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THE MODEL 

The multiplicative ratemaking, model we have in inind is the 
following one. Within a certain branch of insurance we have, say 
for simplicity, two tarif arguments U and V. For example, in motor 
insurance we could think of U and V as being make of car and 
geographical district respectively. In fire insurance U could be 
class of construction for buildings and V could relate to fire defense 
capacities. 

The arguments are of a qualitative nature and argument U has 
r levels, while argument V has k levels. To our disposal we have 
statistical experience of the business for a certain period of time, 
consisting of 

--r isk exposures n 0 (i = I . . .  r, j = I . . .  k). 
Risk exposure n 0 thus corresponds to the i th  U-level and the 
j th  V-level. It  could be e.g. number of policy years or sum 
insured during the period of observation for objects belonging 
simultaneously to U-level i and V-level j. 
The nos are known non-random quantities. 

--(relative) risk measures p ~ j ( i  = I . . .  r ,  j = I . . . k ) .  

Risk measure p~j could be e.g. claims frequency, i.e. number of 
claims divided by number of policy years, or claims cost per 
policy year or claims cost as a percentage of sum insured. In 
general p,j is thus the observed number or the observed amount 
of claims belonging simultaneously to U-level i and V-level j, 
divided by the corresponding risk exposure nij. 
The pos are observed values of random variables. 

The multiplicative model now consists of the assumption 

E ( p , j )  ~-  cu~v  s (I) 

( i = I  . . . r ,  j ~ I . . . k )  
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that  is, the expected values of the risk measures p , j - - the  true risk 
premiums on which to found the tarif book---can be represented in 
the multiplicative form (I) with suitably chosen factors c, Ul  . . . U r ,  

Vl . . .  V/¢. 

F I T T I N G  T H E  ~ O D E L  

The model has been studied by several authors, see e.g. references 
[~], [2], [4], [6], [7] and [8]. 

Several methods of graduation have been proposed and have also 
been implemented in EBD-systems [3], [51. Among these is the one 
proposed by Jung [6] and described by the following set of equations 
for c, ~1 • • • ~ r ,  Vl  • . . V / C  

Z n 0 cu~v~ = Z n ~ p ~  s ( i  = I . . .  r) 

Z n , ]  c u , v j  = Z n , j p , ]  ( j  = I . . .  k )  (2) 
¢ i 

Thus, the graduation is done so that  for each U-level i the 
graduated "marginal" claims cost will be equal to the observed 
marginal claims cost and correspondingly for the V-levels. If one 
considers one argument at a time, the method is thus fair. As the 
left hand sides of (2) are the expected values of the right hand sides, 
one could also say that  the method coincides with the method of 
moments. I t  can also be shown to coincide with the so-called mod- 
ified chi-square minimum method, Jung [6]. In practice equations 
(2) are solved by putting c equal to the overall risk measure 

c = Z n , j p , j / Z  n , j  

and writing (2) in the form 

u ,  = X n o p , # c  X n o v a  (i  = z . . .  r) 

v j  = X n , j p , j / c  Z n O u  J ( j =  I . . .  k)  

and solving for u,, vj by iteration. 

In the following we will restrict ourselves to this method of 
graduation. 

P R O P E R T I E S  O F  T H E  S O L U T I O N S  

In practise you are somewhat concerned about the statistical 
properties of solutions c, u l  . . .  Ur, v l  . . .  v k  to equations (2). If 
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their variances are large you could obviously not put  much con- 
fidence in the graduation even if the model assumption (I) is cor- 
rect. Also, if you make graduations of new sets of data from the 
same branch of insurance, e.g. produced during consecutive years of 
experience, you will in that  case get a strong variation in the 
obtained values for the factors u l  . . .  ur ,  v l  . . .  v~. 

In the following we hold the model assumption (I) to be true. I t  
is obvious that  (I) does not determine the factors uniquely. We 
could e.g. multiply all u,s by  two and divide all v# by  two without 
affecting the relation. We therefore impose the normalizing con- 
dition. 

