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ABSTRACT 

The credibility formula used in casualty insurance experience rating is 
known to be exact for certain prior-likelihood distributions, and is the 
minimum least-squares unbiased estimator for all others. We show tha t  
credibility is, in fact, exact for all simple exponential families where the 
mean is the sufficient statistic, and is also exact in an extended sense for all 
regular distributions with their natural  conjugate priors where there is a 
fixed-dimensional sufficient statistic. 
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CREDIBLE MEAN 

In  the usual  model  of nonlife insurance. [3], each member  of a 
risk collective is charac ter ized  by  a risk parameter O. Given 0, the  
risk random variable, ~, is a r andom sample f rom a likelihood density, 
p(x I 0), defined over  x z X (discrete or continuous).  Thus,  for a 
risk wi th  known pa rame te r  0, the fair premium is m(0) ---- E{~ I 0} = 
J" xp(x ] O) dx, and  the risk variance is v(0) --  V{~ I 0}. 

The  risk pa ramete r s  have  a prior density u(O), 0 ~ O; we assume 
t ha t  stat ist ics are known from the mixed collective density, p(x) = 
Eop(x I O) z j" p(x I O) u(O) dO, in part icular ,  the  collective fair pre- 
mium m = Eom(O), and  collective variance v = Eov(O) + Vom(O). 

The centra l  problem of experience rating is to es t imate  the fair 
p remium of an individual  risk, given only  collective statistics, and  
n years  individual experience x = {~t ---- xt; (t = I, 2 . . . . .  n)}, t h a t  
is, to es t imate  E{~n +1 Ix}. Based on heurist ic  arguments ,  Amer ican  
actuaries  in the I92O'S proposed a credibility formula of form:  
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with N determined exper imenta l ly  [12]. 

(i) 

The Bayes ian  formulat ion is s t raightforward.  One first finds the  
density of 0 posterior to the data : 

np(xt  [ 0) u(0) 
un(O Ix) = I IIlp(xt I if) u(¢) dff (2) 

and then:  

E{~.+I I_x} = H y p ( y l O )  un(O Ix) dOdy. (3) 

In the I95O'S, Bailey [I] and Mayerson [13] showed that  (I) was, in 
fact, exact ly  the Bayes ian  result  (3) for special prior-likelihood 
combinat ions:  Beta-Binomial ,  Gamma-Poisson,  Gamma-Exponen-  
tial, Normal-Normal ,  and similar cases. Btihlmann [2] then showed 
that  (I) was the minimum least-squares unbiased es t imator  for 
a rb i t ra ry  families, if N = Eov(O)/Vom(O). More detailed historical 
remarks  can be found in [7] and [9]. 

We now show that  the credibil i ty formula (I) is exact  for a larger 
class of prior-likelihood families. 

EXPONENTIAL FAMILY 

The Koopman-P i tman-Darmoi s  exponential family of likelihoods 
[6] [11] is: 

a(x) exp ~ 4 , (0) . f , (x)  

p(x I O) = '- '  (x ¢ X) (4) c(0) 
where c(0) is a normalizing factor  to make  S p ( x l O ) d x  ~ i. If 
x ---- (x~, x~ . . . . .  xn) is a random sample of size n, then n and the I 

n 

sums, F ,  = X f,(xt) ( i -  i, 2 . . . . .  I), are sufficient statistics for 

0. In fact, subject  to mild regulari ty conditions, the exponent ial  
family is the only one which has a sufficient stat ist ic  (F1, F2 . . . . .  
Fz;  n) of fixed dimension for every n, given tha t  X does not  depend 
on 0. 
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Furthermore ,  if we pick for the family of priors the natural 
conjugate prior E4] 

1 

u(0) ocEc(0)] -n° exp Z rote,(0), (0 ¢ ®), (5) 
t = 1  

then the family will be closed under sampling, tha t  is, the density of 
0 posterior to the data, un(O I x), will be of the same form as (5) with 
the I + I hyperparameters upda ted  by : no ~ no + n; foe ~ lot + 
G fi(x,) (i = I, 2 . . . . .  I). 

