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SUMMARY 

The  Spa r re  A n d e r s e n  model  a s sumes  t h a t  t he  in t e rc l a im t i m e s  a n d  t he  
a m o u n t s  of c la ims  are  i n d e p e n d e n t  r a n d o m  var iab les ,  t he  f o r m e r  iden t i ca l ly  
d i s t r i b u t e d  acco rd ing  to  a d i s t r i b u t i o n  f u n c t i o n  K( t ) ,  t ~ o, K ( o )  = o, t h e  
l a t t e r  iden t i ca l ly  d i s t r i b u t e d  acco rd ing  to  a d i s t r i b u t i o n  func t i on  P ( y )  
- -  cc < y < ~.  As is well known,  t he  Poisson  r isk process  co r re sponds  to  t he  
p a r t i c u l a r  case / / ( t )  = i - -  e -  Ct. In  the  p r e s e n t  p a p e r  i t  is p o i n t e d  o u t  t h a t  
a n o t h e r  p a r t i c u l a r  case, viz. K( t )  = e ( t -  h), co r r e spond ing  to a f ixed (and 
t h u s  - -  s t r i c t ly  s p e a k i n g - - n o n r a n d o m )  in t e r c l a im  t ime,  h, has  i n t e r e s t i ng  
appl ica t ions .  Thus ,  t he  ru in  p r o b l e m  cons idered  b y  Giezendanne r ,  S t r a u b  
a n d  V~Tettenschwiler in a p a p e r  to  the  1972 I n t e r n a t i o n a l  Congress  of A c t u a -  
ries in Oslo can  be  f o r m u l a t e d  b y  m e a n s  of th i s  p a r t i c u l a r  case. The  same  can  
be  said a b o u t  t he  ear l ier  model  b r o u g h t  fo rward  b y  A m m e t e r  in his  1948 
p a p e r  in S k a n d i n a v i s k  A k t ua r i e t i d s k r i f t .  

A b o u t  t he  c o n t e n t s  of t he  p a p e r  t he  fol lowing f u r t h e r  i n f o r m a t i o n  m a y  be  
given.  T h e  genera l  Spa r r e  A n d e r s e n  model  is f i rs t  p r e s e n t e d  a n d  t h e n  t he  ru in  
fo rmulas  are  g iven  for t he  case w i t h  a pos i t ive  gross r isk p r e m i u m .  The rea f t e r ,  
a modi f ied  and  more  d i rec t  m e t h o d  for  de r iv ing  ce r t a in  necessa ry  aux i l i a ry  
func t ions  is i l l u s t r a t ed  b y  examples  inc lud ing  i.a. t h e  G i e z e n d a n n e r - -  
S t r a u b  VYettenschwiler  model .  The  re s t  of t he  p a p e r  con t a in s  a d iscuss ion 
f rom the  p o i n t  of view of t he  Spar re  A n d e r s e n  mode l  of (i) t he  d i sc re te  
(equ id i s tan t )  in spec t ion  of a Poisson  process  for ruin ,  (ii) t he  A m m e t e r  mode l  
a n d  ana logous  models ,  a n d  (iii) t he  G i e z e n d a n n e r - - S t r a u b  \ ¥ e t t e n s c h w i l e r  
model .  

I .  INTRODUCTION 

E. Sparre Andersen in a paper to the 1957 International Congress 
of actuaries in New York [21 proposed a generalization of the classical 
(Poisson) risk theory. Instead of assuming just exponentially distrib- 
uted independent interocurrence (interclaim) times, he introduced a 
more general distribution function but retained the assumption of 
independence. His model, therefore, can be characterized in the 
following way. 

Let T1, T2 . . . . .  be the interclaim times. Thus Tn is the time 
between the (n - -  I)th and the nth claim. T1 is the time between the 
zero point and the first claim. The amount of the nth claim is denoted 
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by Yn. I t  is now assumed that  T1, Y1, T~, Y~ . . . . .  are independent 
stochastic variables, such that  T1, T,, .. are identically distributed 
K(t),  t > o, K(o) = o and Y1, Y,, .. are identically distributed P(y), 

oo < y < oo. Furthermore, it is assumed that  the means of K(t) 
and P(y) exist and are finite. We denote them by kl and pl respect- 
ively. The gross risk premium per time unit is assumed to be indep- 
endent of time and have the value c. 

If X(0 denotes the risks reserve at time t and u > o denotes the 
initial risk reserve we have 

n 

X(t)  = u + ct ~ Y(t ) ,  where Y(t)  ~ o if T 1 > t and Y(t)  = ~ Y~ 
V = I  

i f T i + T , + . . + T  n - < t  < T  I + T 2 + . . + T  n÷l. 

We can also write 
n n 

X ( t ) = u +  X ( c T , - - Y ~ ) + c ( t - -  X T~). 

Our main interest is in the probability of ruin during a finite or 
infinite time i.e. the probability of X(,) < o for some • such that  
o < , - ~  t where t is a fixed finite time, or the probability of 
X(,) < o for some .~ > o. 

