EXTREME VALUE THEORY AND LARGE FIRE LOSSES
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[NTRODUCTION

The statistical theory of extreme valnes well described by
Gumbel [1] has been fruitfully applied in many fields, but only in
recent times has it been suggested in connection with fire insurance
problems. The idea originally stemmed from a consideration of the
IECOMOR reinsurance treaty proposed by Thepaut [2]. Thercafter,
a few papers appeared investigating the usefulness of the theory in
the calculation of an excess of loss premium. Among these, Beard
[3, 4], d’Hooge [5] and Jung [6] have made contributions which arc
worth studying. They have considered, however, only the largest
claims during a succession of periods. In this paper, generalized
techniques are prescnted which enable use to be made of all large
losses that are available for analysis and not merely the largest.
These methods would be particularly useful in situations where
data arc available only for large losses.

ExrrEME VALUE DISTRIBUTIONS

Suppose there were # losscs or claims during a given period.
These obscrvations constitute a sample of size » from a probability
distribution F(Z). If they are arranged in decrcasing order of
magnitude let Z gy), be the mth loss with Zy, the largest. Over a
succession of periods Z (), has a distribution with density function
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if I'(Z) is of the "‘exponential type™ [1]. This type has been chosen to
explain the theory since it includes well known distributions like
gamma, normal and log normal apart from the simple exponcntial
function. The “reduced’” snth largest value vy, is defined as

VY = Qpn (Z(m)n — b n) (2)
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where ay,, and b,,, are the solutions of

R i
f’ﬂ(bmn) =1I-— '; (3)
and
i
Aipn = ;Lfn(bmn) (4)

If the precise structure of F(Z) and hence the density function
f(Z) is known, the parameters @y and by, can be estimated from
(3) and (4). However, if only the values of Z gy, over a succession
of periods are available, estimates could be obtained from
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where Z—(m)n and opz are the mean and standard ecrror of Z ),
Gumbel [1] has tabulated the mean ¥,, and standard crror oy, of
ym for m = 1 to 10; I have extended this table up to m = 40 [7].
These limiting or asymptotic values are true only in the case when
the number of periods available for Z ), is large.

The parametric values of the parent distribution I7(Z) could bc
expected to change over a number of years. Hence it might be
considered desirable to use only a small number of successive values
of Z(myn. In this case, the following procedure is suggested. If the
number of periods is IV, the values y,,; (5 —1..... N) of y,, arc
given by

Uy = He Ym (7

where 7y is obtained from the cumulative frequencies
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with the aid of tables of incomplete gamma functions. (The variable
1, has @ gamma distribution). The mean and standard crror of y,,
for the sample size N could then be calculated and used in (5) and
(6) for estimating a,,n and by,p.

If the NV values of 7 (), are arranged in increasing order of mag-
nitude the jth observation Z)y,, in that arrangement would cor-
respond to the reduced extreme y,y. By fitting the straight linc

Z(m)n; = byu + M (9)

Amn

cither graphically or by the method of least squares estimates of the
parameters could be obtained. There are other methods of estimation
eg maximum likclihood, but these are beyond the scope of the
present discussions. Practical results based on extreme value
theory would involve errors due to the particular method adopted
for estimating the parameters. Hence the relative efficiency of dif-
ferent methods is an important statistical problem which needs to
be studied critically.

VARIATION IN SAMPLE SIZE
In the previous section it has been assumed that the extremes
Z (myn are from samples (periods) with constant sizes #. In the real
world, however, the number of fires or claims would vary from
period to period. Jung [6] suggested that, if the sample sizes differ
but represent “equally exposed” intervals of time, the methods
described for constant » are still applicable but with certain
modification, Following Franckx [8], he introduced the “operational
time”” an estimate of which would be given by the average of the
sample sizes. The samples might be deemed to have this average
size.
[ have considered a different approach as described in Appendix 1.
1 have shown that,
) o ;
Z(m)n, = bmn ”{“ Vg + 1006 (nj/n) (IO)

Amu

approximately, where Z )y, pertains to a sample of size n; in the
jth period. The sample size 2 could refer 1o the base period or the



296 EXTREME VALUL THEORY AND FIRE LOSSLES

average sample size. As in the case of constant », the parameters
may be estimated by fitting the linear relationship (ro) or from the
cquations

