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SUMMARY

The Sparre Andersen model assumes that the interclaim times and the
amounts of claims are independent random variables, the former identically
distributed according to a distribution function K(¢), ¢ = o0, K(o) = o, the
latter identically distributed according to a distribution function P(y)
— o < y < . Asis well known, the Poisson risk process corresponds to the
particular case K(f) = 1 — e~ 8¢ In the present paper it is pointed out that
another particular case, viz. K(t) = (¢! — &%), corresponding to a fixed (and
thus — strictly speaking—nonrandom) interclaim time, %, has interesting
applications. Thus, the ruin problem considered by Giezendanner, Straub
and Wettenschwiler in a paper to the 1972 International Congress of Actua-
ries in Oslo can be formulated by means of this particular case. The same can
be said about the earlier model brought forward by Ammeter in his 1948
paper in Skandinavisk Aktuarietidskrift.

About the contents of the paper the following further information may be
given. The general Sparre Andersen model is first presented and then the ruin
formulas are given for the case with a positive gross risk premium. Thereafter,
a modified and more direct method for deriving certain necessary auxiliary
functions is illustrated by examples including i.a. the Giezendanner—
Straub—Wettenschwiler model. The rest of the paper contains a discussion
from the point of view of the Sparre Andersen model of (i) the discrete
(equidistant) inspection of a Poisson process for ruin, (ii) the Ammeter model
and analogous models, and (iii) the Giezendanner—Straub—Wettenschwiler
model.

1. INTRODUCTION

E. Sparre Andersen in a paper to the 1957 International Congress
ot actuaries in New York[2] proposed a generalization of the classical
(Poisson) risk theory. Instead of assuming just exponentially distrib~
uted independent interocurrence (interclaim) times, he introduced a
more general distribution function but retained the assumption of
independence. His model, therefore, can be characterized in the
following way.

Let Ty, T, .... be the interclaim times. Thus 7T, is the time
between the (#— 1)th and the uth claim. 7; is the time between the
zero point and the first claim. The amount of the nth claim is denoted
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by Y. It is now assumed that T, Y3, T, Yo, . ... are independent
stochastic variables, such that T, T, .. are identically distributed
K(t),t >0, K(0) = 0 and Y3, Y, .. areidentically distributed P(y),
— < y < o0. Furthermore, it is assumed that the means of K(f)
and P(y) exist and are finite. We denote them by &: and p1 respect-
ively. The gross risk premium per time unit is assumed to be indep-
endent of time and have the value c.

If X(t) denotes the risks reserve at time ¢ and # > o denotes the
initial risk reserve we have

n

Xt)=u+ct—Y(), whereY(f) = oif T, >t and Y(t) = Z Y,
T, 4+ T+ ..+ T, st <)+ T,4+..+T,,,.

We can also write

Xt)y=u+ 2 (T,—Y)+c(t— = T,).

Our main interest is in the probability of ruin during a finite or
infinite time i.e. the probability of X(r) < o for some = such that
0 <t <t where ¢ is a fixed finite time, or the probability of
X(r) < o for some v > o.

The ruin problem for an infinite time was already considered by
Sparre Andersen himself. The ruin problem for a finite time has
been treated by the present author in a series of papers [11]-[14] and
together with Nils Wikstad [15]. However, also other authors have
treated the indicated problem. We mention among them the fol-
lowing authors: Brans [3], Dreze [6], Takécs [q] and Segerdahl {8].
Note that Sparre Andersen in his New York paper introduced some
limitations on K(¢) including i.a. absolute continuity. These limita-~
tions seem to have been caused by a desire to be able to define an
intensity function K'(f)/(1 — K(¢)). So far as I know, these limita-
tions were not used by Sparre Andersen in his treatment of the ruin
problem. In the papers by the present author (and in the papers by
Brans, Dreze and Takacs) there are no such limitations assumed in
the general presentation of the model. If for special purposes
limitations are needed they are explicitly stated. The occurrence
process for the claims is thus assumed to be a general renewal
process on the positive half axis.



106 COMMENTS ON THE SPARRE ANDERSEN MODEL

In the present paper, where we only treat the case with a positive
gross risk premium, i.e. ¢ > 0, we first recall some general formulas
pertaining to the ruin problem in this case. Thereafter we specialize
to the case with only non-negative risk sums, i.e. we assume
P(o —) = o. For various assumptions as to K () we give simplified
forms of the essential Wiener-Hopf auxiliary functions in the ruin
problem by a slightly modified method.