THE SIMPLE EXPONENTIAL FAMILY 

The family of distr ibutions for which credibili ty will turn  out t o  
be exact  is the single-parameter exponential  family with f l (x)  = x, 
and natural parameterization ¢1(0) ---- -~- 0, i.e., 

a(x) e -°z 
p(xlO)-- c(0) (6) 

for continuous or discrete measure in the range X, determined by the 
nonvanishing of a(x). The sample sum or mean is, with n, the suf- 
ficient statistic for this simple family. 

The natura l  conjugate  prior to (6) is: 

[c(0)~- ~° e-°X° 
u(O) = d(no, xo) ' (7) 

defined over a natural parameter space, ®, for which (6) is a densi ty;  
i.e., for all values of 0 for which c(0) is finite. Restrictions on the 
hyperparameters  (no, x0) m a y  be necessary to make (7) a densi ty  as 
well, i.e., to make the normalizat ion d(n0, Xo) finite. We shall 
henceforth assume no > o; parameter  updat ing is: 

l~0 <-- no -j- n 

x o ~  x o +  X xt. (8) 

We shall need certain properties of c(0) and ®. These follow 
directly from the fact tha t  c(0) is a t ransform EI41 in the continuous 
case : 

c(O) = j" a(x) e-°Xdx. (9) 
, f i x  
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If X is (countably) discrete, we can use the same approach by 
incorporat ing Dirac delta-functions in our definition of a(x), and 
defining (9) over the convex hull of X. 

Cases in which (9) does not  exist for any  value of 0, or for only 
one value, are uninteresting.  Since @, if i t  exists, is convex, three 
possibilities remain;  ® has a range which is: 

(a) finite; 
(b) semi-infinite; or 
(c) doubly  infinite. 

At  finite ends of the range c(0) "usua l ly  is infinite (See Note 
added  in proof)" thus, no > o insures u(0) -~ o at  these points, u(0) 
must  also be zero at  infinite endpoints.  

X cannot  depend on 0, bu t  m a y  influence O. For  example, if X is 
finite, then 19 = ( - -oo ,  + oo). Or, if (the convex hull of) X is 
[o, oo), then 19 = (01, + oo), with 01 usually finite, bu t  possibly 
- -  oo (see below). The only case in which @ can be finite is if X is 
( - -  

Also, from t ransform theory  [I4], we know tha t  c(0) is analyt ic  at  
all interior points of ®, and  derivatives of all orders can be passed 
under  the integral  sign in (9), giving analyt ic  functions of 0. Thus, 
the individual  risk mean and variance are: 

- -  c ' ( 0 )  a 
m ( 0 ) -  c(0) - dO In c(0); (Io) 

dm (0) 
v(O) - dO 

Since v(0) > o (0 ~ ®), m(0) must  be monotone decreasing with 
range in (the convex hull of) X. Then, in addit ion to c(0) being a 
positive function, infinite at finite ends of the range, we see it must  
be strictly convex, in fact monotone decreasing if X = [o, co). 

THE PRIOR AND POSTERIOR ~[ODE 

Bv differentiation, we find: 

d . (O)  

dO - -  
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t ha t  is, s tar t ing from its zero value at  the left endpoint ,  u(0) has at  
first zero or positive slope, then  u l t imate ly  negative slope, wi th  a 

unique prior mode Oo at  

m( o) = xolno. (13) 

Furthermore ,  from (8), we see t ha t  0n, the mode of Un(0 I x ) 
posterior to the data,  will sat isfy:  

m(0n)  - -  Xo + X 
no + n (I4) 

Thus,  if we pick re~no in the convex hull of X, the mean  risk at  the 
mode will always remain "in range".  

