7), on the other hand, is a point cstimate
of P(y|x), which is practically distribution-free, requiring only
estimates of P(y) = LEgP(v | 0) and Vel (y | 0) from the collective at
the desired value(s) of y. Even the experience record-kecping is
simplified; the sample distribution X I{y -- %) /# only counts the
number of samples < y, and not their exact values.

On the other hand, the credibility approach is somewhat awkward
for estimating probabilities for many different values of y, unless
there is a simple model for the variation of P(y|0) over 6. The
mean-square crror will be larger than obtainable from Bayesian
techniques, although the limited computational results in Section g
seem to Indicate that most of the variance is due to the samples,
rather than the approximation.
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8. BEHAVIOR OF THE FORECAST FOR KNOwN 0
Additional insight into the nature of credible forecasts can be
gotten by examining the behavior of f(w), assuming that the truc
value of 0 = 04 is known. IFrom (3.4), the prior unbiasedness of the

forecast gives

E{f(w) | 02} == E{n} + 5‘ a[E{w; | 07} — E{w;}]. (8.1)

For the credible mean, the results of Section 4 give:
E{ /@) |07} = (1 - Z) B{&} + ZE{£ |07} (=0, 1,2, ...)
(8.2)
which is itself a “credibility’”” curve, moving the average estimatc
from the collective mean to true mean as # —- o, with time constant
1\7[1].

I ’

A similar result and interpretation applics to the credible distri-
bution:
E{F(y18) 107} =[x —ZpW] Py) + Zp(y) P(y]07),
(n=o0,1,2,...) (8.3)
and with obvious modification, to the credible discrete density
(1r0.6).

The variance ol the lincar cstimator (3.4), given O, is generally:
Vif(w) [0r} == 2 % a;Cag; o] Or}; (S-4)
1, f7%0
howevecr, in the collective models, the transformed random variables
(3 9) arc independent, given Op. 17or the credible mean:

¥ ) iy ) (Zru)*
V{fin(&) | Op} == VIE| Oy} - T (n=o0,1,2) {8.5)
and for the credible distribution-
i | Lz
VIE(v &) 109} = P(y!07) (1 —P(y[0r))- o7 (meo12)

(8.6)

with, of course, zero variance for # - o.

The function
A (n+ N)? I (n/N)

n n - N (x + ()1/77))2
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increcascs rapidly from zero to its maximum value 1/4N when
»# = IV, thereafter decreasing slowly to zero as 1/n.

Somectimes direct usc of the sample mean as a forecast is ad-
vocated,

Ssal) = L& [n (8.8)

since it is “fully credible” for all #, that is:
E{/sm(8) | 00} = E{E 107} - (Vv 7) (8.9)
However, comparison of the efficiency of (8.8) with (8.5) shows that:

VUi | 0r}
V{/su(E) |02}

In other words, the same credibility form which limits the rate of
change of the estimator also shows its variance-reduction propertics.
(8.10) also holds for the credible distribution estimate vis-a-vis the
sample distribution.

[f the same random variables are uscd to forecast the distribution
at morc than one value of v, there is, of course, covariance hetween
the two cstimators. Thus.

C{F(y118); F(y218) 107} ==
3 (mi ) PRSI —
LP(min (10,20 107) =P 1 07) + Pl 1000 (7 (03 N )
(8.11)

LExamples of this interrelationship will be scen in the next section.

(Zi)2 < 1. (8.10)

H

Finally, it is obvious therc is strong dcpendence between the
forecasts made in successive years, since:

- Np(y) + ¢
Np) 4L —1

Fly | xt,xe, oo, x5 840) = Iy | oy, %2, 0 xy)

+ IV;(;)—:}:L_—Q— - t=o0,1,2 ...) (8.12)
1t follows that
E{F(ylxe..oov, &) | F(v x, ae, 00, x0); Op)
(Np(y) + ) Fly |51, %0, .., 50) + P(y] 0n)
Np(y) £t 21 - 13)
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and
V{F(y I X1 ... X, E.t+1) |17(y I X1, X2, ..., .\5;); OT}
Py | 0n) [1 — Ply | 0r)]