At last, we show how the discrete model proposed by Giezen-
danner, Straub and Wettenschwiler and also the older Ammeter
model fit in the Sparre Andersen model. The former authors i.a.
consider a case where their model can be said to be a discretization
of a Poisson model. It is interesting to note how the relevant
functions in this case of their model behave when one let their
model converge to the corresponding Poisson model.

2. THE RUIN FORMULAS WHEN ¢ >0

From now on we assume that the gross risk premium per time
unit is positive i.e. we assume that ¢ > o. We bring some of the
relevant ruin formulas in this case from the papers [11] and [12].

As a consequence of the Remark (added in proof) at the end of Part 11
of [12] the indicated formulas are valid without any restrictions on
K(t) and P(y). In particular, it is not assumed that the classical
constant R > o0 does exist.

- By W¥(u, t) we denote the probability of ruin in the interval (o, £]
when the initial risk reserve is # > 0. By definition ¥(#, o) = o.
The probability of ruin in the unlimited future we denote by
¥'(u) = ¥(u, ). The following fundamental integral equation is
satisfied by the function ®(x, ) = 1 — ¥(u, ?)

D(u, t) = }dK(v) [ ®w+cv—x,t—2v)dP(x) + [dK(v) (2.1)

(see [11] po, 40). ‘
For ®(u) = 1 — ¥ (u) we get, (t — c0),
d u+ 00

Ow) = [ dK@) [ O + cv — ) dP(x) (2.2)

-

or Ou) = [ Ou — 1) dF(f) (2:3)

-
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where F(i) = fP(t + cv) dK(v)
(see [11] p. 39).

These equations can be solved by the Wiener-Hopf method.
(This method was—in connection with ruin problems—{first used by
Cramér [5] when he treated the Poisson case.)

The following Laplace-Stieltjes transforms are introduced

Ba) = [e#dR(f), Re(?) < o

>

() = [esvdP(y), Re(s) =0

P(u,2) = [e#dy ¥, ), % 2 0, Re(z) < 0

Y(u,z) = 0,4 <0,Re(z) <0

5(s,2) = I — | esvdy F(u, z), Re(s) S o, Re(z) < 0

A(s,z) =exp[ Eewdu M(u,z) + } AM (0, 2)], Re(s) £ 0, Re(z) <0

(2.4)
B(s, z) =exp [——ojr esudy M(u,z)—3AM(0,2)], Re(s) 2 0, Re(z) <o
(2.5)

where
M(x, 2) = 5 (1/n) | e2o(Pr*(x + cv) — 1) dK*(0) (2.6)

n=1

AM(o,2z) = M(o -{-o,z) — M(0— ,2)

Note that ¥(u) = @(u, 0) (also for # < 0 by definition) and that

B(s,
A(éii = 1 — k(z—cs) p(s), Re(s) =0, Re(z) <o (29

which latter relation is the Wiener-Hopf factorization relevant in
the present case. The auxiliary functions A(s, z) and B(s, z) are, for
fixed z with Re(z) < o, in the half-planes Re(s) < o, Re(s) 2 o,
respectively, continuous and, together with 1/A(s, z) and 1/B(s, 2)
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respectively, bounded. In the interior of the respective halfplanes
the functions are analytic and regular.

Note also the following relations

lm Af(s, 2)) = exp (3 AM(o, 2)) (2.8)
lim B(s, z) =exp (— % AM(o, 2)) (2.9)

The fundamental relation is now
) Afs, 2)
CP(S, Z) - A(O,‘Z)

, Re(s) £ o, Re(z) < o. (2.10)

Note that 1 — (s, 2) is the double Laplace-Stieltjes transform of
W(u, t).

From the relation (z.10) we may obtain ¥(«, ¢) by a double use
of the Lévy inversion formula, duly adapted to the present case, or
by some other inversion procedure. Nofe that the case Re(z) = o

may be obtained by continuity. In particular, ¥'(») = ‘Tf'(u, 0) is got
by only one inversion.