The ruin problem for an infinite time was already considered by 
Sparre Andersen himself. The ruin problem for a finite time has 
been treated by the present author in a series of papers [II1-[I4] and 
together with Nils Wikstad [I51. However, also other authors have 
treated the indicated problem. We mention among them the fol- 
lowing authors: Brans [3], Dreze E61, Tak~cs Egl and Segerdabl [81. 
Note ttiat Sparre Andersen in his New York paper introduced some 
limitations on K(t) including i,a. absolute continuity. These limita- 
tions seem to have been caused by a desire to be able to define an 
intensity function K'( t ) / ( i  - -  K(t)).  So far as I know, these limita- 
tions were not used by Sparre Andersen in his t reatment of the ruin 
problem. In the papers by the present author (and in the papers by 
Brans, Dreze and Tak~cs) there are no such limitations assumed in 
the general presentation of the model. If for special purposes 
limitations are needed they are explicitly stated. The occurrence 
process for the claims is thus assumed to be a general renewal 
process on the positive half axis. 
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In  the present  paper, where we only treat the case with a positive 
gross risk premium, i.e. c > o, we first recall some general formulas 
pertaining to the ruin problem in this case. Thereaf ter  we specialize 
to the case wi th  only  non-negat ive risk sums, i.e. we assume 
P(o - - )  = o. For  various assumptions as to K(t) we give simplified 
forms of the essential Wiener-Hopf auxil iary functions in the ruin 
problem by  a sl ightly modified method.  

At  last, we show how the discrete model proposed by  Giezen- 
danner ,  S t raub and  Wettenschwiler  and  also the older Ammete r  
model fit in the Sparre Andersen model. The former authors  i.a. 
consider a case where their  model can be said to be a discretization 
of a Poisson model. I t  is interest ing to note how the relevant  
functions in this case of their  model behave when one let their  
model converge to the corresponding Poisson model. 

2. T H E  R U I N  FORMULAS WHEN C ~ 0 

From now on we assume tha t  the gross risk premium per t ime 
unit  is positive i.e. we assume tha t  c > o. We bring some of the 
relevant  ruin formulas in this case from the papers I I I~  and EI2]. 

As a consequence of the Remark (added in proof) at the end of Part I I  
of [12] the indicated formulas are valid without any restrictions on 
K(t) and P(y). In particular,  i t  is not  assumed tha t  the classical 
cons tan t  R > o does exist. 

By  ~ ( u ,  t) we denote the probabi l i ty  of ruin in the interval  (o, t] 
when the init ial  risk reserve is u ~ o. By  definition q~'(u, o) = o. 
The probabi l i ty  of ruin in the unl imited future  we denote by  
• (u) = ~ (u ,  oo). The following fundamenta l  integral  equat ion is 
satisfied by  the funct ion ~(u,  t) = I - -  qP(u, t) 

t u + ~ w  ~o 

• (u, t} = f dK(v) f * (u  + cv - -  x, t - -  v) dP(x) + J" dK(v) (2.1) 
0 - o o  Z 

(see [II] p. 40). 

For  *(u) = I - -  ~(u)  we get, (t -~  oo), 
u + Q e  

• (u) = ~ dK(v) J" *(u  + c v -  x) dP(x) (2.2) 

or ¢(u) = i ¢ (u  - - t )  dF(t) (2.3) 
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where F(t) = S P(t + cv) dK(v) 
0 

(see [II] p. 39). 

These equations can be solved by the Wiener-Hopf method. 
(This method was-- in  connection with ruin problems--first used by 
Cram6r [5] when he treated the Poisson case.) 

The following Laplace-Stieltjes transforms are introduced 

k(z) = S ez~ dK(t), Re(z) =< o 
0 

~o 

p(s) ---- S e'Y dP(y), Re(s) = o 

~ (u ,  z) = S e zt d, xF(u, t), u ~ o, Re(z) ~ o 
0 

~(u,  z) = O, u < o, Re(z) ~ o 

~(s, z) = I - -  S esudu ~(u ,  z), Re(s) _< o, Re(z) < o 
O--  

A (s, z) = exp [ ~ e*udu m(u ,  z) + ½ AM(o, z)], Re(s) =< o, Re(z) < o  
0 +  

(2.4) 
O -  

B(s, z) ---- exp [ - -  S esuduM(u,z)--½AM(°,z)] ,Re(s)  >-- o, Re(z) < o  

(2.5) 

where 

M(x,  z) = Z (I/n) I eZV(P"*( x + cv) - -  I) dKn*(v) 
n - 1  0 

AM(o, z ) =  M(o + ,z) - -M(o-- - ,z )  

(2.6) 

Note that  UF(u) ---- ~F(u, o) (also for u < o by definition) and that  

B(s, z) 
- -  I - -  k(z - -  cs) p(s), Re(s) = o, Re(z) < o (2.7) 

A (s, z) 

which latter relation is the Wiener-Hopf factorization relevant in 
the present case. The auxiliary functions A(s, z) and B(s, z) are, for 
fixed z with Re(z) < o, in the half-planes Re(s) __< o, Re(s) >_ o, 
respectively, continuous and, together with I /A (s, z) and I/B(s, z) 
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respectively, bounded. In the interior of the respective halfplanes 
the functions are analytic and regular. 

Note  also the following relations 

lim A (s, z)) = exp (½ AM(o, z)) (2.8) 
8"--~ - 00 

lim B(s, z) = exp ( - -  ½ &M(o, z)) (2.9) 
8"'++ 0G 

The fundamental relation is now 

A (s, z) 
q(s,z) --  A(o,.z)' Re(s) __< o, Re(z) < o. (2.IO) 

Note that i - -  q(s, z) is the double Laplace-Stieltjes transform of 
'-r(u, t). 

From the relation (2.1o) we may obtain ~(u ,  t) by a double use 
of the L6vy inversion formula, duly adapted to the present case, or 
by some other inversion procedure. Note that  the case Re(z) ----o 
may be obtained by  continuity. In particular, ~(u)  ---- ~(u ,  o) is got 
by only one inversion. 