However,  we know tha t  if the experience da ta  is sampled from a 
risk with true parameter  0T, tha t  for fairly a rb i t ra ry  priors, the 
posterior converges to a degenerate distr ibution at  0z. This means 

t ha t  the (random) est imate re(On) converges wi th  probabil i ty  one 
as n -+ oo to the true fair premium m(OT) ; this can also be verified 
by  the strong law of large numbers  applied to the RHS of (I4). 
Fur thermore ,  if v(0) is slowly varying in the neighborhood of 0T, 
then  to a good approximat ion  0 has a Normal  density,  wi th  mean  
0T and variance [(no + n) v(0~)]- 1, as n ~ oo. 

Note t ha t  0n is not the maximum-l ikel ihood est imator  (which 
would be t ha t  est imate of 0 got ten from (14) wi th  Xo = no = o) ; in 
modern terminology, this means our prior is informative, and our 
measurement  is imprecise. 

CREDIBLE MEAN is EXACT 

We now show a stronger result relat ing to the mean  risk. In- 
tegrat ing (12) over the na tura l  range ®, we get:  

u(0) ] o = no J" m(0) u(0) dO - -  xo. (15) 
O 

Assuming u(0) is zero at  endpoints  of ®, the prior mean risk must  be : 

m = Eom(O) = xo/no. (16) 

Fur thermore ,  when 0 is upda ted  by (8), the mean  risk posterior 
to the da ta  is: 

x o + Z X e _ ( l _ _ 2 ) . m + Z  - ~ Z x  t 

(17) 
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with 

n 
Z - -  

nAv no" 

Thus, credibil i ty is exact  for simple exponential  families! 

The remaining fact t ha t  

no = Eov(O)/Vom(O) = N,  

(18) 

(19) 

d2u(O) 
doe 

can be inferred from known results [2] [5], or by  forming - -  
from (I2), and  integrating,  to give: 

du(O) o = - -n°E°v(O) + n°2E° {(m(0))=} - -  2no'Xo'm + x~; (20) 

then  (19) follows by  assuming the slope of u(0) is zero at  endpoints  
of ®. Addit ional  restrictions on the hyperparameters  m a y  be 
necessary to insure finiteness of the variance. 

OTHER SUFFICIENT STATISTICS 

If  we encounter  a simple exponential  family wi th  an arb i t ra ry  
sufficient statistic, a linear forecast m a y  also exist for the trans- 
formed random variable. For, suppose we observe da t a  y = {~t = 

Yt; (t = I, . . . ,  n)}, and  know ( Z f ( y t ) ; n )  is the sufficient s tat is t ic;  
then,  if the sample space does not  depend on 0, the likelihood mus t  
be of exponential  form: 

b(y) e -°$(y) 
p ( y  10) -- c(0) (21) 

Assuming f ( y )  has an inverse, we can t ransform the problem by 
set t ing:  

b(f-1(x)) 
x = f ( y ) ;  a(x) --  f , ( f _ l ( x )  ) . (22) 

The previous result  then  shows tha t :  
n 

n o E { f ( ~ ) }  + Z f ( y , )  
t - 1  

E{f(~n+~) [-Y} = no + n (23) 
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The classic example  of this is the  Normal  with known mean  m, 
and  unknown precision 0: 

p(x 10) = t/-~--~ e-O(~ L m)'/2 , X = ( - -  oo, + o0) (24) 

for which the na tura l  conjugate  prior is known to be the  Gamma,  
u(O) -~- G(no/2 + i ; Xo; 0) The variance forecast is then  l inear in t he  
sample var iance:  

E m) 2 I_x = (25) 
2 n o + n  

Another  example  is the Pare to  wi th  range [I, oo), bu t  unknown  
shape pa ramete r  0: 

p(x I 0) = 0x -t°+x> X = [I, oo). (26) 