Note also the following formula, following from the definition of
%(s, 2) and (2.10) letting s — — oo

(o, 2) =1 — eXp(jéfiiO’ )

(2.11)

3. SIMPLIFIED FORMULAS FOR THE FUNCTION 4 (s, 2) WHEN P{0—)=0
aND K(¢) HAVE SOoME SIMPLE ForMs

The formulas (z.4) and (2.5) in combination with (2.6) may seem
rather cumbersome. However, simplified formulas for A4(s, z) and
B(s, z) may sometimes be obtained directly from the factorization
formula (2.7). From the properties of A(s, z) and B(s, z) which are
described immediately after the formula (2.7) but before the for-
mulas (2.8) and (z.9) it is obvious that if we find some other
functions Aos, z7) and Bo(s, z) satisfying (2.7) and having the
mentioned properties then there is a constant %(z) 3 o such that

Als, 2) = n(2) As, 2)
B(s, 2) = w(z2) Bo(s, 2)
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Thus
Als, 2) Aols, 2)
¥82) = (62 = dufo,2)

S0 it is not necessary to determine »(z). However, for some purposes
it may be helpful to do so. This may be performed by means of the
formulas (2.8) and (z.9).

At this point we emphasize that one way to obtain a couple
Aos, 2), Bo(s, 2) is to take the logarithm of the right side of (2.7)
and apply a Cauchy integral formula. It turns out that in this case
»(z) = 1 so we obtain log A(s, z) and log B(s, 2) as the left open
halfplane value and the right open halfplane value, respectively, of
a Cauchy integral

o
L [
2ni §' ——s

where H(s',2) = —log (r — k(z—cs’) p(s”)). Note that in the
general case it is necessary to interpret the Cauchy integral as a
principal value at infinity. Details of the deduction are found in
[12] pp. 19-21. In the same paper the indicated formula was used, to
obtain—by modification of the integration path—simple formulas
for A(s, z) and B(s, z) in some cases where we know something
about the zeros of 1 — k(z — cs) p(s).

In the present paper, however, we apply a more direct deduction
of Aofs, 2), Bo(s, z) without use of complex integration. Some
knowledge about the zeros of I — &(z — cs) p(s) is however ex-
ploited. Instead of doing a systematic study by means of this direct
method we illustrate the power of the method in three examples.
We begin by an example, which is a particular case of the next
example.

Example 1
Kit)=1—¢" Plo—) = o.

o

I -
S—T and p(s) =°I es¥ dP(y) are analytic and

regular in the open halfplane Re(s) << o and continuous in the
closed one (Re(s) < o).

Here k(z) =
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Thus, for Re(z) << o,

805, = TRz —e5) pl9) = 1 — go T

is meromorphic in Re(s) < o with one simple pole at s = (z — f)/c.

It is easy to see that there is also one and only one zero in Re(s)
< 0 (use Rouché’s theorem in the circle with radius f/c and center
in (z — B)/c, cf. [10] p. 38). Denote this unique zero by si(z). Let us
now construct a Bo(s, 2z) as simple as possible. Since B(s, 2) =
A(s, 2) g(s, z) according to formula (2.7) we see that B(s, z) is
meromorphic in the halfplane Re(s) << o with a simple pole at
s = (z— B}/c and a simple zero at si(z). Since there are no more
poles or zeros and B{s, z) and 1/B(s, z} are bounded and zerofree in
Re(s) > o the obvious suggestion is

s — s1(2) c(s — s1(2))

Bl A = T TRt o —2

This corresponds to
c(s — s1(2))
T Bt —Bpls)—z
Since Ao(s, 2z} is bounded and zerofree (analytic and regular in

Re(s) < o and continuous in Re(s) < o) together with 1/4(s, 2) in
Re(s) << o we have

Ao(s, Z)

B(s, z2) = »(2) Bo(s, 2)
A(s, 2) = »(z) Ao(s, 2)
However, x(z) = 1 which is seen in the following way. From (2.8)
and (z.9) we see that
A(— o0, 2) = exp (} AM(o, 2))
B(+ 0,2 =exp(— 1 AM (o, 2))
However, it is immediately seen that
Ao(— 00, 2) = I = Bo(+ o0, 2)
Thus we must have
exp (3 AM(o, 2)) = x(2)
exp (— 1 AM(o, 2)) = %(2)
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and the only solution hereof which is compatible with (2.6) is
AM(o,2) =0, %x(2) =1
We thus have

c(s — s1(2))
A(s, 2) = B+ s —Bp(s) —z (3.31)
B(s, z) = ;%_——Es_li—i)% (3-2)

The formulas (3.1) and (3.2) for § = 1 were deduced in [10] p. 38
by complex integration in the slightly more restrictive case
P(0) = o. Of course, also the complex integration method works if
only P(o —) = 0. The assumption of a positive probability for zero
risk sums may seem unrealistic. However it may be a way to take
care of very small risk sums. Note also the well-known fact that
such a process may be reduced to another Poisson risk process
without zero risk sums but with another intensity. Such a reduced
process has the same A(s, 2) as the unreduced process.