Note also the following formula, following from the definition of 
~(s, z) and (2.1o) letting s ~ - -  oo 

- exp(½ AM(o, z)) 
iF(o, z) = I - -  A(o, z) (2.11) 

3. SIMPLIFIED FORMULAS FOR THE FUNCTION A (s, z) WHEN P(O--) ----o 
AND K(t) HAVE SOME SIMPLE FORMS 

The formulas (2.4) and (2.5) in combination with (2.6) may  seem 
rather cumbersome. However, simplified formulas for A (s, z) and 
B(s, z) may sometimes be obtained directly from the factorization 
formula (2.7). From the properties of A(s, z) and B(s, z) which are 
described immediately after the formula (2.7) but  before the for- 
mulas I2.8) and (2.9) it is obvious that  if we find some other 
functions A o(s, z) and Bo(s, z) satisfying (2.7) and having the 
mentioned properties then there is a constant ×(z) # o such that 

A(s, z) = ×(z) Ao(s, z) 
B(s, z) = ×(z) Bo(s, z) 
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Thus 

A (s, z) A 0(s, z) 
¢(s,z)  - -  A(o , z )  - -  Ao(o,z)  

so it is not  necessary to determine ×(z). However,  for some purposes 
it  m a y  be helpful to do so. This m a y  be performed by  means of the 
formulas (2.8) and (2.9). 

At  this point we emphasize tha t  one way to obtain a couple 
A o(s, z), Bo(s, z) is to take the logari thm of the right side of (2.7) 
and  apply a Cauchy integral formula. I t  turns out  tha t  in this case 
×(z) _~ I so we obtain log A(s ,  z) and log B(s,  z) as the left open 
halfplane value and the right open halfplane value, respectively, of 
a Cauchy integral 

I ( H(s', z) 
vp ,j s' ds' 2ra - -  s 

where H(s' ,  z) ---- - -  log (I - -  k ( z - -  cs') p(s')).  Note t ha t  in the 
general case it is necessary to interpret  the Cauchy integral  as a 
principal value at infinity.  Details of the deduct ion are found in 
[12] pp. 19-21. In the same paper the indicated formula was used, to 
o b t a i n - - b y  modification of the integrat ion pa th - - s imple  formulas 
for A(s,  z) and B(s,  z) in some cases where we know something 
about  the zeros of I - -  k(z - -  cs) p(s). 

In the present paper, however, we apply a more direct deduct ion 
of A o(s, z), Bo(s, z) without  use of complex integration.  Some 
knowledge about  the zeros of I -  k ( z -  cs)p(s)  is however ex- 
ploited. Ins tead  of doing a sys temat ic  s tudy  by  means of this direct 
me thod  we il lustrate the power of the me thod  in three examples. 
We begin by  an example, which is a part icular  case of the next  
example. 

E x a m p l e  I 

K(t)  = I - - e  -~t, P ( o - - )  = o. 
I ® 

Here k ( z ) -  and p(s) = J" eSv dP(y)  are analyt ic  and  
I - - z i g  o -  

regular in the open halfplane Re(s) < o and  continuous in the 
closed one (Re(s) ~ o). 
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Thus, for Re(z) < o, 

~p(s) 
g ( s ,  z )  = I - -  k ( z - -  cs) p ( s )  = I - -  ~ + cs  - -  z 

is meromorphic  in Re(s) < o with one simple pole at  s = (z ~ ~)/c 

I t  is easy to see tha t  there is also one and only one zero in Re(s) 
< o (use Rouch6's theorem in the circle with radius ~/c and center  
in (z - -  ~)/c, cf. [IO] p. 38). Denote  this unique zero by  si(z). Let  us 
now construct  a Bo(s, z) as simple as possible. Since B(s, z ) =  
A(s, z) g(s, z) according to formula (2.7) we see t ha t  B(s, z) is 
meromorphic  in the halfplane R e ( s ) <  o with a simple pole at  
s = ( z - - ~ ) / c  and a simple zero at si(z). Since there are no more 
poles or zeros and B(s, z) and I/B(s, z) are bounded and zerofree in 
Re(s) ~ o the obvious suggestion is 

s - -  S l ( Z )  c(s  - -  s l ( z ) )  
B o ( s ,  z)  - 

s - -  ( z - -  ~) /c  - ~ + cs - -  z 

This corresponds to 

c(s  - -  s , ( z ) )  
A o(S, Z) -~- ~ + cs - -  ~ p ( s )  - -  z 

Since A o(s, z) is bounded and  zerofree (analytic and regular in 
Re(s) < o and continuous in Re(s) ~. o) together with I/Ao(s, z) in 
Re(s) • o we have 

B(s, z) = x(z) Bo(s, z) 

A is,  z) = ×(z)  .4 o(s, z)  

However,  ×(z) ~- I which is seen in the following way. From (2.8) 
and (2.9) we see t ha t  

A ( - -  oo, z) = exp (½ AM(o, z)) 

B ( +  oo, z) = exp ( - -  ½ AM(o, z)) 

However,  it  is immedia te ly  seen tha t  

Ao( - -  oo, z) = i = B 0 ( +  oo, z) 

Thus we must  have 

exp (½ AM(o, z)) = x(z) 

exp ( - -  ½ AM(o, z)) = x(z) 



COMMENTS ON THE SPARRE A N D E R SEN MODEL I I I  

and  the  only  solut ion hereof  which is compat ib le  wi th  (2.6) is 

AM(o, z) = o, ×(z) = I 
We thus  have  

c ( s -  sl(z))  
A ( s ,  z) = + cs - -   p(s) - -  z (3.1) 

( s  - -  

B(s,  z) - -  ~ + c s - -  z (3.2) 

The  formulas  (3.1) and  (3.2) for ~ ~- i were deduced  in [lO 1 p. 38 
b y  complex  in tegra t ion  in the  sl ightly more  res t r ic t ive  case 
P(o) = o. Of course, also the  complex  in tegra t ion  m e t h o d  works if 
only  P ( o  - - )  -~ o. The  assumpt ion  of a posi t ive p robab i l i t y  for  zero 
risk sums m a y  seem unrealistic.  Howeve r  it  m a y  be a w ay  to take  
care of ve ry  small r isk sums. No te  also the  wel l -known fact  t h a t  
such a process m a y  be reduced  to  ano the r  Poisson risk process 
wi thou t  zero risk sums bu t  wi th  ano the r  in tensi ty .  Such a reduced  
process has the  same A (s, z) as the  unreduced  process. 

