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[NTIIODUCTION 

The statistical theory of extreme values well described by 
Gumbel [I] has been fruitfully applied in many fields, but oldy in 
recent times has it been suggested in connection with fire insurance 
prol)lems. Tim idea originally stemmed from a consideration of the 
ECOMOR reinsurance treaty prol)osed by Thepaut [2]. Thereafter, 
a few 1)apers appeared investigating the usefulness of the theory in 
the calcnlation of an excess of loss premium. Among these, Beard 
[3, 4], d'Hooge [5] and .I ung [6] have made contributions which are 
worth studying. They have considered, however, only the largest 
claims during a succession of periods. In this paper, generalized 
techniques are presented which enal)le use to be made of all large 
losses that are available for analysis and not merely the largest. 
These nmthocls would be particularly useful in situations where 
data are availal)le only for large losses. 

EXTREME VALUE DISTRIBUTIONS 

Suppose there were ~ losses o1" claims during a given period. 
These observations constitute a sample of size ~ from a probability 
distribution F(Z). If they are arranged in decreasing order of 
magnitude let Z(m)~. be the ruth loss with Z0)r~ the largest. Over a 
succession of periods Z(,n.), has a distribution with density function 

+'"(Y")  - (m - -  ~)! c-mY,', - . , ~  -v,,, dy , , ,  (I)  

if F(Z) is of the "exponerttial type" It]. This type has been chosen to 
explain the theory since it includes well known distributions like 
gamma, normal and log normal apart froln the simple exponential 
function. The "reduced" ruth largest value Ym is defined as 

y , , , ,  = . , , . , ( z < , , , ) , ,  - -  b,,,,,) (~) 
19 
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where amy, and bran are the solutions o[ 

and 

= . . . .  ( 3 )  

~t 

a , , . z  - -  m f e z ( b , , . , )  (4) 

I f  the precise s t ruc ture  of F(Z) and hence the densi ty  function 
f(Z) is known,  the p a r a m e t e r s  am,~ and b,,z. can be es t imated  from 
(3) and (4). However ,  if only the values of Z(m),, over  a StlCCeSsion 
of periods are available,  es t imates  could be obta ined f rom 

and 

- -  ~i' I I I  
b,,,,, - Z(,,,),, - -  (5) 

~#ttZ 

where Z(m)u and ~mz are the mean  and s t andard  error of Z(m)n. 
Gumbel  [i] has t abu l a t ed  the mean  ~.~ an(l s t anda rd  error ~m of 
Ym for m = I to Io ;  I have  cx teudcd  this table up to m = 4 ° ['7]- 
These l imit ing or a s y m p t o t i c  values  are true only in the case when 
the n u m b e r  of periods avai lable  for Z ( . o n  is large. 

The  pa rame t r i c  values of the pa ren t  d is t r ibut ion .F(Z) could be 
expec ted  to change over  a n u m b e r  of years.  Hence  it migh t  be 
considered desirable to use only a small  n u m b e r  of successive values 
of Z(m)~z. In  this case, the following procedure  is suggested. I f  the 

n u m b e r  of periods is N, the values  Y.d ( 3 - -  i . . . . .  N) of Ym are 
given b y  

u.,s = ~J~e *',°J (7) 

where und is ob ta ined  f rom the cumula t ive  frequencies 

du 

U m# 

J 
- N +  ~ ( 8 )  
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with the aid of tables of illcomplete gamma functions. (The variable 
u,,~ has a gamma distribution). The mean and standard error of Ym 
for the sample size N could then be calculated and used in (5) and 
(6) for estimating amn and bm,z. 

If the N vahles of Z<m)~z are arranged ia increasing order of mag- 
nitude the j th  observation Z(m),j ill that arrangement would cor- 
respon(l to the reduced extreme Y,,o. By fitting the straight line 

YTlO 
Zo,O,, , = b,,,,, + - -  (9) 

ggrtz*~ 

either graphically or by the method of least squares estimates of the 
parameters could be obtained. There are other methods of estimation 
eg maximum likelihood, but these are beyond the scope of the 
present discussions. Practical results based on extreme value 
theory would involve errors clue to the particular method adopted 
for estimating the parameters. Hence the relative efficiency of dif- 
ferent methods is an important statistical problem which needs to 
be studied critically. 