Example 2
Kfy=1— Zb,e™, T b, =1.Po—) = o.

(It is not necessary that all b, >> o as e.g. convolutions of simple
but different exponential distributions show. The B,’s are assumed
to lie in the halfplane Re(B,) > o and be disjoint. The non-real
among them must lie in complex-conjugate pairs. Among the B,’s
with minimum real part one must be real.)

The properties of p(s) are as in Example 1.

bt n

b
The function k(z) = J‘ et dK(t) = Z, ;—_TV}E is meromorphic
with simple polesat s =8,,v=1, ..., n.

Thus for Re(z) < o the function g(s, 2) = 1 — k(z — cs) p(s) is
meromorphic as a function of s in the halfplane Re(s) << 0. There
are » simple poles at s = (z — f,)/c. It is also easy to see that there
are # zeros in the said halfplane (note that

I
— [ dglog g(s,z) =0

2t g
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where C is a halfcircle to the left of the imaginary axis with a
sufficiently large diameter lying on the said axis). Let the zeros be
s(@),v=1,...,n. Since B(s,z) = A(s, 2) g(s,z) we see that
B(s, 2) in Re(s) < o must have the s,,(2)’s as zeros and the points
(z—B)fe, v=1,...,n, as poles. At the same time B(s, 2z) and
1/B(s, z) must be bounded and continuous in Re(s) > o (analytic
and regular in Re(s) > o). The obvious suggestion of a function
with these properties is
s —s1,(2) H (s —su(2
Bts, A = | | ==y = zsu+cs—z

V=1

The corresponding Aofs, z) is clearly

Aofs, z) = ,,B"(s’ 9 -

I —P (S) ? buﬁu/(pu + €S ———Z)

I o(s — s,(2))

v =1

(B, +es—2)— () = 4,8, T (3, + s —2)

vi#ER

It is immediately clear that Ao(s, z) has the properties required
for such a function.
We thus have
A(s, 2) = n(2) Ao(s, 2)
B(s, 2) = »(2) Bo(s, 2)

ll

Exactly as in Example 1 it is found that AM (o, 2) = o, %(2)
so we have
A(s, 2) = Aafs, 2)
B(s, z) = Bols, 2)

The same result was deduced in [12] by means of complex in-
tegration though under the restriction P(0) = 0. The remarks at the
end of Example 1 pertaining to the case with a positive probability
for zero risk sums carry over, mutatis mutandis, to the present
example.
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Example 3
K(t) =¢e(t—h), h>o0,dP(chj = a3, j=0,1, ..., L a;=1,a; 20, as>0

j=0
This is the discrete model presented by Giezendanner, Straub and
Wettenschwiler [7]. Note that the gross risk premium per time unit

enters in the definition of P(y).

Obviously p(s) = §] a; esckl is a periodic function of s with the
i=0

period 2ni/(ck). Moreover, the function is analytic and regular in
Re(s) < o and continuous in Re(s) < 0. Since we have k(z) = eh?
we find that

g(s, 2) = 1 — k(z — cs) p(s) = 1 — M 5 a; et -0 (3.3)

j=0

also is a periodic function of s with the same period 2ni/(ch). It is
also analytic and regular in Re(s) < o and continuous in Re(s) £ o.
What can we say about the zeros of g(s, 2) for Re(s) < 0, Re(z) < 0?
We introduce the variable w = e¢*$ and study the equation

1—e®Zawit=o0 (3-4)
j=0
Corresponding to Re(s) < o we have | w | < 1. We multiply by
w and get the equivalent equation

> a0 =eMw (3-5)

j=a
(Note that w = o neither is a root of (3.4) nor of (3.5) since we
have assumed that a¢ > 0).
An application of Rouché’s theorem now shows that (3.5) has
just one root in | w | < 1. In fact take
fw) = e ¥ w, glw) = e P w—3 a, w!
f=0

then on | w | = 1 we have for Re(z) < 0

| flw) —gw) | = [Zayw! | = 1 <|flw) |
i=0

Thus f(w) and g(w) have the same number of zeros in |w | < 1
However, f(w) has just the zero w = o so also g(w) has one and only
one root, say @1(2), in | w | < | and this one cannot lie in w = 0 as
we pointed out above. Note that o <w:(z) <1, when zis negative real.