Example  2 
n n 

K(t)  = I - -  X b~e "~vt, ]E b,, = I. P ( o - - )  = o. 

(It is not  necessary tha t  all b~ > o as e.g. convolu t ions  of simple 
b u t  different  exponent ia l  dis t r ibut ions show. The  ~ ' s  are assumed 
to  lie in the  halfplane Re(~)  > o and be disjoint.  The  non-real  
among t he m  mus t  lie in complex-conjuga te  pairs. Among  the  ~ ' s  
with min im um real pa r t  one must  be real.) 

The  proper t ies  of p(s) are as in E x a m p l e  I. 
t O  

The  funct ion k(z) = -f- eZ , dK(O = ~ b, is meromorphic  
I - -  

with  simple poles a t  s = ~ ,  ~ = I . . . . .  n. 
Thus  for Re(z) < o the  funct ion  g(s, z) = I - -  k(z - -  cs) p(s) is 

meromorph ic  as a funct ion  of s in the  halfplane Re(s) < o. There  
are n simple poles a t  s = (z - -  ~)/c .  I t  is also easy to  see t h a t  there  
are  n zeros in the  said halfplane (note t ha t  

I 
S d,  log g(s, z) = o 
v 
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where C is a halfcircle to the left  of the  imaginary  axis with a 
sufficiently large d iamete r  lying on the said axis). Let  the zeros be 
sx~(z), '~= I . . . . .  n. Since B(s , z )  = A ( s , z )  g(s ,z)  we see tha t  
B(s, z) in Re(s) < o mus t  have  the sl~(z)'s as zeros and the points 
( z - - ~ ) / c ,  ,~ = I . . . . .  n, as poles. At the same t ime B(s, z) and 
I /B(s,  z) must  be bounded  and cont inuous  in Re(s) ~ o (analytic  
and regular  in Re(s) > o). The  obvious suggestion of a funct ion 
with these proper t ies  is 

n n 

B o ( s ,  z) = = 
s - -  (z - -  ~ ) / c  ~ + cs - -  z 

The corresponding A o(S, z) is clearly 

A o (s, z) = 
Bo(s, z) 

n 

n 

[I c(s - -  s~ ( z ) )  

n n n 

v e t  t L =  l ~ 1  

I t  is immedia te ly  clear t ha t  A o(S, z) has the proper t ies  required 
for such a function.  

We thus  have  

A ( s ,  z) = ×(z) A o ( s ,  z) 

B(s, z) = ~(z) Bo(s, z) 

E x a c t l y  as in Example  I it  is found tha t  AM(o, z) = o, ×(z) ~ I 
so we have 

A (s, z) = A 0(s, z) 

B(s, z) = Bo(s, z) 

The  same result  was deduced in [121 by  means  of complex in- 
tegra t ion  though  under  the restr ict ion P(o) = o. The remarks  at  the 
end of E x a m p l e  I per ta in ing to  the case with a posit ive probabi l i ty  
for zero risk sums ca r ry  over,  mutat is  mutandis ,  to the present  
example.  
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Example  3 

K(t)  : ¢ ( t - -  h), h > o, dP(chj  : aj, j : o ,  i . . . .  , ~ a j =  I ,  aj => o, a o > o  
J - 0  

This  is the  discrete  model  p resen ted  b y  Giezendanner ,  S t r a u b  and  
Wet tenschwi le r  [71. No te  t h a t  the  gross risk p r e m i u m  per  t ime  uni t  
enters  in the  defini t ion of P(y) .  

Obvious ly  p(s) = ~ aj e,chJ is a periodic funct ion  of s wi th  the  
J - 0  

per iod 2~i/(ch). Moreover,  the  funct ion  is ana ly t i c  and  regular  in 
Re(s) < o and  con t inuous  in Re(s) .~ o. Since we h a v e  k(z) = e h~ 
we find t h a t  

g(s, z) = I - -  k(z - -  cs) p(s) = I - -  e hz ~ aj e •oh <j-1) (3.3) 
J - 0  

also is a periodic funct ion  of s wi th  the  same per iod 2~i/(ch). I t  is 
also ana ly t i c  and  regular  in Re(s) < o and  cont inuous  in Re(s) __< o. 
W h a t  can  we say  a b o u t  the  zeros of g(s, z) for Re(s) < o, Re(z) < o ? 
We in t roduce  the  var iab le  w : eeh* and  s t u d y  the  equa t ion  

i - -  e hz X aj w J- 1 = o (3.4) 
J ~ 0  

Corresponding to Re(s) < o we h a v e  I w I < I .  W e  mu l t i p ly  b y  
w and  get  the  equ iva len t  equa t ion  