~ ,  = v l  = z (3) 

It  is obvious that  c, u,, vi are then uniquely determined by  (I). 
Also, we put  equations (2) in the following form 

F ,  = c u ,  X n , j v j  - -  X n , j p , j  = 0 ( i  = 2 . . .  r) 
J t 

G~ ~ .  cv j  X n o u ,  - -  X n o p , ~  = o ( j  = 2 . . .  k)  (4) 

H = c ~ n , j u , v  t - -  Z n,~p~ a = o 
0 e 

That is, the difference between graduated and observed row 
totals should be zero for rows 2 . . . r ,  and correspondingly for 
columns 2 . . .  k. Finally the difference between graduated and 
observed grand total should be zero. This is obviously equivalent 
to  (2). 

We now compute the jacobian matrix 

~ ( H ,  F~ . . .  Fr,  G~ . . .  Gk) 

] = ~ ( c ,  u ~  . . .  u , ,  v~ . . .  v~ )  

Its first row are given by, in turn, the partial derivatives 

b H  

~H 

- -  2~ n , j u f v  t 
U 

- -  c X n,~v~ ( i  = 2 . . .  r )  
~ u f  

~ H  
- -  c X n f j m  ( j =  2 . . . k) 

~v j  , 



MULTIPLICATIVE RATEMAKING MODEL 147 

I ts  nex t  (r - -  I) rows are given by,  in turn,  the part ial  derivatives 
(i = 2 . . .  r) 

~F, 
- -  u~ ~ n~jvj 

~c 

~F, ~ o if s ve i 

bus c ~ n,~vj if s = i (s = 2 . . .  r) 

~vj - -  cu,  n,~ ( j =  2 . . .  k) 

and  correspondingly for the last (k - -  I) rows, wi th  the  G~s instead 
of the F,s.  

Drawing up the picture of the jacobian mat r ix  J on a paper  it  is 
seen tha t  its de terminant ,  I J [, has the proper ty  

[ J i = d * ~-2 u~ . . . ur  v2 . . . v~ l A t 

where A is a symmetr ic  (r + k - -  I) × (r + k - -  I) matr ix.  

Fur thermore ,  let a ' =  (z, x 2 . . .  xr, y 2 . . .  y~) be an a rb i t ra ry  
(r + k - -  I) × I vector.  B y  s t ra ightforward calculation i t  is found 
tha t  the quadrat ic  form 

a ' A a  

equals 
r • r 

Z m j m v j ( z  + ~ + ~j)2 + Z mlu~(z  + ~)~ + Z n l j v j ( z  + ~j)* + n n z ~  

where 
~ = x , /u ,  (i = 2 . . .  r) 

~j  = y j /v  s ( j =  2 . . .  k) 

The model na tura l ly  assumes c, u,, vj all to be positive, and  we 
also assume all risk exposures n,j to be positive. Thus 

a ' A a  > o  

A is positive definite. Thus I A [ and [ J I are also positive, i.e. the 
jacobian mat r ix  J is non-singular. This means  t ha t  as long as the  
observed risk measures /~,t have values in a sufficiently small 
neighbourhood of the expected values (i), equations (4) will have a 
unique vector  of solutions 

] ,  = as... ;,., 
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which converges in probabili ty to the true values 

f ' =  ur, . . .  vk) 

as the risk exposures n,j, and hence the expected number of claims 
in cell (i, j), tends to infinity. 

Furthermore, let 

R ,  = Z n,lp~ 1 (i = 2 . . .  r) 
t 

C I = Z n , l p  0 ( j = 2 . . . k )  
t 

T = Z n , t pg  
0 

and put  

t ' =  ( T 1 R 2  . . .  Rr, C2 . . .  Ck) 

Then, asymptotically as all n,j tend to infinity 

f = f + J -  '(t - -  E(t)) 

As, under the usual Poisson assumption, the p,ls are asymp- 
n - 1  totically normal with variances of the order of magnitude ~ , we 

see that  f i s  asymptotically normal with mean vector f and variances 
and covariances of an order of magnitude corresponding to the 
reciprocals of the ntis. 