8



114 COMMENTS ON THE SPARRE ANDERSEN MODEL

Thus the function (3.3) has just the simpleezeros in Re(s) << o

27V

I
S,(2) = C—}zlogwl(z)—l— 5 ,v=0,+1, 42, ....

where we determine log wi(z) so that it is real for z negative real
and varies continuously with z.

Obviously, these zeros are also the zeros of I — e~¢h(-810@),
Since this function is analytic and regular in the whole s-plane and
is bounded and also bounded away from zero in the right halfplane
Re(s) > o, we suggest the choice

Bo(s, z) = 1 — ¢~ ¢hle-50@)

Then we have
I — g~ 0R(s-510(2))

A o(S, z) = -
I __ehz e—chs p a; echjs
jmo
Clearly Aofs, 2) is together with 1/A (s, 2} analytic and regular in
Re(s) < 0. In Re(s) £ o they are continuous and bounded.
Thus we have A(s, z) = =(2) Aofs, 2), B(s, 2) = %(2) Bo(s, 2)
In order to determine »(z) we note that
Hm  Ag(s, 2) = (1/ay) ehon@) —he
§—»— 0

lim Bofs,2) =1

8§+

From (2.8) and (2.9) we now conclude that
exp (3 AM(o, 2)) = »(2) exp (ch s10(z) — kz)/ao
exp (— 3 AM(0, 2)) = x(2)

The only solution hereof, compatible with (2.6), is

h )
x(z) = Jao exp (-2- z — fz— ‘1o(z)) (3.6)

AM(o, 2) = —log ao + ¢k s10(z) — hz (3.7)
We thus get

h ch I — g~ Ch(s-810(2))
) (3-8)

Afs, z) = |/ao exp (; 2= $10(2) =
I_ghze—chs p)] a; 5chjs
i=0
h ch =ch(s-510(2))
B(s, z) = }/ac exp i s10(2) | (1—e @) (3.9)
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Giezendanner, Straub and Wettenschwiler mainly consider their
model as a discretization of an underlying Poisson risk process. It
may in such a case be interesting to see how formulas (3.8) and
(3.9) behave when the discretization parameter % tends to zero. It
turns out—not surprisingly—that the A(s, z) according to (3.8)
tends towards the A(s, z) according to (3.1). Contrary to this,
B(s, z) according to (3.9) and g(s, z) according to (3.3) tend to zero.
A division by /4 before the limiting process, however, brings them
in a closer contact with the corresponding functions for the Poisson
process.

In fact, considering a Poisson process such that the distribution
function of the accumulated claim amounts up to the epoch ¢ is

@

e (B e
Fir.p = Y e gm0 =0 (3ao)
the authors define two sets of quantities a,, # = 0, 1, . ... (see [7]

p. 647) representing a lower and an upper discretization of F(y, A)

I ao=F(,h),a;=F(chj,h) —F(ch(j—1),h),j=1,2, ...

ie. ao=¢ "t g5 = Z e Ph (EV‘—) [Q™ (chj) —Q"*(ch(j — 1))]

I ao = F(ch— k), aj=F(ch(j+1)—, h) —F(chj—, h), j=1,2, . . . .

e an= ) et m—h,) Q" (ch—), a = ) &¥ (B

vl
V=0

[Q*(ch(j + 1) —) — Q" (chj —)]
In both cases I and II it is easily found that

g(s,2) =1—e 12 ~chs 3 a;eM = (B + cs—z—Bq(s)) +o(k), h—o

j=0

where
g(s) = [ ¥ dQ(y)

It is also found in both cases that
B(s, z) = hc(s — s1(2)) + o(h)
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and lastly that
(s —;sl(z)zn »
B es—z2—q(s)
Here s1(2) is the zero appearing in the Poisson case. Clearly (3.11)
shows that in the limit we get the .4(s, z) belonging to the Poisson
case.