c¢ 

X aj wJ = e-h~ w (3-5) 
l - 0  

(Note t h a t  w : o nei ther  is a root  of (3.4) nor  of (3.5) since we 

have  a s sumed  t h a t  ao > o). 
An appl ica t ion  of Rouch6 ' s  t h e o r e m  now shows t h a t  (3.5) has  

jus t  one root  in I w [ < I .  I n  fac t  t ake  
a0 

f (w)  = e-h~ w, g(w) = e-h~ w - -  X aj wJ 
j - o  

t hen  on I w ] = I we h a v e  for Re(z) < o 
~o 

I f ( w ) - - g ( w )  I = I Z a j w J [  __< I < If(w) [ 
~-0 

Thus  f (w)  and  g(w) have  the  s ame  n u m b e r  of zeros in I w I < I 
However ,  f(w) has  jus t  the  zero w = o so also g(w) has  one and  only  
one root ,  say  wl(z), in I w [ < I and  this  one canno t  lie in w = o as 
we po in ted  out  above.  Note  t h a t  o < w l  (z) < I ,  when  z is nega t ive  real.  
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Thus  the funct ion (3.3) has jus t  the  s imple .zeros  in Re(s) < o 

I 2~iv 
sly(z) = ~ l o g w l ( z )  + ~ -  , v = o, ~ I,  ~ 2 . . . . .  

where  we determine  log wl(z) so tha t  it is real for z negat ive  real 
and  varies cont inuous ly  wi th  z. 

Obviously,  these zeros are also the  zeros of I - - e  -¢hO-alo(z)). 
Since this funct ion is analyt ic  and regular in the  whole s-plane and  
is boun d ed  and also bounded  away  from zero in the  f ight  halfplane 
Re(s) >1 o, we suggest the  choice 

Bo(s, z) = I - -  e -c~(*-s~°(z)) 
Then we have 

I - -  e -eh(s-s~°(z)) 
A o(S, z) = 

i - - e h z  e -ehs ~ a je  eM* 

Clearly A 0(s, z) is together  with I /A  o(s, z} analyt ic  and regular in 
Re(s) < o. In  Re(s) __< o t hey  are cont inuous  and bounded.  

Thus  we have  A (s, z) = ×(z) Ao(s, z), B(s ,  z) • x(z) Bo(s, z) 

In  order  to determine x(z) we note  tha t  

lim Ao(s, z) = (I/ao) e *~*'°(z) -h ,  
8 - ' + -  cxD 

lim Bo(s, z) = I 
8--+OO 

From (2.8) and (2.9) we now conclude tha t  

exp (½ AM(o,  z)) = ×(z) exp (ch slo(z) - -  hz)/ao 

exp ( - -  ½ AM(o,  z)) = x(z) 

The only solution hereof, compat ib le  wi th  (2.6), is 

×(z) = ~ exp z - -  - -  'lo(Z) (3.6) 
2 

AM(o, z) = - -  log ao + ch Sl0(Z) - -  hz (3.7) 
We  thus  get 

(~  ch ) I - - e  -¢'O-s' '(z)) 
A (s, z) = ~/~ exp z - -  - -  slo(z) (3.8) 

2 i__ehze_eh  s ~ ajeeMs 
4 - 0  

B(s,  z) = l / ~  exp z - -  - -  Slo(Z) ( I - - e  -ch~s-~°("))) (3.9) 
2 
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Giezendanner, Straub and Wettenschwiler mainly consider their 
model as a discretization of an underlying Poisson risk process. I t  
may  in such a case be interesting to see how formulas (3.8) and 
(3.9) behave when the discretization parameter h tends to zero. I t  
turns ou t - -no t  surprisingly--that  the A(s, z) according to (3.8) 
tends towards the A(s, z) according to (3.1). Contrary to this, 
B(s, z) according to (3-9) and g(s, z) according to (3.3) tend to zero. 
A division by  h before the limiting process, however, brings them 
in a closer contact with the corresponding functions for the Poisson 
process. 

In fact, considering a Poisson process such that  the distribution 
function of the accumulated claim amounts up to the epoch t is 

F(y, t) = ~ e -~  ~t Q~*(y),Q(o) = o (3.1o) 

the authors define two sets of quantities an, n = o, I . . . . .  (see [7] 
p. 647) representing a lower and an upper discretization of F(y, h) 

I ao = F(o,  h), aj = F(chj ,  h) - - F ( c h ( j - -  1), h ) , j  = i ,  2 . . . .  

i.e. a o = e  -~h,aj = ~ e - ~  ,~! [O~ ' ( ch j ) - -Q~ ' ( ch ( j - -  1))1 

II ao = F(ch--,h),  a j=F(ch ( j+ i ) - - ,  h ) - -F(ch j - - ,  h ) , j = I ,  2 . . . . .  

i.e. a o = ~ e  -~n(~h)" = ~ e  -on(~h)" ~--V Q''(ch --) ,  aj ~ t 
M = O  ~ - - 0  

EQ~*(ch(j + 1) - - )  - -  Q~*(chj--)] 

In both cases I and II it is easily found that  

g(s,z) = I - - e  -hz -ens ~ ajeenJs = h(~ + cs--z--~q(s))  + o(h), h ~ o 
I - o  

where 

q(s) = S e "u dO(y ) 
o 

I t  is also found in both cases that  

B ( s ,  z) = h c(s - -  s~(z)) + o(h) 
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and  las t ly  t h a t  

( s  - -  s l ( z ) )  
A ( s ,  z) = ~ + c s - - z - - ~ q ( s )  + o(I)  as h - - ~ o  (3.11) 

Here  sl(z) is the  zero appear ing  in the  Poisson case. Clearly (3.11) 
shows tha t  in the l imit  we get the  A(s, z) belonging to the Poisson 
case. 