- I + f’;
bann = Zmyn, (11)
an
and
o Om 1 oyt 2oy, ,
Cpn 0.2 (I‘-)
mz

where $; and ¢}, are the mean and variance of p;[ = loge (s;/n)].
The covariance 6yp 0f v,; and p; could be included inthe calculation
though it is theoretically equal to zero

Expression (8) given in Appendix 1 is exactly truc for a parent of
simple exponential form. 1 have studicd the crrors in this approxi-
mation numerically for gamma and standard normal distributions
for sample sizes from 450 to 1000 with 2 450. The crrors were not
scrious for this range. However, it is known that for a normal
distribution, the asymptotic form (1) does not furnish a satisfactory
approximation unless 7 is extremely large.

l.arGE Losses 1v AN INDUSTRY

Pareto [9, 10] and logarithmic normal [11} are the forms usually
suggested for the parent probability distribution /(%) of firc loss.
The latter is slightly less “dangerous’ than the former [12]. lFor
physical reasons I would prefer a distribution of the “exponential
type” for the logarithm of loss [13]. Of course, if the loss has a
Pareto distribution its logarithm follows a simple exponential
form.

With the assumption mentioned above, the theoretical results
discussed in the previous sections were applicd to large losses that
occnrred in the textile industry in the United Kingdom. The data
related to the top 17 losses in the industry during the z21-year
period from 1947 to 1967. With the help of the index numbers for
retail prices the observed losses were corrected for inflation and the
logarithms of corrected losses used in the calculations. The straight
line (10) was fitted in order to take into consideration the increasing
number of fires during the period. The results are reproduced in
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Cols 2 and 3 of the table in Appendix 2. (Fire Research Note No. g10
[7] contains details of the analytical steps). The parametric values
pertain to a sample size of 1, — 465 fires in the base year 1947;
thesc were estimated from the extreme obscrvations only under the
broad assumption that the probability distribution of the logarithm
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of loss belongs to the exponential family. This assumption appears to
be justified since in all the 17 cases a high correlation was obtained
between the observations Z and the theoretical values y.

Equation (8) in Appendix 1T mcasures the effect of an increase in
the fire frequency # on the modal large 1oss by, p,. This line has been
shown in FTig. 1 for the largest, 7th largest and 16th largest losses
in the textile industry. Also shown in this figure are the upper and
lower confidence lines for the extremes obtained by inserting in (10)
the corresponding limits for the reduced extremes. The limits for y,,
were obtained directly from their distributions shown in (1). The
probability of exceeding the upper line or falling short of the lower
one for a given (n;fn1) is 0.025.

The confidence lines represent a control chart based on the cur-
rent trend. The increasc in the frequency #; of fires may be partly
due to the inadequacy of fire prevention measures. In addition, if
some or all of the actual large losses corrected {or inflation exceeded
the corresponding upper limits it may be concluded that general
changes in fire-fighting and fire protection methods, or in the in-
dustrial processes are taking place to alter the picture for worse. 1f
the losses are less than the lower limits, then the changes are for the
better.

As in the casc of human life, fires have a high rate of “infant
mortality”. In 1967, for example, out of a total number of ¢82 fires
attendcd by firc brigades in buildings concerned with textile manu-
facture 524 fires were confined to exterior components, appliances
and common service spaces [14]. If these fires are disregarded the
“duration of burning” ¢ of the remaining fires would have a prob-
ability distribution with “increasing failure rate” [13]. Hence Z
(log loss}), which is proportional to { as a first approximation, can be
assumed to have a failurc rate 2(x) increasing exponentially so that

h(n) = o2+ Bu (3)

Tfor fires “fought” expression (13) would be expected to be truce
except for small values of 7.

The extreme value parameter a,,, as defined in (3} denotes the
value of the failure rate function at the characteristic large value
bmn, the sth year i.c.