V A R I A T I O N  IN SAMPLE S I Z E  

In the previous section it has been assumed that the extremes 
Z(m)n are from samples (periods) with constant sizes ~. In the real 
world, however, the number of fires or claims would vary from 
period to period. Jung [6] suggested that, if the sample sizes differ 
but represent "equally exposed" intervals of time, the methods 
described for constant n are still applicable but with certain 
modification. Following Franckx [8], he introduced the "operational 
time" an estimate of which would be given by the average of the 
sample sizes. The samples might be deemed to have this average 
size. 

I have considered a different approach as described in Appendix z. 

1 have shown that, 

Z(, , , ) , , j  = b,,,,, -4- ( z o )  
a ~n ~L 

approximately, where Z<,m)~j pertains to a sample of size n) in the 
j th  period. The sample size n, could refer to the base period or tim 
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average sample size. As in the case of constant  ,n,, the parameters  
lnay be es t imated by fitting the linear relationshi I) (IO) or from the 
equat ions 

/ J , . , ,  : 2 ( , , , ~ , , ~  . . . .  " (,:) 
El. n~ n 

and 

o ~n ] G~I) ' 2 G y I ~  
~,?Z~'Z. - = - .!  ( 1 2 )  

where /Sj and er~ are the mean and variance of py [ = loge (~J/~*)i. 
The  covariance a r t  of 7my and pj could be included ia the calculation 
though it is theoret ical ly equal to zero 

Expression (8) given in Appendix I is exact ly  true for a parent  of 
simple exponent ia l  form. 1 have studied the errors in this approxi-  
mat ion numericalh,  for gamma and s tandard  normal distr ibutions 
for sample sizes from 45 ° to ~ooo with n 45 o. The errors were not 
serious for this range. However,  it is known that  for a normal 
distr ibution,  the asympto t ic  form (2) does not furnish a sat isfactory 
approximat ion  unless n is ex t remely  large. 

I.AR(;F. LOSSES IN AN [NDUS'CRV 

Pare to  [9, I°1 and logaritlmaic normal [122 are the forms usually 
suggested for the parent  probabi l i ty  dis tr ibut ion F(Z) of fire loss. 
The la t ter  is slightly less "dangerous"  than  tile former [121. For  
physical reasons I would prefer a dis tr ibut ion of the "exponent ia l  
t ype "  for the logari thm of loss [I3]. Of course, if the loss has a 
Pare to  distr ibution its logari thm follows a simple exponent ia l  
form. 

With  the assumption ment ioned above, the theoretical  results 
discussed in the previous sections were applied to large losses tha t  
occurred in the texti le indus t ry  in the United Kingdom. The da ta  
related to the top 17 losses in the indus t ry  during the 2I -year  
period from 1947 to ~967 . With the help of the index numbers  for 
retail  prices the observed losses were corrected for inflation and the 
logari thms of corrected losses used in the calculations. The straight  
line (Io) was f i t ted in order  to take into considerat ion the increasing 
number  of fires during the period. The results are reproduced in 
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Cols 2 and 3 of tile table ill Appendix  2. (Fire Research Note  No. 9Io 
[7] contains details of the analyt ical  steps). The  paramet r ic  vatues 
pertain to a saml)le size of nt -- 465 fires in the base year  ~947; 
these were es t imated from the ex t reme obserwtt ions onty under  the 
broad assumption tha t  the probabi l i ty  dis tr ibut ion of the logar i thm 
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of loss belongs to the exponent ia l  family. This assumption appears to 
be justified since in all the 17 cases a high correlat ion was obtained 
between the observat ions Z and the theoretical  values y. 