The na tura l  conjugate  prior is G(no + I ;  x0; 0), and  the  linear 
forecast is of logvariables: 

xo + ln(II xt) 
E{ln  (~n+l) I x} = (27) 

n0 -~- n 

CREDIBLE MEANS FOR THE GENERAL EXPONENTIAL FAMILY 

I t  is easy to see how the  a rgument  for the  simple exponent ia l  
family can be ex tended  to the general exponent ia l  family  (4) with 
I + I sufficient statistics, if we use natural parameterization 
~,(0) = - -  0~ (i -~ I, 2 . . . . .  I ) :  

a(x) exp (--~.~ O,. f , (x))  

p(x  ] _0) = c(O) (x , X).  (28) 

Here  the  na tura l  pa ramete r  space ® consists of all points 0 = 
[01, 08, . . . ,  0z] in R z for which 

c(_O) = S a(x) e - z  od,(x) dx (29) 
x,x 

is finite. I t  is known tha t  0 is convex. 

Wi th  this choice, the na tura l  conjugate  prior is: 

u(_O) oc [c(_O)J -n° exp - -  fo~O~ ~ ~ ®) (3o) 
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with the usual  upda t ing  for the [ + I hyperparamete r s  (fot, 
fo2 . . . . .  for; no. Assume no > o. 

If  we define generalized means and (co)variances 

Mi(0) = E._-:of,(~) ; C,j(0) = C~l_o{f,(~); fj(~)} (31) 

for all i, j (assuming they  exist), then we can generalize (IO) and (II)  : 

M,(0) = - -  ~0--~ In c(0); (32) 

5M,(O) 5Ms(O) 
c , (o_)  = - -  ~ 0 - - j -  - ~0~ (33) 

Now assume tha t  u(_0) _~ o everywhere on the boundary of  O. This 
seems reasonable in view of our a rguments  in the one-dimensional  
case. Then. since 

~u(o) 
30l - -  ( n o - M , ( 0 )  - - r o d  - , (0)  

it follows by  integrat ion tha t  for all i 

and  

(i = I, 2 . . . . .  I)  (34) 

f o t  
E.zfd~ ) = EoM,(O ) --  , 

- - - n o  

E{A(~n+i) I x } = Eol_zMd0) = 

n 

fo, + x f,(xt) 

n o + n  

(35) 

(36) 

Note  tha t  the t ime constant ,  no, is the same for all components ,  
and that  lot~no should be selected in the  range of f , (x) .  

In other  words, if it  is known tha t  a likelihood has a f ixed-  
dimensional (I  + x) sufficient statistic and is regular (X  does not  
depend on _0 plus regulari ty conditions), then, if the  na tura l  con- 
juga te  prior is used, it follows tha t  there are I functions,  f,(x), 
whose mean values are updated by linear credibility formulae (36) : 

The classic two-dimensional  example  is the Normal  dis t r ibut ion 
with unknown mean ~ and precision T: 

l 

p ( x l  w, v) = l / 5 - e - * ( * - ~ ) ~ 2  = N ( v ,  v -x ;  x) x = ( - - a o ,  0o). 
V 2 x  

(37) 
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The natural parameterization is obtained by substituting Ot = 
--:z=, O2 = =/2, and fl(x) = x, f2(x) = x 2. 

It  is known that  the natural conjugate prior is a two-dimensional 
Normalgamma distribution. With our choice of parameterization and 
hyperparameters, it has the following properties: 

(a) The marginal distribution of = is Gamma, 

G - - ; ~ 2  fo2- -  ;= , 
2 ~0 / 

(b) The conditional distribution of ~x, given z, is Normal, 

- - ;  (no=)- ~', v- ," 
\ ?So 

(c) The marginal distribution of ~ is a generalized Student-t 
distribution, with no + 3 degrees of freedom, mean for/no, 
and variance 

(¢o. 
0~o + 1) -~ \ no - -  no~/" 

Explicit formulae may be found in DeGroot [4], PP- 42 and 169. 
His notation seems to imply four hyperparameters, but there are 
only three independent ones. 