Als, 2)

+ o(1) as A —o (3.11)

In passing, we note that the authors also, for Bh << 1, consider
the more manageable choices

IIT ao = 1 — Bk, a5 = Bh(Q(ch)) — Q(ch(j — 1)), j =1, 2, ...
IV a0 = 1 — BA(r — Q(ch —)), a5 = BA(Q(ch(j + 1) — ) —
Qlchj —),j=1,2, ...
Of course, the relation (3.11) is still valid.

4. THE EQUIDISTANT INSPECTION FOR RUIN OF A Po1ssoN PROCESs

If we have a Poisson risk process with the intensity 8 and the
claim distribution Q(y), y>o, and wish to consider the probability of
ruin at the equidistant points vk, v =1, 2, .. ., %, we can as well
consider the probability of ruin during the time interval (0, nh) for
a Sparre Andersen process with K(t) = e(t — 4), P(y) = F(y, )

. (Bh)”
— ¥ -Bh T e — :
where F(y, k) = VZ:“ e o Q" (y), Q(0) = 0.As is well-known
the ruin can only occur at the epochs of “claims” i.e. at points
vh, v =1, 2, ..., n. The amounts of “claims’ are distributed ac-

cording to P(y) = F(y, h). Note that Y = o has a positive probabili-
ty F(o, ) = e¢~** In this case it is thus meaningful to speak about
zero risk sums.

The crucial Wiener-Hopf function g(s, z) takes here the form

g(s,2) = 1 — k(z —cs) p(s) = 1 — -3 PR -1
— 1 p-hBres-z-Ba(s)

So far we have not used the assumption Q(0) = o of (3.10). From
now on, however, we emphasize this assumption. In order to per-
form the factorization

B(s, z)

(s,2)

g(s, Z) =

M
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we first look at the location of the zeros of g(s, 2) in the left half-
plane Re(s) < o.

These zeros are the zeros of the functions

27t

B+ cs—z— Byq(s) — v v=0,4+1,....

2t
ie. st (z + e v) if s1(2) denotes the unique zero in Re(s) << o of

B 4+ es — z— Pg(s) i.e. the zero pertaining to the Poisson process
if continuously inspected (cf Example 1).

As pointed out in Example 1 we always know that s,(z) is located
in the interior of a circle with center at (z — B)/c and with radius
B/c. Thus

2mt 2+ (2mifh) v —B B
51 (z +—h—v>-— P <7 (4.1)
ane
so that the exponent of convergence of the s1 (z + W v) is one,

Since, in the present case, g(s, z) as a function of s is analytic and
regular in Re(s) < o0 and in this region is of exponentid type c4 (in
Re(s) < o g(s, 2) is continuous), we conclude that B(s, z) is an
entire function in s of exponential type ¢ having the zeros

2t
sl(z+—h~v),v=0,j:1, ..... .

The general appearence of such a function can be deduced from
Hadamard's factorization theorem. Without going into details in the
general case we concentrate on the particular case when Q(y) is a
discrete distribution function with its jumps at y = ch, 2ch, ...
le.

gis) =Z b, et Th, =1,b, 20,u=1,2, ...
wet w1
Here ¢(s) is a periodic function with the period 2=n¢/(c/). Thus

27t

27t
S1 (z—i—Tv) = 5(2) +Ev
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so we get
B(s, z) = x(2) (1 — e chE-50D)

and
I — e-ch(s-sl(z))

A(s, 2) = »(2) I h@+cs-z-Ba(s)

Thus we are back in the model by Giesendanner, Straub and
Wettenschwiler.

The weights @o, a1, . ... to apply in their model may be expressed
by be, b1, .... if we use the identity

T aya) = ¢"PH0 L E bus) (4.2)
j=0
In Example 3 we applied the said model by following the authors’
direct discretization of F(y, %) by the choices I and II of ao, a1 . ...
In this section we are led to their model by a discretization of Q(y)
rather than of F(y, 4). It is obvious that a discrete Q(v) entails a
discrete F(y, k). Of course, this discrete F(y, #) must not be con-
fused with the discretized versions according to I or II of the
original F(y, A) before the discretization of Q(y). Needless to say, the
direct discretization of F(y, 4) is superior in efficiency to a discreti-
zation via Q(y).