(Np(y) + ¢+ 12 (8.14)

A prior, the covariance between successive forecasts slowly
diminishes in a manner similar to (8.6)
CE(y &, oo &r) s F(y [ By oo B G rd) [ B
¢
A N1 Ne(y) + 1)

= Py | 87) [1—P(y|0r)] (8 15)

9. CoMPUTATIONAL RESULTS-CREDIBLE DISTRIBUTION

Dctailed computations were carried out for three conjugate prior
families of distributions for which explicit resulls are available:

I. Pgisson 4 Gamma = Negative Binomial

0% e?
pri) = —— (=012 )
E{£10} =0
V{E|0} =0
b(bea—lg—bo
u(0) = ——IT(a) 6= 0)
E{0} = a/b (9.1)

V{0} = a/b*

plx) = EIE[:aT:;) (b —IZi I)a(b —{I— I)x (k=012

E{£} = afb
vig=5 (x+3)

Bayesian Conditional Disiributions:

a<—a-+ X oxy;, b<—b-+n
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11l. Exponential 4 Ganuma = Shifled Pareto
(x| 0) = Be=% (x* >20)
E{£]6}=06""
V{g| 0} =0-°
poga-1,-b0

u(f) = —-P(—a)—'* (6 >o0)

B0} =

a—1
-1 b2
N A E

] abt
px) = brmen (¥ >o0)

Eig)= a—1

ab?

VI =1,

a— 1)2 (6 — 2)
Bayestan Conditional Distribulions:

a<—a-t+n, b0+ 2 x

111, Uniform 4 Pareto = (Constant-Parelo)

E{g10} =
VIE |0} =
&o (0o <6 < b)
u(0) = ! 1y
[im @
ab

251
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vio) “w. oo
(a— 1)t {a—2)
a (o=l (0 <x <)
pl) = (a—{—i a)'(x“(““) (x > b)
Bz} = 1 ab
“a—1
V{gy = oa [i + ——I—] (9-3)
: (a—2) L12 4{a — 1)?
Bayesian Conditional Distribulions
a<--a-4 n; b<—max (b;x, xe, ..., ¥y).

The time constants for the credible means are:

b (Poisson-Gamma)
Ny = (a—1 (Exponential-Gamma) {9.4)
( 4(a—-1)2 (Uniform-Parcto).

The credible mean is cxact Bayesian for the first two families:
the correct Bayesian conditional mean for the Uniform-Pareto is:

a - »n

E{&, | a} =1} - 5 g Max (b; %1, X2, ..., Xa). {(9.5)

Figures 1, 2, and 3 show the time constant Np(y) for the above

three cascs, with the hyperparamecters («, b) adjusted so that

E{Z} = 1 always, and V{E} = 2, 4, 8. This would result in mean
time constants, for example, of:

I, 1/3, 1/7; (Poisson-Gamma)
Npp = (3, 5/3, 9/7; (Exponential-Gamma)
0.600, 0.455, 0.391. {Uniform-Parcto)
(V) = 2,4, 8).
Thus, in all these cases, Njiy << Np(y) for all v.
In Figure 1, we see that the Np(y) for the Poisson-Gamma have
their largest values and most marked variation over v for small

collective variance. This i1s consistent with the idea that when the
inter-risk variance is small (Np{y) large), the occurrence of a large
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Fig. 1. Credible distnbution time constant, Np(y), for different collective
variances. Poisson-Gamma  distributions. E{E} = t (Straight lines for
clarity only).
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Fig. 2. Credible distribution time constanl, N p(y), for dilferenl collective
variances. Exponential-Gamma distiibutions. 14{E) == 1.
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30 T T T I

25|—

20—

Fig. 3. Credible distribution time constant, Np(y), for different collective
variances. Umiform-Pareto distributions. E{€t - 1.

sample is not weighted heavily; it is likely due to chance. And since
P(y | 0x) is likely “close to” P(y), it takes many more samples to
accredit the sample distributions. Conversely, for a very hctero-
genecous collective, samples for any value of y are treated more
evenly and with more credibility.