In  passing,  we note  t h a t  the  au thor s  also, for ~h < I ,  consider 
the  more  m a n a g e a b l e  choices 

I I I  a o  = 1 - -  ~ h ,  a j  = ~ h ( O ( c h j )  - -  Q ( c h ( j  - -  1 ) ) ,  j = 1 ,  2 . . . .  

I V  a o  = i - -  ~ h ( ~  - -  Q ( c h  - - ) ) ,  a j  = ~ h ( Q ( c h ( j  + 1)  - -  ) - -  

Q(chj  - - ) ) ,  j = I, 2 . . . .  

Of course, the  re la t ion (3.11) is still valid. 

4. THE EQUIDISTANT INSPECTION FOR RUIN OF A POISSON PROCESS 

I f  we have  a Poisson risk process  wi th  the in tens i ty  ~ and  the 
c la im dis t r ibut ion  Q(y) ,  y > o ,  and  wish to consider the p robab i l i t y  of 
ruin a t  the equ id i s tan t  points  ~h, ~ = I ,  2 . . . . .  n~ we can as well 
consider  the p robab i l i t y  of ruin dur ing  the  t ime  in te rva l  (0, nh] for 
a Spar re  Andersen process wi th  K ( t ) =  ~ ( t - - h ) ,  P ( y ) =  F ( y ,  h) 

where F ( y ,  h) = Z e -~h {~h)~ - , !  Q'J*(y), Q(o) = o.As is wel l -known 

the  ruin can only  occur  a t  the epochs of " c l a ims"  i.e. a t  points  
vh, ~ = I ,  2 . . . . .  n. The  a m o u n t s  of " c l a ims"  are d i s t r ibu ted  ac- 
cording to P ( y )  = F ( y ,  h). Note  t ha t  Y = 0 has  a posi t ive  probabi l i -  
t y  F(o,  h) = e-~h. In  this case it is thus  meaningfu l  to speak  a b o u t  
zero risk sums.  

The  crucial  W i e n e r - H o p f  funct ion g(s,  z) t akes  here the fo rm 

g(s,  z) : I - -  k (z  - -  cs) p (s )  = I - -  e htz-cs) e~htq (s) -1) 

-~- I - -  e -h(~+cs-z-~q(s)) 

SO far  we have  not  used the a s sumpt ion  Q(o) : o of (3.1o). F r o m  
now on, however ,  we emphas ize  this a ssumpt ion .  In  order  to per-  
fo rm the fac tor iza t ion  

B(s ,  z) 
g(s,  z) - -  A (s, z) 
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we first look at  the location of the zeros of g(s, z) in the left half- 
plane Re(s) < o. 

These zeros are the zeros of the functions 

2~i  
~ + C S - - Z - - ~ q ( $ ) -  h ~' ~ = o ,  ~ I . . . . .  

i.e. sl z + ~ , J  if sl(z) denotes the unique zero in Re(s) < o of 

~ + c s -  z -  ~q(s) i.e. the zero pertaining to the Poisson process 
if cont inuously inspected (cf Example  I). 

As pointed out  in Example  I we always know tha t  sl(z) is located 
in the interior of a circle with center at  (z - -  ~)/c and with  radius 
~/c. Thus 

2r¢i ~ z + (2rd/h) , , -  ~ 
s,  z + T ~] - -  c < - c (4.~) 

27ti 
so tha t  the exponent  of convergence of the sl z + ~ , ]  is one. 

Since, in the present case, g(s, z) as a function of s is analyt ic  and  
regular in Re(s) < o and in this region is of exponent id type  ch (in 
Re(s) ~ o g(s, z) is continuous), we conclude tha t  B(s, z) is an 
entire funct ion in s of exponential  type  ch having the zeros 

s, z + - T - ~  ] ,  , = o , ± I  . . . . . . .  

Th.e general appearence of such a function can be deduced from 
H a d a m a r d ' s  factorizat ion theorem. Wi thou t  going into details in the 
general case we concentrate  on the part icular  case when Q(y) is a 
discrete dis tr ibut ion function with its jumps at  y = ch, 2ch . . . .  
i.e. 

q(s) = X b~ e e b b s , E b b =  i,  b~ >__ 0, ~ = 1 ,2  . . . .  

Here q(s) is a periodic funct ion with the period 2~i/(ch). Thus 

( 2 r c i )  2rci 
s~ z + - ~ -  ~, = s~(z) + ~ ,, 
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so we get  

and 
B(s, z) = ×(z) (I - - e  -chcS-8`¢z))) 

I ~ e - e h ( s - s ~ ( z ) )  

A(s, z) = x(z) i__e_h(3+es_z_~q(s)) 

Thus  we are back in the  model  b y  Giesendanner ,  S t raub  and 
Wettenschwiler .  

The  weights a0, al, . . . .  to  app ly  in their  model  m a y  be expressed 
b y  bo, bl, . . . .  if we use the  iden t i ty  

aj M = e -~hO- ~ b~a:~) . ,  (4 .2 )  

In  E x a m p l e  3 we appl ied the  said model  b y  following the authors '  
d i rect  discret izat ion of F(y, h) by  the choices I and  I I  of a0, a~ . . . .  
In  this section we are led to thei r  model  b y  a discret izat ion of Q(y) 
r a t he r  t han  of F(y, h). I t  is obvious tha t  a discrete Q(y) entails  a 
discrete F(y, h). Of course, this discrete F(y, h) must  not  be con- 
fused wi th  the discret ized versions according to I or I I  of the 
original F(y, h) before the discret izat ion of Q(y). Needless to  say, the 
direct  discret izat ion of F(y, h) is superior  ill efficiency to a discreti-  
za t ion via Q(y). 