12 = g** Bb’“"] (14)

mn
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Using the 17 pairs of values for the two parameters, valucs of o
and B were estimated as —4.0825 and 0.3839 respectively for the
year 1967 (n; = 982). Since the density function of 7 is

F(Z) = h(Z)e~{rmnan g; (15)
the transformed variable
ea+Bz
E=— (16)
has the density Tunction
f(E) = Ke™* dg (17)

true for the domain log K <& < o0. In view of the fact that Z is
the logarithm of loss x

R (A (18)

The expected value of x for a desired range of loss could be cal-
culated from (17) and (18) using tables of incomplete gamma
functions. In the example considered the average loss in the textile
industry in 1967 was estimated as £ 2200 in the range £55 to
£ 10,000 (at 1967 values). At present data arc not available for in-
dividual losscs below £ 10,000. As illustrated in the cxample, by
analysing the extreme values, it is possible to estimate the total loss
in an industry or in a group of buildings with or without fire
protection measures like sprinklers. Individual totals for different
groups or geographical areas arc required for economic studies. The
British Insurance Association publish only national totals for each
month and details of their method of estimation are not known.

PARAMETERS OF THE PARENT DISTRIBUTION

Supposc the parent distribution IF(Z) has a location parameter p
and a scale parameter o. It is emphasized that p is not necessarily the
expectation nor ¢ the standard deviation. The problem is to estimate
w and o from samples of large values from F(Z).

Consider the standardized variable

1= (19)
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If n obscrvations of  in a sample are arranged in decreasing order
the mth observation in that arrangement is
Z(m)n. i ¥

(20)

t(m)n - .

If the form of I/(Z) is known the distribution G{t) of ¢ is also
known, so that the expectation, variance and covariance of L),
could be calculated by the method described by Ogawa [16]. The
moments of order statistics in small samples from well known
distributions have already been discussed and tabulated [17].

IFor large n the precise calculations of moments of order statistics
by an exact approach are time-consuming and impracticable. In
this case, the following approximate method based on extreme value
theory may be adopted. If A (yn and B yyn are the extreme value
parameters of £y, then the reduced variable

Ym = A (m)n(t(m)n MB(m)n) (21)

also has the density function shown in (1) if I7(Z) and hence G(Z) is
of the exponential type. Since G(/) is a known distribution, for a
given n, the parameters can be calculated from the equations

G"(B (7")7]) = I — (7)2'/71) (22)

and

-4():1)11 = (”/”L) S (B(m)n) (2 )

where g(f) [ = G'(#)] is the density function of . Trom (zr), the
expected value and variance of #(,,), are

E(t(m)n) = t—(m)n

__\—‘711
= B(m)n -+ 71_ (24)
A(m)yn
ancl
2
m 1] =
V([(?H)") = 42 = Gt (23)
Simn
As mentioned earlier ¥, and o), are the expected valuc and

variance of y,, already tabulated for different values of m. I have
proved that the covariance of extremes v, and v; where m >/ is
the same as the variance of v, [7].
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Hence

T

Cov U(M)”) t(””} - :1 (;;I)IL <A (n

= S (26)

Now, from (2), (20) and (21)

o

o _ fll_lz
St = )
2
m
= 7)
mn

Therefore from (25) and (27)

A (myn = Gy (28)
Similarly
- Z(m)n —
L(m)n — _—6-’ -
- bwn + (ﬁ_m_/“mﬁi‘_ I o )
= 5 (29
so that from (24), (28) and (29)
bmn —
B(m)n = —ci ’ (30)

In (28) and (30), 4 uyn and By are known quantitics while
@y and by can be estimated from the observations Z o), by onc
of the methods already discussed. Thus these two equations vield
estimates of w and 5. This method is slightly different from the one
suggested by Jung (6] in the case of the largest value, i.c. 12 = T.

However, as pointed out by Jung, it is difficult to draw reliable
conclusions from estimates based on just one extreme, viz the sth.
It is possible to overcome this difficulty by considering a number of
extremcs, say, m = I to » provided of course such data arc available
for analysis. In this casc we may procecd as follows:
from (20) and (21)

Z(m)n = + Gt(m)n (31)

2

2 2 .
Sz = G.0y (32)
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where Z,,,, and of , are given by (24) and (25). Also, from (26),
Cov :Z(m)n. Z(l)n] = 62- ’ G;znlt (33)
with s >1 and o2}, given by (26). Then following Lloyd [18] we

could obtain least squares estimates of . and ¢ by minimizing the
quadratic (matrix)form