Figure 2, for the Exponential-Gamma shows much the same
behavior as the previous case, except the time constants are larger,
in general. Information close to the origin is practically disregarded,
as all risks have a preponderance of samples there, due to the ex-
ponential form. Tail values arc only slightly deemphasized, relative
to middle values. The Uniform-Parcto curves, Figure 3, are prac-
tically indistinguishable from one another, and arec constantly
decreasing towards the asymptote Np(y) = af2 == (1.171, 1.084,
1.042). Since all risks in the collective diffcr only by their range
‘o, 0], it follows that information below thc minimum range 90 = &
(= 1.146, 1.077, 1.04) is pretty much disregarded. Thus a good ap-
proximation to the Uniform-Pareto is Np(v) = a/2 (y > D), o
otherwise.

A variety of simulations were run using these distributions, and
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I'ig. 4. Credible distribution forccasts Exponential-Gamma distributions
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comparisons made with the known Bayesian results. Figures 4 and
5 illustrate typical results, using the Exponential-Gamma distri-
butions, with a collective mcan of 1, collective variance of z, and
samples from an exponential with mean of 3. Complementary
distributions, [’¢(-) =1 — I’(+), are used throughout. In Tig. 4,
the dotted line represents the prior collective distribution. The first
sample drawn was 1.549, and the credible estimate results in a
mixed distribution with a discontinuity at that point. The next
sample was 0.891, giving the two jumps shown in Feé(y | x, x2).
Thus far, there has not been much prediction, because the random
samples were all low. However, after 32 draws, the sample mean is
3.50, giving the point estimates shown: the actual curve is not

1
drawn because it has 32 jumps, of magnitude ;;m, at the
values of the random variates. The dramatic drop between the
estimates for v == 6.0 and 6.5 is because 3 of the 32 first samples
{cll here.

lig. 5 contrasts the result when true Bayesian forecasting is used
with the same samples. Irom (g.2) we see that the conditional
distribution is a Shifted Parcto distribution, with updated para-
meters a + 2, 0 4 X . This alwayvs gives a smooth curve for
Pe(y | v), as shown in Fig. 5. Notc that the curves move with the
sample mean -too low at first, overestimating the true curve with
32 samples.

It is perhaps unfair to compare the curve of I'¢(y | x) with that of
Pe(y | %), since the credible distribution only minimizes variance for
a fixed value of . The next cexample is chosen from some Poisson-
Gamma simulations, in which E{&} .~ 1, V{&} = 2 as before, but

where 67 = 2. In Tigs. 6 and 7, we have plotted five simulation
runs for # = 1 to 16, estimating I’¢(o | x) and I’¢(2 | x). There are,
in fact five sample paths connected by straight line segments, but
they overlap whenever the number of counts > v catches up with
the number in another sequence of draws, which happens often for
an integer-valued random variable. In gencral, the credible forecast
{or a given value of v starts at /’¢(y) and “‘relaxes” towards zcro
whenever no counts > v occur, getting boosted up again whenever
a count occurs; this phenomenon is considered further in Section 13.

The Bayesian forecast in Fig. 7, however, will only have the same
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values on differenti simulation runs when the sample means equal
cach other—only for small #, il at all. For the same random draws
the sample path is smoother, however it tends to wander more up
and down, instead of following a relaxation curve. Also, there is
obviously more correlation between [¢(y [ x) for two values of v,
since the sample mean is used as a parameter. One can casily trace
out corresponding sample paths for y = o and 2.

T T T T T T T T T T T T T T
Lol = FS&olx

o0 FC(2]x) P°(ol\er)’

08
7 06 —
> a
< Pe(2le)
w04 u
02
0]
0 2 4 6 8 n 10 12 14 16
Fig. 6. Credible distvibutions /7o | vy, xa, ..., vy) and Fe(2 |y, e, .., xy)

versus #2 Ifive simulations of Poisson-Gamma distributions with K{E} = 1,
ViEy - 2, 0p . 2. (Straaght lines for clarity only).