Equa t ion  (8) in Appendix  I measures the effect of an increase in 
the fire f requency ~a on the modal  large loss bran r This line has been 
shown in Fig. I for the largest, 7th largest and I6th largest losses 
in the texti le industry .  Also shown in this figure are the upper  and 
lower confidence lines for the ext remes obta ined by inserting in (to) 
the corresponding limits for the reduced extremes.  The limits for 3',,, 
were, obta ined  direct ly from their distr ihutions shown in (I). "l'he 
probabi l i ty  of exceeding the upper  line or falling short of tim lower 
one for a given (¢as/m) is 0.o25. 

The confidence lines represent  a control  chart  based on tl~e cur- 
rent  trend.  The increase in the f requency ~aj of fires m ay  be par t ly  
due to the inadequacy  of fire prevent ion measures. In addition, if 
some or all of the actual  large losses corrected for inflat ion exceeded 
the corresponding upper  limits it may  be conchlded tha t  general 
changes in fire-fighting and fire pro tec t ion  methods,  or in the in- 
dustrial  processes are taking place to alter the picture for worse. If 
the losses are less than  the lower limits, then the changes are for the 
bet ter .  

As in the case of human  life, fires have a high rate of " in fan t  
mor ta l i ty" .  In 1967, for example,  out of a total  number  of 982 fires 
a t t ended  by fire brigades in 1)uildings concerned with texti le mann- 
facture  524 fires were confined to exter ior  components ,  appliances 
and common service spaces [14]. If these fires are disregarded the 
"dura t ion  of bu rn ing"  I of the remaining fires would have a prob- 
abili ty dis t r i lmtion with "increasing failure ra te"  [15]. Hence Z 
(log loss), which is proport ional  to I as a first approximat ion,  can be 
assumed to have a failure ra te  la(l~) increasing exponent ia l ly  so that  

h(~0 = e ~+~u (~3)  

For  fires " fough t "  expression (r3) would be exl)ected to 1)e true 
except  for small values of Z. 

The ex t reme value parameter  a~,,~ as defined in (4) denotes the 
value of the failure rate ftmction at the characterist ic  large value 
bmn~ the j t h  year  i.e. 

a, ,~.  = e ct+ I~" '9  ( I 4 )  
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Using the 17 pairs of values for the two parameters, values of c,. 
and } were estimated as --4.o825 and o.3839 respectively for the 
year 1967 (nj = 982). Since the density function of Z is 

f (Z)  = h(Z)e -~n(u)ano az (I5) 

the transformed variable 

has the density function 

-- (16) 

f(~) = Ko -~ d~ (17) 

true for the domain log K ~ ~ ~ co. In view of the fact that  Z is 
the logarithm of loss x 

x = (~-~ e-~') ' '  ( 1 8 )  

The expected value of x for a desired range of loss could be cal- 
culated from (17) and (18) using tables of incomplete gamma 
functions. In the example considered the average loss in the textile 
industry in I967 was estimated as £ 22oo in the range £ 55 to 
£ IO,OOO (at x967 values). At present data are not available for in- 
dividual losses below £ IO,OOO. As illustrated in the example, by 
analysing the extreme values, it is possible to estimate the total loss 
in an iadustry or in a group of buildings with or without fire 
protection measures like sprinklers. Individual totals for different 
groups or geographical areas are required for economic studies. The 
British Insurance Association publish only national totals for each 
month and details of their method of estimation are not known. 

PARAMETERS OF THE PARENT DISTRIBUTION 

Suppose tile parent distribution F(Z) l,as a location parameter tz 
and a scale parameter ~. It is emphasized that  g. is not necessarily the 
expectation nor cr the standard deviation. The problem is to estimate 

and a from samples of large values from F(Z). 

Consider the standardized variable 

Z - -  v. 
t - -  (19) 
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If  n observa t ions  of l in a sample  are a r ranged  in decreasing order 
the ruth observa t ion  in t ha t  a r r angemen t  is 

Z 0,~ ) .. - -  [z 
l ( , , o , ~  : ' -  (2o) 

I f  the form of I:(Z) is known the distr ibution G(I) of ! is also 
known, so tha t  the expecta t ion ,  var iance and covar iance of l(m),, 
could be calculated I) 3, the method described by  Ogawa r~I6]. The  
m o m e n t s  of order  s tat is t ics  in small samples  from well known 
dis t r ibut ions  have a l ready been discussed and t abu la ted  [I71. 