(Z—COy V=" (Z—Co) (34)
where
Zoyn | Tl |
. 7:("):1 . 1 /_("‘)n i
Z— |7 ,C= | .7 0=
e o G
i Z(r)n I Ly

wd Vois of the form

'7‘-12 O‘g G; 6;
Ay Aon Aen Awe  Aen Adws  Aen

ol o 5 Gi
Ay - Aayn A?L’)n Aon  Aan Aen  Aen

Y o
Aau Ao e e A'fg)” A = Apyn

a? L ot al 52

Aoy = Awyn Aoy A Aen = Ao Ay

It is not nccessary here to reproduce the cquations giving the
estimates of p and ¢ and discuss other connected statistical prob-
lems.

Iexciss or Loss REINSURANCE

Suppose that the claims in a given category of risk could be
regarded as independent random variables with a distribution
function V(x). The net premium per claim for an excess loss cover
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above an amount L s, in accordance with current insurance

>

practice
P(L) = [ (x — L) v(x) dx
w2 [ av(x) dy — L Jo(y) dy (35)
where v(x) [: = V(x)] is the density function. This expression

can also be written as

PL) == [[1-= V(2)] dv (30)

By

Suppose the transformed variable Z( = log, x) has a distribution
function F{Z) and density function f(Z£) of the exponential type. It
may also be assumed that Z has a location parameter p and a scale
paramcter . If the standardized variable £ shown in (19) has a known
distribution function G(¢) and density function g(#), the values of u
and ¢ could be estimated from extreme observations by the gene-
ralised method described in the previous section. Since

logx-—n
Vi) -Flogy) -G |—r——- (37)

and

dy .— #dl — 1 sdl (38)
it is casy to verify that

log L -—pn

P(L) = d*ap ( - ) (39)
where the function

plh) = [[1 —G(O)] e al (40)

E

lixpressions (39) and (40) are similar to the results due to Jung
6] but applicable to the specific case in which the logarithm of the
claim amount x, rather than x, has an exponential type distribution.

TFor example, consider the Pareto distribution

V) =1 —2 21 €5 < ) (41)
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In this case
FlZy =1 ¢

Gty =1—¢7t (42)
with u = o0 and ¢ = (1/3). From (40) and (42)
I
o) o R e I
PRy = =7 ¢
log L
so that for kb = ——
G
_Ll ’
2 - =
P(L) = 5, (43)

in agreement with the result obtained directly from (36) and (41).

In the casc of a log normal distribution

1-—G(t) =Qe(l) = L f e " dy (44)
|/27t
Hence
plR) = [ Qull) et i
A
Q) et] ;
_. l:_(.(/)@ :| + i f g(z) aln
G k (23
&
where
d T e
=g Q) = =
After simplification
plk) == (1)o) [¢®® Qulk - -6) - eF°Qe(k)) (45)
(log L —p)

For a given & = the values of Q¢(k -— o) and

Qe(R) could be obtained from tables of the (standard) normal
probability function. (It must be kept in mind that g and ¢ are
the mean and standard deviation of Z = log ).
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In order to apply the method mentioned above, G(#} has to be a
known distribution. If the structure of G(¢) is not known but can
be assumed to be of the exponential type the following procedure
is feasible. Consider » claims x; (i = € to r) above L in dccreasing
order starting with the largest. Let v,y be the suth claim in that
arrangement with m = 1 as the largest. 1t is assumed that 2 =
log » has an exponential type parcnt distribution /7(Z). Since the
Zny = log xuyy has the probability density function shown in (1)
the expected value of x,) is given by

Y

171’111
7 ae — _ =m Yy e TV Sb s (ylay)
]"’:\’(TI[) == (I”L I)| f 14 m eom (4.6)

By integrating (46) it may be seen that

i 2om 37,Pm P(??L—@m)
Xm = E'V(’”) = 7P(1H) B (47)

where @, = (I/a,). As discussed carlier cstimates of «y and by
could be obtained from observations on x(;) during successive
periods.

The aggregale net premium above L is
S(L) = Zxm —rL (49)

"

Over a number of periods S(IL) has a probability distribution.

The expected value of S(L) is given by

S(L) = ¥ Exmy — rL.

m

== 5_]:«2(,,,) —rL (49)

m

where % ) is given by (47). [tis hoped to study the higher moments
of S{L) later.