—— T —_— T T
Lol PE(Ol 1) ¢ |
VI o—o pC2)x) P (Olg.r)

Fig. 7. Bayesian conditonal distributions (negative Binonmal) Pe(o | x4, ae,

..o xp) and Pe(2 ey, ag, L., vy) versus n. Five simulations of Poisson-

Gamma distributions with 1015} - 1, ViE} = 2, ¢ = 2. (Straight lines for
clarity only).
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The variance using the credible forecast is not too large compared
with exact Bayesian; only about 70%, more for the example shown.
By far the biggest contribution to variance is seen to be the random
deviates themsclves. Even in the Bayesian case, there is still a lot
of variance at » = 16.

10. CREDIBLE DENSITIES

It 1s difficult to sce how to get a credible estimate of the density
of a continuous distribution, because of the lack of a natural sample
density to replace X f(y —— x;) /n. Differentiation leads to unit
impulses §(y —- %), and a forecast which is a mixed density at
observation points!

However, one can formally use only n = §(y — &, +1), and look
for a forecast still in terms of the number of counts < v. The
RHS of (3.5) now becomes

Cln; o) = Colp(y 16); Py [ 6)} (ro.1)
and we have the formal result
Colp(y 16); Py [0)}

Py %) ~ plx) + VoP(y 10 Zp(y) -
[EI(xe —y) n— P(¥)]. (10.2)

With a density of a discrete distribution, on the other hand, we
are on much safer ground. One can forecast p(v | x) = P(y | x) —
Ply—1|2) by:

(1) A direct credibility approach, counting the number of samples

equal to v;

(2) An approach similar to (10.2), using the number of samples

< y;or

(3) By differencing the credible distribution (5.7).

We consider the three cases in turn.

TFor the direct approach, we use:

o= 8Y - — 5 —

4—85"”, ‘°z—85, t=1,...,1) (10.3)
where 8] is the indicator function, cqual to unity if i = 7, zero
otherwise. The analogues of (5.5) and (5.6) carry through in terms
of discrete densities:

E{n} = E{od = p(y); (10.4)
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Cov {at; ay) = Sﬁ(y) (T-—p(») (=) (0.5

[ Vep(y 1 0) (G %)

The credible discrete density is then of form:

Pyl %) ~ flylx) = (1 Z,0) p(y) + Z,(y) [Z 8 [u),  (10.6)
with new credibility factors:

, " _ p(y) (r —p()
Zply) = W+ N0 Nply) = VO 10 (10.9)

It is casy to see how this might be estimated in collectives with
discrete data, such as automobile claim frequency; only counts of
claims for the desired value of y are used in setting up the predictor.

If we adopt the sccond approach, we keep n = 8¢ , but use:
o, =1Iy--&)= X Sg‘, (ro.8)
I<p
and get the same formal result as (10.2) above. In discrete density
notation, this is rewritten.

i: ColP(719); P(y10)}
Py 12) ~p0y) + —7 S Colp(i 19); p(j | 0)}

i<y =2y
I n
/;}J) [— ¥ X Sﬁc‘— py 75(;)]. (10.9)
1 <y 1<y
Clearly this method uses the internal covariances of all discrete
probabilities << y and the counts of all observations < y.

In the third approach, we simply difference (5.7), and get
plylx) ~ F(y| %) —Fly—1]x)

1 n
= (1-—=Zp(¥) p(y) + Zp(y) [,; = 3”]

N

1
+ Zp(y) — Zply —1)] - [‘ XX ¥ - X 1’(])]- (10.10)
no, 1Sy J<y-1
This is certainly simpler than (10.9), even though all counts <y
arc used. However, we have not been able to prove that 7I°(y | £) is
monotone in y for all £, and thus this method might give a negative
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forccast. There is also obvious covariance between I7(y | £) and
F(y —1]&), and we expect this {orecast to have greater variance
than (10.9).

11. USE 0F ALL SAMPLE VALUES FOR DISCRETE DISTRIBUTIONS

An interesting overview of credibility modlels for discrete distri-
butions can be obtained if we expand our forecast functions to in-
clude ai/ the discrete values of observations.