By direct calculation we find that  the collective mixed density is a 
generalized Student-t with no + 3 degrees of freedom, mean 

fol/no, andvar iance  (fO2 f~l~ \ no - -  n~o] ' Clearly, we must pick loon >_ fo21/no. 

From our generalized result (36), we find: 

/~{~n+l I ~ } -  fol + ~ x t  _ ( I -  Z ) ( f o l J  + l [I,,o(ZZ x t ] ;  \ (38) 
no + n \ n o /  

' no -t- n \ n o /  

As before, Z = n/(n + no), and 

EoV{~ I O} E{~-'} 

VoE{~ [ O} V{~} 
- -  n o ,  ( 4 0 )  
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but the formula for updating the total variance is more complicated: 

r{~n+ 1]_x}--  ( I - - Z )  f°2z + Z  x , - - -  xj 
L no nn~ n 

t - 1  i=1 

[fo  I 
+ Z ( I  --Z) - • x t 

L no  n 
(4 I) 

In other words, for a Normal with unknown mean and precision, 
the variance forecast is not a linear mixture of prior variance and 
sample variance, but obtains predictive information from sample 
mean deviations as well. Credibility formulas hold only for the mean 
and second moment. 

SPECIAL D I S T R I B U T I O N S  

Table I shows the simple exponential families for which credibility 
was previously known to be exact. (Notation follows [61). Note that  
in many cases a transformation is necessary to get the natural  para- 
meterization. In all cases, the hyperparameters have been chosen to 
satisfy (16) and (19). 

Likelihoods (I), (2), (4) in Table I can be "enriched", by noting 
that  if the r-fold convolution of p(x  ] 0) is taken, a(x) is replaced by 
ar*(x), c(O) by [c(0)] r, and the prior is of the same form, but  with no 
replaced by nor. With this convention, the new Vom(O) will be r 2 
times the value in Table I (with no replaced by nor), but it is still 
true that  

m = xo[no; Eov(O) = noVom(O); v = (no + I) Vom(O), (42) 

and the credible estimate (17) still holds. 

The enlarged families are: 

(I) B i n o m i a l p ( x [ ~ ) = ( ~ ) ( I - - ~ ) r - x ~  z X-=-{o , I ,  2, . . . , r }  
~ g 

Beta-Binomial p(x) = BB(r,  Xo, rno - -  xo) 
(2) Negative Binomial p(x  ] ~) = NB(r ,  ~; x) 

Beta-(Negative) Binomial p(x) = B B ( - -  r, Xo, - -rno - -  xo; x) 
(4) Gamma p(x  [ re) = G(r, re; x) 

ShiftedParetop(x)  = F ( r n o + r  + I) ( y)-Ir~o+2) 
X0" I ~ ( rno  -~- I )  I + x0 (43) 



TABLE I: CLASSICAL SIMPLE EXPONENTIAL FAMILIES 

LIKELIHOOD PRIOR NATURAL m(0) -VOm(O) PREDICTIVE DENSITY 
PARAMETERIZATION 

i. Bernoulli Beta 

2. 

3. 

p(x I ~) ° (1 - ~ ) l - x  x 

X " { 0 , i }  

u(~) = Be(Xo,n ° - Xo;~) 

x o 
--e n = [o.1] 
n 

e= (-®,®) 

(e e + i )  - I  
X o ( n  ° - x o )  

n~(n ° + 1) 

Bernoulli 

_ x  1-x x x 

Geometric 

p(x I ~1 " (1 - ~ ) x  

X = {0,1,2,  . . . }  

Poisson 

e--W~ X 

X - {0,1,2, ...} 

Beta 

u(~) = Be(Xo,n ° + i ; ~ )  

x 
o e E = [0,i] 
n o 

GSE~a 

u(~) - G(Xo,no;~) 

0 = in -I 

O = [o,-) 

O -in~ 

x ° e II - [0,®) o = (--,-) 

Beta-(Negative) Binomial 

(e B - i) -I 

-8 
e 

Xo • NO + XO 

2 n o i 
n o 

(n o > I) 

x£ 

2 
n o 

p(x) = ~B(-l,Xo,~n O - Xo;X) 

Negative Binomial 

p(x) = NB(Xo,(no + l)-l;x) 

> 

Cn 

0 

0 

Z 

Cn 

OO ,q 



Oo 

4. 