5. THE AMMETER MODEL AND ANALOGOUS MODELS 

Let  us consider a risk process in discrete t ime (o, h, 2h, 3h . . . ,  
nh, . . .  ) such tha t  for  eve ry  nh, n ~> I, we have  a s tochast ic  variable 
Yn. We assume tha t  the Yn's are independen t  and ident ical ly  
d i s t r ibu ted  s tochast ic  variables  wi th  the common dis t r ibut ion 
funct ion  P(y). Our risk theore t ic  in te rpre ta t ion  of this simple 
scheme is now tha t  Yn represents  the to ta l  claim a m o u n t  in the  
in terva l  ((n - -  i)h, nh) and our  interest  is in the possibil i ty of ruin at 
points  nh, n = I, 2 . . . .  [t/n]. The  solution of this problem is obvious-  
ly  the  same as the solution of the ruin problem for a Sparre  Andersen 
process wi th  K(t) = , ( t -  h) and  the indicated P(y) .  One instance 
was a l ready considered in the previous section 4:  

(y) 
v - o  
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Another instance is.the model considered by  Ammeter  in his 1948 
paper in Skandinavisk Aktuarietidskrift [iJ. Here we have 

a0 

P(y) = P (h) (5.2) 
~ / = t l  

where 
oo 

P # )  = -[ e dU(x) 
0 

I xy 
with U(x)-  r('~) ~ e-v v'~-I dv (5.3) 

Other choices of the weight function U(x) give further instances. 
As is well known (see Bfihlmann [4~ PP. 74-75 or Thyrion [16]) the 

case of an infinitely divisible U(x) (as e.g. (5.3)) admits for fixed h 
a transformation of h and Q to say hi and Q1 such that  

P(Y) = e-A' ~ Of* (Y) 
X t - O  

Then the t reatment  of section 4 can be applied if we let ~ = hl/h. 
In the case (5.3) Ammeter  himself performed such a reduction of his 
ruin problem to the corresponding problem in the Poisson case. 

6. SOM FURTHER COMMENTS ON THE EXAMPLE 3 OF SECTION 3 

Giezendanner, Straub and Wettenschwiler considered only the 
ruin problem for an infinite time period. They used a combinatorial 
result due to TaMtcs in order to get a starting value in a recurrence 
scheme for the determination of W(u). 

We will now try  to retrieve the recurrence scheme and the starting 
value by  means of the theory for the Sparre Andersen process. 
However, we will already now point out that  there is a difference 
between our definition of ruin and the one adopted by  Giezendanner, 
Straub and Wettenschwiler. They speak about  ruin when X(x) ~ o 
while our definition is X(-~) < o .  When at least one of K(t) and P(y) 
in the Sparre Andersen model is continuous the indicated difference 
in definition is irrelevant. In the present case both K(t) and P(y) 
are discontinuous and we must be more cautious. However, it is 
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easy to make  a final correction for the difference of definition so we 
s tar t  out  with our own definition. 

We consider the equat ion (2.3) i.e. 

q)(u) = J" ~ ( u  - -  t) dF(t) ,  @(u) = I - -  tF(u), u => o 

where 

F(t) = i P( t  + cv) dK(v)  
o 

and recall our choice K(t)  = ¢ ( t -  h) and dP(chj)  = aj , j  = o, I, 2, 

. . . ,  aj >= O, ao ~ o, ~ a j  = 1. 
j ~ O  

Thus F(t) = P( t  + ch) and 

a,(u)  = f ~ ( u  - -  t) dP(t + ch) = X ,~ (u - -  chj) aj+~ (6.~) 

From the definit ion of tt~(u) it follows tha t  rE(u) and q~(u) must  be 
constant  in every interval  ,ch =< u < (~ + I) ch since the increment  
of X(t )  from nh to (n + I)h always is an integer mult iple of ch. Let  
us now denote ~(,~ch) by @~. From (6.1) we get 

~ =  ~ _ j a j + l , v =  o , I ,  2, . . .  
i = - ' l  

i.e. ~ =  O~÷la0 + ~ al + ~ _ ~ a ~ ÷ l  
j = l  

Thus 

a o * ~ ÷ l  = (I  - -  a l )  ~ - -  ,X aa÷~ ~ _ j ,  = o,  i ,  2 . . . .  (6 .2)  
j = l  

Since we have assumed ao > o we m a y  obta in  all ~ recursively 
if we know ~o = ~(o) = I -  tF(o). For  this purpose we exploit 
the formula (2.11) 

exp (½ AM(o, z)) 
' t ' ( o ,  z )  = I - -  

A ( o ,  z) 
and formulas (3.7) and (3.8). 

Since tF(o) = lim q~'(o, z) 
Z--~0 

I 
we seek lira AM(o, z) and lim - -  

~-~0 ~-~0 A (o, z)" 
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W e  f ind  f r o m  f o r m u l a  (3.7) 

t h a t  l i ra  A M ( o ,  z) = - -  log ao + chslo(o) 
z......_~0 

w h e r e  

I 
Slo(O) = l im  slo(z) = l i m  ~ log  wl(z) 

Z--~-O Z----.~O 

R e g a r d i n g  t h e  e q u a t i o n  (3.5) we  e a s i l y  see t h a t  

l im  wl(z) = I if ~ = E j a j  __< I 
Z-+0 i ~ 1 

b u t  

o < l i m  wl(z) < i  if ~ >  i 
z-.~0 

T a k i n g  f i r s t  t h e  case  ~ =< I 

we f i n d  

a n d  

I 
l i m  
z-~0 A(o ,  z) 

l i m  A M ( o ,  z) = - -  log  ao 
Z-->0 

T h u s ,  in  t h e  case  ~ __< I 

I m O~ 

Vao 

¢ ( o )  = ~ - -  ~ ( o )  = 

L e t  us  n o w  c o n s i d e r  t h e  case  ~ > I .  