Suppose &; attains only discrete values, say &, e R. Define:

n
w; = X 8%{ (teR); 2w, =n (rr.1)
1

i
3 (213

This is just the number of samples which attain value ¢ in #
trials.
I'rom (3.5), any least-squares prediction problem using the | R |

n
observed valucs w; = X3, (/eR), requires the inversion of an
t 1

| R'| X | R|covariance matrix, whose clements can be shown to be:
{ p) [1 — () + (2 —1) Vop(7 | 0) (i =)
- pl)p(s) + (n—1) Colp(i 10); (7 10)} (¢ #J)

(11.2)

C{(l)i; w;} ==

for the homogencous collective.

If | R| is finite, the inversion of (r1.2) may be carried out by
digital computer; for semi-infinite ranges, such as the Poisson, one
may dcliberately truncate the distribution, or hope for analytic
simplifications. (Some special mulli-dimensional credibility models
are discussed in 720]). In any casc it should be noted that because of
the constraint (r1.1), the matrix is not of full rank; X Clwg;

JER
w;} -0 (V¢). Thus the rank will be <|R|—1. In addition,
certain points of mass may not have any across-the-collective
variances, and thesc values of v cannot be predicted beyond p(y);
counts at thesc values may still be useful, however. In the sequel,
we shall assume that the range R has been diminished appropriately
to the collective structure and predictand and will continue to use

notation R.
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The RHS to be used depends on the objective. Suppose we are
trying to forecast p(y | 0) for fixed y. Then:

1 =238 , Cov{n; w} = nCyp(f|0);p(y |0} {(11.3)

Enw1’

The coefficients {af ; ¢/(j € R)} arc found {rom:

of = p) — X alp() (17.4)
% Clog oy} @ = nCo{pli 10y 18)). GeR)  (rrs)

ER

and used in a forccast form:

n

Py 10p) ~[(x) = af + X af (X 8]). (11.6)
JER tr1

We shall refer to this set of coefficients as the full multe-dimen-
stonal solutron to the discrele density, for fixed v. In a certain sense,
it is the best possible solution to the prediction problem, using only
a linear function of the individual counts at each valuc in R,

Now, suppose that the above analyses have been repeated many
different times, finding the scts of cocfficients {af; af(jeR)} for
every value of v ¢ R. This requires changing only the RHS of (11.5),
and no further inversions of C{w;i; w;}. Assuming all these scts of
coefficients have been found, we can now show the interrelationship
between many of the previous models.

Iirst, because of supcrposition, 1t is clear that the fudl mdti-
dumensional solulion 1o the discrete cummlative distribution has the
form:

Py 0y) ~ AL 4 B AY(E 8 (11.7)
JER 1
with coefficients:
AV = AE” (1}“ (] :)0)
=y or (e R). (11.8)

In other words, we just cumulate the cocfficients from (11.4) and
(11.5). Alternately, we can solve the system (rr.5) with an RHS of
nCa{p( 1 0); Py | 0)).

To obtain the simpler forms given carlier, we merely constrain or
eliminate certain of the coctficients {af} using the remarks in Sec-
tion 3. The price of these simplifications is, of course, an increase in
forecast variance.

17
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For example, when predicting discrete densitics, if we set

a0 (7= R -{¥}). (11.9)
then from (11.4) and (11.5), we get
#Velp(y | 0}
o o AT AN o . 7 Y
G B T PO + () Vil [0y TP e

(r1.10)

This is exactly the credible discrete density (10.6) and (10.7),
which uscs only counts of observations equal to y.

If, on thec other hand, we sct
al - o (71 >v; jeR), (11.11)
and further constrain the nonzero cocfficients to be identical:
al = a’ (7 <w, JeR), (11.12)
a simple calculation will give the sccond formula for the density

(10.9).

Similar remarks apply to estimates of the complete distribution,
via the formulas (11.7) and (11.8). For instance, if we sct:

A o (j>yieRuAY - AV <y jeR)  (11.13)

then we get our basic credible distribution formulas (5.7) and (5.8).