NUMERICAL ILLUSTRATION 

We have not yet made any theoretical investigations as to the 
statistical properties of the estimates 

~ (C, ~2 . . .  ¢~r, ~2 . . .  Vk) 

for finite sizes of the riskexposures n,j. We have however, made a 
simulation experiment. We would like to report on some findings 
from this experiment, as it illustrates the asymptotic  theory and 
might give some clues for the finite theory. 

The experiment was actually carried out for three tarif arguments 
U, V and W, with two, three and ten levels respectively. The risk 
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exposures  nij~ were chosen to be p ropor t iona te  to the following 
numbers  

k = I ,  2 ,3 ,4  

I j  i 2 3 

I 600 500 400 
2 1,6oo 1,50o 1,4oo 

k = 5 , 6 , 7 , 8  

i ~  i 2 3 

I 400 500 600 
2 400 500 600 

k = 9, IO 

i ~  I 2 3 

I IOO 15o 200 

2 50 50 50 

Risk measures  p,~e were s imula ted  assuming p,j~ to be normal ly  
d is t r ibuted  wi th  mean  

E(p,j~) = cu~vjw~ 

and  var iance 

Var  (P*3~) = cu,vjwk/n,jk 

The  mul t ip l icat ive  model  was thus  assumed to be true,  and  wi th  
the  following values for the factors 

C -~- 0 .0  5 

(ul, u2) = (I, 1.4) 
(Vl, V2, V3) = ( I ,  1.2,  1.4) 

(Wl, w2, w3 . . . . .  wg, wlo) = (I, 1.15, 1.3o, . . . .  2.20, 2.35) 

The  exper iment  was carr ied out  IOO times. After  each s imulat ion 
A 

est imates  ~, ¢~1, vj, w~ were compu ted  f rom equat ions  (2), o r - - t o  be 
e x a c t - - f r o m  their  analogues for three  tar if  arguments .  

The  whole procedure  was repea ted  four  t imes  corresponding to 
four choices of p ropor t iona l i ty  factor  for the  risk exposures  n,j~, 
namely  

1/81 1/9 I 1/0.O 9 
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Thus e.g. nn l  was given in the four repetitions the respective 
values 

6oo/81 600/9 600 600/0.09 

Note: The same basic set of random numbers were used in all four 
repetitions. The different sizes of n~l~s were taken into account in 
the transformation to the normal distribution for the p,jks. 

Factors wk should be most critical as they are supported by the 
smallest marginal risk exposures. Following are results for three 
w-factors, one from each exposure-size group. 

True 
Factor value 

Observed mean value and standard deviation of estimate 
in IOO simulations 

Proportionality factor for exposures 
1/8I 119 I i/o, 09 

w, 1.3o m e a n  1.474 1.333 1.3o7 1.3Ol 
s t .d  0.75 0.23 0.075 0.023 

w~ 1.9o m e a n  2.230 1.946 1.908 1.9Ol 
s t .d  1.2o 0.38 o.12 o.o37 

wl0 2.35 m e a n  3.739 2.53 ° 2.369 2.354 
s t .d  2.42 o.81 0.28 o.083 

Asymptotic unbiasedness is well illustrated. So is the inverse 
relationship between variances and risk exposures, at least when, as 
in this case, the latter tend to infinity at the same rate. 

For finite exposures we seem to have a positive bias (this goes for 
the other u-, v- and w-factors not shown here, too). The dependance 
of this bias, as well as the variances, on total and marginal exposures 
might be worth studying. 

As for the asymptotic normality, we have tried to illustrate it by 
four histograms for Wl0 shown at the end of the paper. 
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