For large n the precise calculat ions of m o m e n t s  of order s tat is t ics  
by an exact  approach  are t ime-consuming and impract icable .  In 
this case, the following a p p r o x i m a t e  method  based on ex t reme  value 
theory  m a y  be adopted.  If  A(m)u and B(m),  are the ex t reme  value 
pa rame te r s  of l(,~)u then the reduced \ 'arJable 

y,,, = .4 o,,),,(t o,,),, - -  1~(,,,),,) ( 2 0  

also has the densi ty  func t ion  shown in (I) i f  F(Z) and hence G(l) is 
of the exponent ia l  type. Since G(t) is a known d is t r ibut ion,  for a 
g iven n, the parameters can be catculated from the equation~ 

G ,, (E  . , ,  . ,  ) = • - - ( , , , . / , , )  (~_~) 
a l  l( l  

..l <,,,~,, = ( , , / . ~ )  g. ,  (u ( , , , ) , , )  0 3 )  

where g(l)[  = G'(t)] is the densi ty  funct ion of I. Vrom (2r), the 
expected  value and variance of l(,,,),~ are 

E (t (,,,),,) = ~ (,,~1~, 

P #1 

" - B(m)u + A(m)~ (24) 

~[I]([ 

G'#l 2 
. / ( l ( . , , ~ . , )  - A ~ - % .  (25)  

On) n 

- 2 are the e×pected value and As ment ioned  earlier 3'm and c% 
var iance  of Gn ah 'eady t abu la ted  for different values of m. [ have  
proved  tha t  the covar iance  of ex t remes  ym and 3'* where m > /  is 
the same as the var iance of Ym I7i. 
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Hence 
2 

Coy [~(,,,I,,, l<~l,,] = [~ (,i,i,~" A itl,, 

Nt, w, from (2), (20) and (_~I) 
2 

2 G m Z 

Tllerefoi-c from (25) and (27) 

A (m)l~ ~ Gamn 

Similarly 

Z ( m ) . , -  p- 

b,,,,, + (2,,,/c~,,,,,) - - t *  
G 

so that  from (24), (28) and (29) 

b m .  - -  p.  

(26) 

(-'7) 

(2s) 

(°-9) 

(3o) 

In (28) and (3o), ,4(m)., and B(m)n arc known quant i t ies  while 
a , . .  and bin. can be es t imated from the observat ions Z( . , ) . j  by one 
of the methods  ah'eady discussed. Thus these two equat ions yield 
est imates of a and G. This method  is slightly different from the one 
suggested by .Jung [6] in the case of the largest value, i.e. ~1~ = 17. 

However ,  as pointed out by Jung,  it is difficult to draw reliable 
conclusions from est imates based on just  one extreme,  viz the ruth. 
I t  is possible to overcome this difficulty by considering a number  of 
extremes,  say, m = I to 'Y provided of course such da ta  are available 
for analysis. In. this case we may  t)rocecd as follows: 

frorn (20) and (21) 

7~(,,~)n = ~ ÷ ~[<,,,). (31) 
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where i(m)n and 2 %~t are given 1) 3, (24) ancl (25). Also, froln (26), 

Coy [Z(m),~. Z(t) ,  ] ---- 2 . .  ~zzt  (33) 

witt, m > l and 2 given by (26). Then  following Lloyd [18] we %t~ l ¢, 
could obtain least squares est imates of b and (~ by  minimizing the 
quadrat ic  (matr ix)form 

(Z - -  CO)' V- '  (Z - -  CO) (34) 

where 

Z __ 

Z ( i ) ,  I 

Z(2). 