5. THE AMMETER MODEL AND ANALOGOUS MODELS

Let us consider a risk process in discrete time (o, %, 2k, 34 ...,
nk, ...)such that for every #k, n = 1, we have a stochastic variable
Y,. We assume that the Y,’s are independent and identically
distributeéd stochastic variables with the common distribution
function P(y). Our risk theoretic interpretation of this simple
scheme is now that Y, represents the total claim amount in the
interval ((n — 1), n%) and our interest is in the possibility of ruin at
points #h, n = 1, 2, .. .[¢/n]. The solution of this problem is obvious-
ly the same as the solution of the ruin problem for a Sparre Andersen
process with K(f) = ¢(t — %) and the indicated P(y). One instance
was already considered in the previous section 4:

N
o= eor g 5.0
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Another instance is.the model considered by Ammeter in his 1948
paper in Skandinavisk Aktuarietidskrift [1]. Here we have

P(y) = ZP,() 0" 0) (52)
where
piy = [ e BT avty
with U(x) = 1“_?%—) f e 4= dy (5.3)

Other choices of the weight function U(x) give further instances.

As is well known (see Bihlmann [4] pp. 74-75 or Thyrion [16]) the
case of an infinitely divisible U(x) (as e.g. (5.3)) admits for fixed &
a transformation of # and Q to say %1 and @ such that

Z o)

Then the treatment of section 4 can be applied if we let B = Z1/A.
In the case (5.3) Ammeter himself performed such a reduction of his
ruin problem to the corresponding problem in the Poisson case.

c
e

6. Som FUurRTHER COMMENTS ON THE EXAMPLE 3 OF SECTION 3

Giezendanner, Straub and Wettenschwiler considered only the
ruin problem for an infinite time period. They used a combinatorial
result due to Takdcs in order to get a starting value in a recurrence
scheme for the determination of ¥'(x).

We will now try to retrieve the recurrence scheme and the starting
value by means of the theory for the Sparre Andersen process.
However, we will already now point out that there is a difference
between our definition of ruin and the one adopted by Giezendanner,
Straub and Wettenschwiler. They speak about ruin when X(r) <o
while our definition is X () <<o. When at least one of K(t) and P(y)
in the Sparre Andersen model is continuous the indicated difference
in definition is irrelevant. In the present case both K(¢) and P(y)
are discontinuous and we must be more cautious. However, it is
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easy to make a final correction for the difference of definition so we
start out with our own definition.

We consider the equation (2.3) i.e.

D) = [ O — 8) dF(E), Ou) — 1 — W(u), u = o

- o

where
F(t) = [ Pt + cv) dK(v)

and recall our choice K(f) = ¢(t — ) and dP(chj) = a;,j = o, 1, 2,
e 2 O,ao>o,§aj=1.

Thus F(t) = Pt + ch) and
u H[ufeh)
Ou) = [ Ou—1t)dP{t + ch) = £ ® (u—chj) ajy1 (6.1)

i= -1
From the definition of ¥(u) it follows that ¥'(x) and ®(«) must be
constant in every interval veA £ # < (v + 1) ¢A since the increment
of X(¢) from nh to (n 4 1)k always is an integer multiple of ck. Let
us now denote ®(vci) by @,. From (6.1) we get

v
O,=20, ;a4;,,,v=0,1,2, ...
i- -1 .
Le. (I)v:(Dv+la0+q)v a, +2(Dv—jaj+l
i=1
Thus

a®,,,=(1—a)®,—2a,,d, ;,=0,1,2, ... (6.2)
i=1

Since we have assumed a, > 0 we may obtain all @, recursively
if we know ®o = ®(0) = 1 — ¥(0). For this purpose we exploit
the formula (2.11)

- exp (3 AM(o, 2))
Y(0,2) = 1— A0, 7)

and formulas (3.7) and (3.8).
Since ¥(0) = lim  ¥(o, z)

z2—0

we seek lim AM(o, 2) and li
20 ( ) Z_I:I) A (O’ z)
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We find from formula (3.7)
that lim AM(o, z2) = — log a0 -+ chs10(0)

z—0
where

I
s10(0) = lim s10(2) = lim — log w1 (z)
z2—0 2—0 Ck

Regarding the equation (3.5) we easily see that

lim wi(z) =1if a=%Xja; 1
z—>0 j=1

but
o<lim w( <rifa>r1

z—0
Taking first the case « £ 1

we find
lim AM(o, z) = — log ae
z2—0
and
) 1 I—uo ¢ : g
113(1) 400 Vas (use formula (3.8))

Thus, in the case « £ 1

I—a
®0) =1—Y(0) =
ao
Let us now consider the case & > 1.
We get
Ii z
im =0
22— A(O’ Z)
and thus
®(o) = o.