5. 

Exponential 

p(x I ~) = ~e-nX 

x = [0,~) 

Normal-Known Variance 

p(x ] n) = N(~,s2;x) 

X = (-~,®) 

Gamma 

u(.) = G(n ° + l,Xo;~ ) 

x ° ¢ ~ = [0,~) 

~O rma i 

u(~) = N\n ° ; n-~ ; 

0 = 

o = [0,®) 

e-i 
x 2 
o 

n~(n 0 - i) 

(n° > i) 

Shifted Pareto 

p(x) = + Xo 

Normal 

@ = -__~ 
S 2 

0= (-~,~) 

-s20 2 
E_ 
n O 

O 

> 

© 

© 

x 

m = n-~° ; E0v(O) = no'Vom(O) v = (n o + 1)V0m(O ) 

F(a + b) xa-i(l _ x)b-1 F(a + x) (~I F(a + b) l'(a + X)F(n + b - x) 
Be(a,b;x) - ~)~(~ N~(a,b;x) = F(a)x: (i - b)ab x BB(n,a,b;x) = ~(a)F(b) ~(~ 7 7 b) 

i 
bax a-I -bx I - 2 r(x + n) r(b + i) F(a + x)F(n + b + I - a) G(a,b;x) = -~-- e N(a,b;x) = e BB(-n,a,-b;x) 

2~nb r(n)xl V(a)r(b + i - a) ~(n + b + 1 + x) 
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Convolu t ion  in the  Poisson and  Norma l  families mere ly  gives 
scale changes.  

To i l lustrate  the  re la t ionship  be tween  X and  ®, we consider  two 
new families of exponent ia l  type.  First ,  if 

a(x) = sinh x, X = [o, ~ )  (44) 

we f ind 
c(0) = (02- -1 ) -1 ;  m(0) = 2 0 ( 0 * - - I ) - t ;  v(0) = 2(08 + 1) (0 8 -  I)  -z  

(45) 
and  

for O = [I, oo). 

However ,  if 

(08 - -  i)n0 e-ox0 
u(O) = d(no, xo) (Xo > o) (46) 

a(x) = { e -I~f X = ( - -oo ,  + oo), (47) 

we f ind 

c(0) = ( I - - 0 8  ) -1;m(0) = - - 2 0 ( 1 - - 0 2  ) -1;v(0) = 2(08 + I) ( I - - 0  *)-8 

(48) 
and  

( I  - -  0~) n° e - ° ~ °  

u(O) - -  d(no, Xo) (49) 

for finite range ® = [ - -  I,  + I] : 

The  normal iz ing factors d(no, xo) and  the  collective densi t ies  are 
modif ied  Hanke l  and  Bessel funct ions  of order  no + ½, and  fur ther  
c o m p u t a t i o n s  are laborious.  Nevertheless ,  credibi l i ty  and  the  basic 
formulae  (16)-(19) m u s t  still hold. 
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NOTE ADDED IN PROOF 

In the original paper, it was assumed that if (9 has finite endpoints, 
c(0) -~ 0o at these points. A recent counterexample by R. B. Miller and A. 
Banerjee shows that  this argument  is correct only for m~remorphic func- 
tions. 

In  the general case, additional regularity conditions must  be attached to 
a(x) to ensure tha t  the left-hand-side of (15) is zero. For example, if X is 
one-sided and O = [o, 0o), then the class of counterexamples consists of all 
a(x) for which ~ a(x) dx is finite, but  the limit is approached more slowly than 
any exponential. These conditions will be discussed further in a forthcoming 
paper. 