Z(r) ,  

C = 

I l ( l ) .  i 

I l ( r ) ,  

and V is of the form 
'2 

¢7 l 

d ~1) n 
9 

A(e)n " A ( 0 n  
2 

V ---  G3 

A(a)n " A o ) u  

2 
¢Yr 

A (r), A O)n 

A ( t ) n  • A ( 2 ) n  d(1)n " A(a),, A(l)n " A(r)n 
o 2 2 

~2 ~3 Gr  

A 2 (~)n "'l(2)n ' A('.0~t A(e)n " A(r). 
2 2 2 

~T 3 G 3 ~T r 
2 - A(3)u " A(2) u d(a)n A(a)u " .4(r)n 

o 2 

.'l (~),, i~I (:),, ..I (r),~ " A (~). A ~r),, 

It  is not necessary here to reproduce the equat ions giving tile 
est imates of p. and ~ and discuss other  connected statistical prol)- 
]ems. 

E X C E S S  ()F L ( ) S S  R E I N S U R A N G E  

Suppose tha t  the claims in a given category of risk could be 
regarded as independent  random variables with a distril)ution 
function V(x). The net premiunl per claim for an excess loss cover 
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abo\'c an amount  L is, 
practice 

in accordance with current insurance 

z'(L) = T (.~ - - z . )  d x )  ,¢.~ 
L 

:-- ~ .~(.~) d.~ - L ~ ~(x),t.~ (35) 
L L 

where v(x) = ~ V(x) is the density function. This expression 

can also be writ ten as 

z,(l.) --  I E ~ - -  v(~)] , t ,  (so) 
L 

Suppose the transformed variable Z( = loge x) has a distribution 
function F(Z)  and dennity funclion f ( Z )  of the exponential  type. I t  
may  also be assumed tha t  Z has a location parameter  ~ mid a scale 
parameter  ~. If tile s tandardized variable t shown in (z9) has aknown 
distr ibution function G(t) and density function g(t), the values of ix 
and a could be est imated from extreme observations by the gene- 
ralised method described in the previou~ section. Since 

a l ld  

V(x) -F( logx)  -G[ l °g- - '~  ----[z-] (37) 

dx --  c z dZ = c '~+t° ~dl 

it is easy to \e r i fy  that  

l~(l.) = # e x p  ( l ° g L - - ~ _ ) _  

where the function 

(3s) 

(39) 

p(k) --  I [~ - -  G(t)] ~'° az (4o) 

Expre.~sions (39) and (4 o) arc similar to the results duc to Jung  
[6] but al)plicable to the specific case in which tile logarithm of the 
claim amount  x, rather than x, has an exponential  type distribution. 

For  example, consider the Pareto distribution 

I"(x)  -= i - - x  -x (~ ~< x ~< c~j) (4~)  
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In  this case 

l " ( Z )  = I ~-~'~ 

~(t) = ~ -- e - ~  

with  ~ = o and  ~ = (I/X). F r o m  (4o) and  (4~) 

), 
p ( / , ~ )  - - -  . - - - -  C - ( ) , - l l k ) l t 7  

( 4 #  

log L 
so tha t  for k - -  

G 

:'(L) - z -  i (4.~) 

in a g r e e m e n t  with the resul t  ob t a ined  d i rec t ly  f rom (36) and  (4I). 

In  the case of a log no rma l  d i s t r ibu t ion  

1 - - 6  (I) = ~c:(l)  = - ~ - £  c - ' : / e  dT, ( 4 4 )  

f 

Hence  

\V]IeI'C 

/,(/0 = ) ::° ,tt 

'i 
k 

d i 

~,(t) . ' °  

_ i ~ / ~  
,e(l)  = - -  d-~ ~ . ( l )  = i/~-~4 e 

Afte r  s impl i f ica t ion  

P(/~) -=  ( ~ / ° )  [ : ~ j ~  ~( ; ( /~  - - ~ )  - e~'%~.( /OJ (45)  

(log L - E,) 
For a g iven /e ~ the values  of ~lc(k--o) and  

c; 