DiscussioNn AND CONCLUSIONS

Large losses play a vital role in the economics of fire protection
mecasures which are designed to prevent a fire from becoming large.
Similarly large clams excrcise a critical effect on the performance
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of an insurer whose top risks are not cut away by reinsurance. A
reinsurer on the other hand is worried about the fluctuations in the
portfolio of large risks he accepts. Hence large losses or claims
merit special investigation.

Large losses fall on the extreme (upper) tail of the probability
distribution of firc loss. The behaviour of this tail is quite distinct
from that of the remaining major portion of the probability curve.
The nature of the tail could be studied by applying statistical
techniques concerned with truncated distributions. But this is
possible only if loss figures are available for all fires. In many
practical situations this is not the case. At the national level, for
example, figures for individual losses are available only for fires
costing £ 10,000 or more in direct damage. In thesc circumstances
the asymptotic theory of extreme values can prove useful. Tn this
paper generalized techniques have been presented which enable the
maximum usc to be made of extreme observations for practical
purposces.

[From physical considerations T conclude that the logarithm of
loss has a probability distribution belonging to the exponential
family. This family includes well known distributions like log
normal, log (simple) exponential, ic Pareto etc. It also includes the
distribution with increasing failure rate for log loss as described in
(13); this assumption would lead to the following distribution for
¥ ic loss

Flr) = Kaoa® e P (50)
where

A= (51)

cd
B

It may be recognised that (50) is one of the forms of Weibull
density. The assumption of an exponential type parcnt would
enable one to use the generalized form of Gumbel’s Type 1 asymp-
totic distribution for the mth largest order statistics.

For using the asymptotic form the number of fires 22 in a category
of risk has to be large. For small # the general theory of order
statistics [17] would be applicable, but this would require a know-
ledge of the exact nature of the parent distribution. This is heyond
the scope of this paper.
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I will conclude by agreeing with Jung [6] that the use of extreme
values has to be approached with caution. Bui extreme value
techniques are useful in situations where only large losses arc
available for analysis. Of course hetter solutions would be possible
from data on all fircs or claims.

ACKNOWLEDGMENT

This paper is Crown Copyright, reproduced by permission of the
Controller of Her Majesty’s Stationery Office. 1t is contributed by
permission of the Dircctor, Building Rescarch Establishment. (The
IFire Research Station is the Joint Fire Rescarch Organization of the
Department of the IEnvironment and Viire Offices” Committec).

REFERENCLS

[1] Gumbxe, E. J. (1y58). Statistics of extremes. Columbia University Press,
New York.

[2] ThrpauT, A. (1950). I.e traite d’excédent du colt moyen relatif (ECO-
MOR). Bull. trimest. Inst. Actu. Fr., 49, 273-343.

[3] Brarp, R. JE. (1955). Some slatistical aspecls of non-hfe insurance.
J. Inst. Actu. Students’ Soc., 13, Part 3, 139-57.

f4] Braro, R. L. (1963). Some notes on the statistical theory of extreme
valucs. Astin 3ull,, Vol, LIT, ’t. 1, 6-12.

[5] D’'Hoocr, L. (1965). Theorie des valcurs extrémes et la tarification
de “'P” excess of loss. Astin. Bull., Vol Lil, Pt. 11, 163-177.

[6] Jung, J. (1965). On the use of extreme values to estimate the premium
for excess of loss reinsurance. Astin BBull., Vol. ILI, Pt. I1, 178-184.

[7] RamacHANDRAN, G. (r972). IIxtreme value theory and fire losscs—fur-
ther results. Department of the Environment and Fire Offices’ Com-
mittee Joint I'ire Research Organisation I'ire Research Noic No. g1o.

[8] I'ranckx, E. (r963). Sur la fonction de distribution du sinistre le plus
élevé. Astin Bull., Vol. 11, Pt. 111, 415.

{9] BENKERT, l.. G. and STERNBERG, I. (1957}. An attempt lo find an ex-
pression for the distribution of firec damage amount. Trans. r5th Inter-
national Congress of Actuarics, 2, 288-294.