W e  g e t  

i 
l i ra  - -  o 
~-~0 A(o, z) 

a n d  t h u s  

(use f o r m u l a  (3.8)) 

a 0  

¢ ( o )  = o .  

I n  t h e  case  ~ _> I w e  t h u s  h a v e  0 ( o )  = o a n d  (6.2) s h o w s  t h a t  
~ ( u )  = o for  e v e r y  u => o. 

I n  t h e  c a s e s <  I we  h a v e O ( o )  - -  > o a n d  (6.2) g ives  
a o  

O(u) for  u => o b y  r e c u r r e n c e .  



122 COMMENTS ON THE SPARRE ANDERSEN MODEL 

We now turn to the definition of ruin by  condition X(=) =< o for 
some z > o. 

Obviously, the probabili ty of such a ruin when u > o, is ~F (u--) 
if ~F(u) is the probabili ty of ruin according to our definition. 

The two values ~F(u) and ~F(u--) differ only for u = chj. Thus 
according to the definition (X(=) =< o) we should have the probabil- 
ities of non-ruin at u ---- chv, v = I, 2, . . .  to be ~ _ 1  rather than 
~ .  Denoting ~ _  1 by  Q~ we get the recurrence equations 

aoQ~+~ = ( I  - - a l )  Q~+i - -  X a~+1Q~_j+~,  ~ = o, I ,  2 . . . .  
i - t  

o r  

a0 Q~+i = ( I - -  a l )Q~- -  x aj+ 1 Qv-j, ~ = I, 2 . . . . .  
t - 1  

I I - - 0 t  
Q1 - -  ao 

which are the recurrence relations given by Giezendanner, Straub 
and Wettenschwiler [7] P- 646. However, we have not introduced 
Q0 but  this may  be done by  the obvious formula Qo = aoQ1. 

Note  that  it is possible--at  least pa r t ly - - to  treat the ruin problem 
for a f in i t e  period by similar recurrence methods. 

Consider first equation (2.I), letting K(t)  = ¢ ( t -  h). 

We get f o r o  =< t < h  

¢(u,  t) = I (since only the second term of the righthand side gives 
a contribution) 

and for t _>_ h 
tt + tIh 

¢b(u, t) = J" ~ ( u  + ch - -  x, t - -  h) dP(x)  

~[ , , / ( ,h~ ] + 1 

= E O ( u + c h - - e h j ,  t - - h )  a t 
j - a  

Since ~(u , t )  is constant for vch __< u < ( v + I )  ch, tth_< t <  
(~ + I)h we simplify the notation by  denoting the said constant by  
*,,~. Thus 

¢I)v, o = I 
v + t  

**,~ = 2E ~,+1-L~-la¢, tz _>_ I. 
f - 0  
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In practice, these relations may  be used for small bt. 
Another  procedure is the following. 
Corresponding to (2.1) we have the relation (see EII] p. 41) valid 

for Re(z) _<_ o, where ~(u, z) = I - -  W(u, z), u >= o, 
ao t o  u + e ~  

~,(u, z) = I ( i -  e ' )  dK(v) + I e "  clK(v) I ¢ ( u  + c v - - x ,  z) dP(x) 
o o - t o  

Taking K(t) = ¢(t - -  h) we get 
t ~ + e h  - -  

~(u , z )  = I - - e a a  + eZh ~ ¢ (u  + c h - - x , z )  dP(x) 
- m  

i.e. 
[.t,q + I__ 

,l,(u, z) = I - -  e~h + e~t, X; ¢ ( u  + ch - -  chj, z> aj 
~ t - o  

Observing tha t  ~(u,  z) as a function of u is constant  in ~ch __< u < 

(,J + I) ch and denoting this value by ~(z)  we get 
M + l  - -  

¢~(z) = I - - e ~ h  + e~h X ¢~÷~_j(z) aj 

I - -  e z~ 

+ ao + * # )  a, + 
~ + 1  _ _  

+ x ¢~+~_~(z)at) .  

Thus 

a o ¢ ~ + l ( z )  = I - -  e - ~ h  

+ (e - ~  - -  al) $v(z) 
' ~ + 1 _ _  

- -  X ¢~+~_~(z) a s, 
f - t  

= O,  I ,  2 ,  . . . .  (6.3) 

If we know the value of ~0(z) = ~(o, z) the relation (6.3) admits  

a recurrence determinat ion of ~v(z) in just the same way as ¢v. 

However, ~(o, z) is easily determined by (2.II), (3.7) and (3.8). 
If we can exploit  an inversion algorithm from ¢~(z) to ¢~,~ 

which only requires a very limited number  of z's to be used, it may  
be manageable to determine ¢~, ~ this way. 
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ADDENDUM 

The method used in section 3 for a direct derivation of the es- 
sential Wiener-Hopf auxiliary functions has for P(o--) = o been 
illustrated for various assumptions as to K(t). Needless to say, the 
method may also be used, m~ttalis mutandis, in cases where K(I) 
is completely general but instead some special assumption is made 
about P(y). One instance is the case where P(o) = o and p(s) = 

SeSv dP(y) is rational, treated in [121 pp. 25-28 by means of the 
0 

slightly more cumbersome method of complex integration. 
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