~lu(/e) could be ob t a ined  frmn tables  of the (s tandard)  normal  
p robab i l i t y  funct ion.  (I t  m u s t  be kept  in mind  tha t  B and  ~ are 

the  mean  and  s t a n d a r d  dev ia t ion  of Z = logx) .  
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In order to apply the method ment ioned above, G(t) has to be a 
known distr ibution.  If the s t ruc ture  of G(t) is not known but  can 
be assumed to be of the exponential  type  the %llowing procedure 
is feasible. Consider r claims .vi ( i =  r to r) above L in decreasing 
order s tar t ing with the largest. Let  x(,,) be the ruth claim in that  
a r rangement  with m = , as tim largest. I t  is  assumed that  Z = 
log x has an exponent ia l  type parent  dis tr ibut ion .F(Z). Since the 
Z 0 ,  ) = log.~o,,) has the l)robability densi ty  function shown in (s) 
the expected vahte of x(,,,) is given by 

- -  e - ~ "  y ' '  - m e  - v , , ,  e b , , ,  + ( y , , , t a . , , , )  (46) Exo"} ('m - -  I)[ 

133 integrat ing (46) it may  1)c seen tha t  

e °,. m %  r(m - -  0,,,) 
.~,,, = Ex(, ,)  = - - P ( m )  ( 4 7 )  

where ®,u = (i/a, ,) .  As discussed earlier est imates of a,,  and bn, 
could be obtained from observat ions on x(m) during successive 
periods. 

The aggregate net premium above L is 

S(L) = x x(,,,) - -  rL (4s) 
m 

Over a number  of periods S(L)  has at probabi l i ty  distr ibution.  

The expected value of S(L) is given by 

. ~ ( k )  = Z E x ( , , , )  - -  rL 

= 23 x(,,,) - -  rL (49) 

where.gon> is given by (47). It  is hoped to s tudy  tim higlaer naonlents 
of S(L) later. 

] ) I S C U S S i O N  A N D  C O N C L U S I O N S  

Large losses play a vital role in tile economics of fire protect ion 
measures which are designed to prevent  a fire from becoming large. 
Similarly large clams exercise a critical effect on the performance 
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of an insurer whose top risks are not cut away by reinsurance. A 
reinsurer on the other hand is worried about the fluctuations in the 
port[olio of large risks he accepts. Hence large losses or claims 
merit  special investigation. 

Large losses fall on the extreme (upper) tail of tl~e probabili ty 
distril)ution of fire loss. The behaviour of this tail is quite distinct 
from tha t  of the remaining major portion of the probabil i ty curve. 
The nature  of the tail could be studied by applying statistical 
techniques concerned with t runcated distributions. But  this is 
possible only if loss figures are, available for all fires. In many  
practical si tuations this is not the case. At the national level, for 
example, figures for individual losses are available only for fires 
costing £ zo,ooo or more in direct damage. In these circumstances 
the asyml)totic theory of extreme values can prove useful. In this 
1)al)er generalized techniques have been 1)resented which enable the 
maximum use to be made of extreme observations for practical 
1)urposes. 

lq'om physical considerations I conclude that  tlte logarithm of 
loss has a i)robability distr ibution 1)elonging to the exponential  
family. This family includes well known distributions like log 
normal, log (simple) exponential,  ie Pareto etc. I t  also includes the 
distr ibution with increasing failure r a t e / o r  log loss as described in 
( a ) ,  this assumption would lead to the following distr ibution for 
x ie loss 

f(x)  = ' : - ' :  (,50) 
where 

I t  may  t)e recognised that  (5 ° ) is one of tile forms of Weihull 
density. The assumption of an exponential  type parent  would 
enable one to use the generalized form of Gumbel 's  Type ~ as3ml p- 
totic distr ibution for the ruth largest order statistics. 