To summarize briefly, we see that in the discrete case, the most
general way to predict the density, camulative distribution, or other
function of £, 41 1s to solve a multi-dimensional credibility problem,
using the counts of observations at all values of y. However, this
leads to a requirement for estimating many covariances from the
collective and a matrix inversion problem of high order. Simplified
formulac and data requirements arc obtained by further constrain-
ing these least-squares solutions, at the price of increased variance,
the results coinciding with those obtained by direct argument.

12. COMPUTATIONAL RESULTS-CREDIBLE DISCRETE DENSITY
Computations were carried out for the Poisson-Gamma distri-
butions of (9.1). The density was computed using (ro.z), the dif-
ferences of the credible distribution, and the exact Bayesian
forecast.
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Typical results are shown in Yig. 8. Generally, the results using
(ro.z) arc farther away from the cxact Bayesian forecasts, versus
differencing the credible distribution, except for estimates of
p(0]x) = 1--P(o|x), when theresults arcidentical. This performance
is due to the limited information uscd from the samples (counts equal
to y), and to the larger time constants, shown below in Table 1.

TABLE 1
Credibility ime constants for distribution and
discvete-density forecasts. Poisson-Gamma-
distribution with EE} 1, ViE} == 2.

y  Nply)  Ne)

o 2.000 2.000

1 r.793 15,200

2 1.969 11.064

3 2.300 10.185

4 2.748 10.735

5 3.307 12.052

6 3:979 r3.949

7 4.773 16.377

8 5 698 10.338
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Fig. 8. Ihscrete probability forccasts for selected values of n. Singlc simula-
tion of Poisson-Gamma distributions with E{E} — 1, V{E} =z 2, O0p = 2.
(Straight lines for clarity only).
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13. Rare COUNTS
To illustrate a limitation of the credible distribution, consider
estimating FP¢(y | O) for a large valuc of v, writing the formula:
Np(y) Pe(y) + (# of £ > y)

1--I'(y|§) == . —',QN,»(y) . (13.1)

Possible sample paths are illustrated on Fig. 9, assuming » is
continuous

PEiy1+ 3N
Pyl e 2/8
AND 50 ON
Pyl 17N

iy

n/N

Fig. 9. Sample paths for credibility estimate of 1 — P(y | 07) . N = Np(v).

We sce the familiar “‘relaxation’ of the forecast from the initial
estimate of P¢(y) following the curve 12¢(y)/(1 + (#/N)), until the
first count > ¥ causcs the estimate to jump up to a curve of similar
form which starts at ’¢(y) -{- (1/IV). The curve then relaxes again
towards zcro until the next count occurs. Tn other words, a given
sample path never rcally converges, but must continually jump up
to the neighboring path to stay in the neighborhood of PP¢(y | 0r).

If Pe(v | 84) is sufficiently small, then for fixed 2 not too large,
the first jump may not occur with high probability. To a good ap-
proximation, then, the credible forecast is a Bernoulli dislvibution,
ie.:

Loty : "
g - ﬁ(n/_z\’j with probability I -— n?¢{y | Up);
1Pyl = Pe(y)+1/N
( T4 (”/N)- with probability nf’¢(v | 0).

(13.2)

The mean of this distribution, given O, is just the complement of
(8.3), but the variance slightly underestimates the true result (8.6),
having instead a leading coefficient P¢(y | 0y) [1 — nPe(y | 0p)].
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This type of behavior may not be sufficiently accurate for ex-
tremely rare cvents, and suggests estimating more covariances from
the collective, and using morc complex formulac to obtain morc
continuously correcting estimates.

The ultimate would be a complete Bayesian analysis which uses
the value of every sample at every step to adjust the forecast.
However, this requires drastic assumptions about {’(y | 0) for all
valucs of y.

14. CREDIBLE MOMENTS

We conclude with some remarks concerning the problem of
estimating various moments of &, +1.

Tirst, for the forecast of the mean value, there is the classic for-
mula (4.6), which is known to be exact for most of the well-known
conjugate prior distributions such as Beta-Binomial, Gamma-
Poisson, Normal-Normal, ctc. [8] and [12]; a more gencral result is
shown in z1]. 1t is casily shown to be incorrect for the Uniform-
Pareto and for other familics for which the sample mean is not a
sufficient statistic [15].