I21

In the case « 2 1 we thus have ®(0) = o and (6.2) shows that

D(u) = o for every u = o.
I—a

In the case « << 1 we have ®(0) = 2
0

®(u) for u 2 o0 by recurrence.

> o and (6.2) gives
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We now turn to the definition of ruin by condition X(z) £ o for
some v > 0.

Obviously, the probability of such a ruin when # > o, is ¥ (#—)
if W(u) is the probability of ruin according to our definition.

The two values ¥(u) and ¥ (» —) differ only for # = c#j. Thus
according to the definition (X(r) £ o) we should have the probabil-
ities of non-ruin at # = chv, v =1, 2, ... to be @, _, rather than
®,. Denoting @, _, by , we get the recurrence equations

v
aOQv+2 = (I _al) Qv+l_—Z aj+1 Qv-j+1» v=0,1,2, ...
i=1

or

v-1
g aOQv+1 = (I_—al)Qv_ = aj+le-j»V =T1,2, ...
el

I —a
-

ao

which are the recurrence relations given by Giezendanner, Straub
and Wettenschwiler [7] p. 646. However, we have not introduced
Qo but this may be done by the obvious formula Qo = a0Q1.

Note that it is possible—at least partly—to treat the ruin problem
for a finite period by similar recurrence methods.

Consider first equation (2.1), letting K(f) = (¢ — 4).

We get foro £t < h

®(u,t) = 1 (since only the second term of the righthand side gives
a contribution)

and for¢ =z 2
Du,t) = [ Pu+ ch—x,t—h)dP(x)

H{u[ ()] +1
= X O(u-+ch—chj,t—h)a;
f=0
Since ®(u,t) is constant for vz S u < (v+ 1)ch, ph 2t <
(w -+ 1) we simplify the notation by denoting the said constant by
@, ,. Thus
(DV,O =

Q.= 2Dy 4,19 RZIL
i=0
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In practice, these relations may be used for small p.
Another procedure is the following.
Corresponding to (2.1) we have the relation (see [11] p. 41) valid

for Re(z) < o, where a(u, 2) =1I— ‘?(u, Z),% = 0,

utev

(_D(u, 2) = f(I—ez”) adK(v) + j?ez” dK(v) [ ®u -+ cv—ux, 2) dP(x)

Taking K(t) = &(t — h) we get
w+eh

O(u,2) =1 —eth + ez | Ou + ch— x, 2) dP(x)

ie.
— [ufeA) +1_
Ou,2) =1 — etk 4 e2h T Ou 4 ch— chj, 2) a;
f=0
Observing that C_D(u, z) as a function of % is constant in veh £ # <
(v 4+ 1) ch and denoting this value by @,(2) we get

?qu(z) =1 —ezh |- ¢2h X 6”1_,(2) a;
i~0

== I — e%h

+ eh(®, ,,(2) ap + O,(2) @y +

+ 2 Q,,1_4(2) ay).
Thus "
2®,,,(z) = 1 — e
+ (e —a) O(2)

LR > Y

—Z q)v+1—j(z) aj:
jmt2

v=0,1,2,.... (6.3)

If we know the value of 50(2) = 5(0, z) the relation (6.3) admits
a recurrence determination of (f)v(z) in just the same way as ..
However, (3(0, z) is easily determined by (2.11), (3.7) and (3.8).

If we can exploit an inversion algorithm from 6‘,(2) to @, ,

which only requires a very limited number of z’s to be used, it may
be manageable to determine @, , this way.
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ADDENDUM

The method used in section 3 for a direct derivation of the es-
sential Wiener-Hopf auxiliary functions has for P(o—) = 0 been
illustrated for various assumptions as to K(¢). Needless to say, the
method may also be used, mutatis mutandis, in cases where K(¢)
is completely general but instead some special assumption is made
about P(y). One instance is the case where P(0) = o and p(s) =

j?ew dP(y) is rational, treated in [12] pp. 25-28 by means of the

slightly more cumbersome method of complex integration.
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