For  using the asymptot ic  form the number of fires la in a category 
of risk has to be large, l;or small n the general theory of order 
statistics [z7] would Im applicable, but this would require a know- 
ledge of the exact nature of the parent distribution. This is beyond 
the scope of this paper. 
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I wilt conc lude  by  agree ing  wi th  J u n g  E6] t ha t  the  use of e x t r e m e  

wdues  has to be a p p r o a c h e d  with cau t ion .  B u t  e x t r e m e  va lue  

t e c h n i q u e s  are useful  in  s i t u a t i o n s  where  on ly  large losses are 

ava i l ab l e  for ana lys i s .  Of course b e t t e r  so lu t ions  wou ld  be poss ib le  

from d a t a  on all fires or c la ims .  
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By definition 

a l l d  

APPENDIX I 

z:,,(b,,,,,) = ~ - -  (,,~/,,) 

z 

where h(u) is the failure rate function. 

l-[ence 

(5°-) 

(5.3) 

bl,tl~ 

H(b, , , , )  = 5 h(,,,)d,, 
0 

= l o ~  ( , O ~ )  ( 5 4 )  

For exponential type parents the critical quotient  Q(Z) given by 

Z~(Z) 

O ( Z )  - -  - -  f ' ( Z ) / f ( Z )  (55) 

tends to uni ty  for large Z [~]. For large Z the density of probabili ty 
f (Z)  becomes very small and the same holds for the probabil i ty 
[I - - F ( Z ) }  of a value exceeding Z. If the variate is unlinlited the 
derivat ive f ' (Z)  also converges to zero. l:rom (55) we may write 

f (Z)  --- i f (Z)  
i t ( z )  _ ~ - - -  - -  ( 5 6 )  

- F(Z)  Z(Z) 

By taking derivatives of h(Z) we may extend (56) to write that ,  
for large Z 

- - f ' ( z )  - - f " ( z )  . - - f ' " ( z )  
h(Z) ~-~ --f(Z---)-- ~'~ f'-----(Z) ~"-  f " (Z )  (57) 
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From (56), using (57) it can be shown that h ' (Z )  tends to zero for 
large Z. By taking further derivatives it is easy to verify that all 
the derivatives of h(Z)  tend to zero asymptotically. In fact this 
property is implied in the derivation of the asymptotic distribution 
of extreme values for exponential type parents. 

Let bm,~j be the characteristic ruth large value in samples of size 
n: from F ( Z ) .  In the neighbourhood of bran 

H(b, , ,n , )  - -  H ( b . , ~ )  

= (b,,,,,, -b, , , , , )  H'(b,,,,,) + 

= ( b , , , . , - - b , , , , , )  h(L,,,,,,) + 

(bran, -- b,,, ,) 2 
i i" (b , , ,~ )  + . . . . .  

2 

(bran, - -  b,,zn) 2 
:,' (b,,, ,,) + . . . . .  

9 

(58) = (b,, . , ,  - -  b,,,,,) h(b,,,,,) 

Since the derivatives of h(b,,,) vanish for extreme values. From 

('"1 (54), the left-hand side of (58) is equal to log \-7/" 

Hence 

I 71,j 
b.~nl = bn~n + - -  log - -  

a 'lti, ?~ n 

approximately since h(bm,~) = a , , , .  

(59) 

\Ve have 

Y~ZTij 
Z,,,,,j = b,,,.nj + (60) 

where y is the reduced variable whicll is independent of the sample 
size. From (59) and (60) 

Y m ~ j +  log \ n /  
Z m n ,  = b,n.n + ( 6 I )  

Since ab, n~ is equal to the constant value a,,,~ for vahles of bran 1 
in the vicinity of bv~n. 

2 0  
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APPENDIX 2 

Results for the textile industry, U1f 

E x t r e m e s  a m n  t bran t 

(m) 
(I) (2) (3) 

I 2 .247  5 .214 
2 1.785 4 .829 
3 1.626 4 .534 
4 1.46o 4 .327 
5 1.387 4 .113 
6 1.424 3.988 
7 1.239 3 .749 
8 i .163 3 .564 
9 1.212 3.448 

i o  1 .o34 3 .259 
I I  0 .973 3.137 
i2 0 .925 2.972 
13 0 .886 2.832 
14 0 .924  2 .749 
15 0 .937 2 .680 
16 0.95 ° 2.583 
17 1.oo2 2.537 

The p a r a m e t e r  bran, is based on the  logar i thms of losses in units of 

thousands  a t  1947 values.  [nl = 465]. 