[10] MaNDELBROT, B. (1964). Random walks, fire damage amount and other
Paretian risk phecnomena. Ops Res., 12, 582-585.

[11] BENKERT, L. G. (1963). The log norinal model for the distribution of one
claim. Astin Bull,, Vol. 11, Pt. I, 9-23.

{r2] BENKRTANDER, G. (1963). A note on the most ‘dangerous’ and skewest
class of distributions. Astin Bull,, Vol. 1I, 1t. 111, 387.

[13] RamacHaNDRAN, G. (1970). Some possible applications of the theory of
extreme valucs for the analysis of fire loss data. Ministry of Technology
and Tire Offices’ Committee Joint Fire Rescarch Organisation lire
Rescarch Notc 837.

[14] United Kingdom fire statistics 1967. FLondon 196g. Her Majesty's
Stationery Office,



308 EXTREME VALUE THEORY AND FIRE LOSSES

15] Raviachanpran, G, (1969). The Paisson process and hire loss distri-
bution. Thirty-seventh session of the International Statistical Institute,
London

“16] Ocawa, J. (1951). Contributions Lo the theory of systematic statistics, 1.
Osaka Math. J., 3, 175-213.

[17] SarnaNn, A, E. and GrERNBERG, B, G. (ds) {rg962). Contributions to
Order Statistics. John Wiley, New York,

[18] Lrovn, 2. H. (1952). lecast-squares estimation of location and scale
parameters using order statistics. Biometrika, 30, 88-05.

APPENDIN I

By definition
Fa(bmn) = 1T — (mfn) (52)

and
FlZ) =1— 6-afh(u)du (53)

where 2{u) is the failure rate function.

[{ence
bhl!l

Hwn) = [ h{)du
~log {n/m) (54)

Tor exponential type parents the critical quotient Q(Z) given by
o) = = (55)
T =Tl »

tends to unity for large Z [1]. For large Z the density of probability

f(Z} Dbecomes very small and the same holds for the probability

f1 —I'(Z)} of a value exceeding Z. If the variatie is unlinited the

derivative f'(7) also converges to zero. I'rom (55) we may write
o s

"A=TITER T T (50)

By taking derivatives of 2{Z) we may extend (56) to write that,
for large Z
e 0 B M (A B e
L R N 7 (57)
S(Z) /(2) /(%)
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From (56), using (57) it can be shown that #’(Z) tends to zero for
large Z. By taking further derivatives it is casy to verify that all
the derivatives of A(Z) tend to zero asymptotically. In fact this
property is implied in the derivation of the asymptotic distribution
of extreme values for exponential type parents.

Let byay be the characteristic snth large value in samples of size
ny from I'(Z). In the neighbourhood of b,y

H(bmn,) — H(bmn)

(bmn, — b n) 2

- (b'mn, —bmn) Hl(bmn) +- __2—_ ]'In(bmn) +-----
{(Own, - =bmn)® |
= (bmn, — b)) B(bmn) + L M I3 (bmn) +-----
2
= (bmn, - bnm) h(bmn) (58)

Since the derivatives of & (bm») vanish for extreme values. From

”
(54), the left-hand side of (58) is cqual to log (1—:)

Henee
i
b =bmn + log —
mny mn P g 7 (59)
approximately since &(bmn) = ama.
We have
. VYmn,
/:11171, = bmn, + (60)
Ainny

where v is the reduced variable which is independent of the sample
size. I'rom (59) and (60)

, m

Zmn, = bm.n + (61)

Amn

71_1
Vmny + log

Since @y, is equal to the constant value a,, for values of binng
in the vicinity of bux.

20
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APPENDIX 2

Results for the textile industry, UlL

Extremes Amn, bmn,
(m)
(1) (2) (3)
I 2.247 5.214
2 1.785 4.829
3 1.626 4.534
4 1.460 4.327
5 1.387 4.113
6 1.424 3.988
7 1.239 3.749
8 1.163 3.504
9 1.212 3.448
10 1.034 3.259
11 0.973 3.137
12 0.925 2.972
13 0.886 2.832
14 0.924 2.749
15 0.937 2.680
16 0.950 2.583
17 1.002 2.537

The parameter bpp_is based on the logarithms of losses in units of
£ thousands at 1947 values. [#1 = 405].