Onc could also estimate the mcan by using the credible distri-
bution or density formulae, (5.7) and (10.6), etc.; numerical in-
tegration is necessary in the continuous case because of the awkward
dependence of Z upon 4.

As an example, Tig. 10, shows the mean for the Gamma-Toisson
(E{&} = 1; V{&} = 2; E{&| 09} = 2) calculated four ways:

(1) mecan-credible forecast (4.6) (xact Bayesian);
(z) credible distribution (5.7);
(3) credible density (10.6);

(4) sample mean.

The initial samples in this simulation were quite large, so there
arc some over-corrections at first ; however the response in general is
much smoother than that of the distribution forecasts. The Bayesian
estimate is, generally the most sensitive to respond to the samples,
followed by estimates from the distribution and density. This is
obvious from consideration of the magnitudes of the various N.

In his book [47, Bithlmann develops credibility formulae for the
conditional variance, V{E,,,,;],}:}, based upon scparation into a
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“variance” part, EgzV{cs+1]0}, and a “fluctuation” part, Vg
E{£5 411 0}. The first part is estimated using the sample variance;
the second uses the sample mean. On the other hand, Salmond [15]
examines the exact form of the variance for several tractable
families, and finds the variance cither as a lincar or quadratic
function of the sample mean only, when the sample mean is a suf-
ficient statistic. Thus the sufficient statistic appears to play the
major role in exact results for the variance, but the functional
dependence is more complicated.

T T T T T T T
O----0O SAMPLE MEAN
6~ e CREDIBLE MEAN-EXACT BAYESIAN
©——-0 FROM CREDIBLE DISTRIBUTION
*— —% FROM CREDIBLE DENSITY

FOR SELECTED VALUES OF n

L1 I T T
0 2 4 GSnIOIZMIG

Fig. 10, Forccasts of E{fn 1|} using four diffecrent methods. Gamma-
Poisson families. E(E} = 1; VIE} = 2; 8p = 2.

One can also estimate the variance by cstimating E{(E, +1)2 | 2},
and subtracting the square of any estimate of the mean.

If we are trying to estimate the kth moment (& > 2) then the
direct approach via (3.5) and (3.9) is clear. First we set 7 = (§n42)%,
and select an appropriate predicting function w: = gi(§) of the
observables.

If the sample mean is known to be a sufficient statistic, one is
tempted to sct

)] — » E_,g, (14.1)



THE CREDIBLE DISTRIBUTION 267

obtaining the resuit

Bt | ) ~ By o SOV 100 ELEE 01
7+l tt

Vo[E( |03}
I ”
Zy - [; !}_‘. xtw—E{g}]. (14.2)

Thus the fluctuations of the sample mean about the collective
mean cause the estimate of the A&th moment to change.
Without this foreknowledge, the most natural choice is to take
the sample kth moment:
I "
or =~ % (@)% (r4.3)

to1

obtaining an ordinary credibility formula:
I n
EfEas)t 2y ~ (1 — Zp) - E{EF} + Z . o T ()5, (14.4)

but with a new time constant:

N V{Er} L B V{ER | 0} (14.5)
-7 E(ER 10} 5 T Ve TER (0} +3

Of course the variances of &% arc in fact moments of order 2%, for
which estimates must be found from the collective.

Furthermore, there is no good prior recason why the predictors
could not only include bofl (14.1) and (14.3), but all sample Ith
moments, /= 1,2, ..., k. Tollowing this approach nccessitates
estimating all the means of the different moments, as well as
covariances of the form:

C{gt; 2710} (6, 7==1,2,...,k). (14.6)
The problem then hecomes a multi-dimensional onc.

Finally, one can imagine forming the fth moment numerically
from the credible distribution.

Regretfully, we must conclude with the obscrvation that there
arc still many unanswered questions on the cfficiency of differcnt
approaches. Credibility theory frees us from the distributional as-
sumptions of Bayesian solutions; however, we must now consider
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in more detail the form of the approximation, and the availability
of statistics from the collective. We must also keep in mind that
these estimates arc usually made for some deciston model in a larger
insurance context, and it may be more efficient to examine first the
approximations needed at that level.
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