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This paper was inspired by comments by H. L. Seal in a series of 
lectures given to the Actuaries Club in New York and by a paper of 
his recently published in the Swiss Actuarial Journal (Seal, 1972 
[6]). In his lectures he showed that  the probability U(w, t) that  a 
risk reserve at every epoch -~, where o < ,~ ~ t will be non negative 
when the initial risk reserve is w is related to F(w + I + "~.t, t), 
the probability that the aggregate claim outgo through epoch t does 
not exceed w + i + ~.t by the relationship 

U(w, t)=F(w+I+'q t, t ) -  (I+'~) S U(o,t--,r)f(w+I+~"r,'r)d'~ (I) 
0 

where -q is the security loading and f(x, t) = (~/3x) F(x, t). 

I t  is assumed that  the d.f. F(x, t) is differentiable eith regard to 
x with a possible exception at the point x = o. 

Using an extension of the "ballot theorem" in Chapter I I I  of 
I (l +'0)t 

Feller (1968 [4]) he showed that U(o, t) -- (1 + ~)t fo F(x, t)dx 

and observed that  if numerical values of F(x, t) were available 
values of U(w, t) could be computed. 

His paper in the Swiss Journal applied this technique to the 
Poisson/Exponential case and provided some numerical results 
obtained by quadrature. The formal simplicity of relation (I) sug- 
gested that  it might be worth while investigating the problem in 
terms of the moments of the various functions with the object of 
finding approximations to U(w, t) which could be useful in practice, 
particularly where the large scale computing facilities required for 
the quadrature were not available and under more general as- 
sumptions regarding the claim process. Furthermore, the numerical 
values provided by Seal formed a useful control at various stages. 
I t  may first be noted that  the moments of the distribution of total 
claims about the mean in the Poisson/Exponential case are: 

m t =  t, tz2 = 2t, #a = 6t and #, = 24t + I2t 2 

~7 

L__ 
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f rom which it follows tha t  ~1 = 4.5t -~ and  ~2 = 3 + 6t -~. These 
values of ~ and  ~2 are fair ly close to the Pearson type  I I I  ( G a m m a  
function) va lue s - - ( fo r  a ~2 value of 3 + 6t-1 the  ~ value would be 
4 t-~) and  a useful s t a r t ing  app rox i ma t ion  is to assume tha t  F(x, t) 
can be approxima. ted  b y  a type  I I I  curve  with  the p a r a m e t e r  

P = (4/~) - -  I = 8t - -  I. The  app rox ima t ion  will clearly be worst  
for low values of t, apa r t  f rom the error f rom ignoring the dis- 
con t inu i ty  a t  l = o, bu t  will improve  as t increases. A few values for 
t = io  give some idea of the closeness of the app rox ima t ion :  

X0 F(x0, IO) I ( ~ p  + I + /0, p) 

-2 .oo234 .0037 I 
- I  .15470 .15274 

o .54489 .54461 
I .84384 .84499 
2 .96236 .96248 
3 -993 °8 .99290 
4 .99897 .99888 
5 .99987 .99984 

P = 7.8 

These are, of course, values of the "non- ru in"  p robab i l i ty  and  
normal ly  the values  in the  lower pa r t  of the table  are those required 
in pract ica l  conditions. 

A more useful model  is however  the Po lya  case in which the 

p a r a m e t e r  of the Poisson dis t r ibut ion is a ssumed  to be a r andom 
variable,  d i s t r ibu ted  in g a m m a  form. In  this case the cumulan t s  of 
the  to ta l  claim dis t r ibut ion are: 

t 2 3r2m2 2t a 
= t, ×2 = + y ,  = + + 

3frn~ 4fro3 I2 fm2  6t 4 

+ - T -  +- -T-  + + 

x4 = tin4 + 

where k is the dispersion coefficient of the claim f requency  and  the 
mean  claim is the basic unit. I f  k is small,  i.e. wide dispersion, and  t 
not  too small  these cumulan t s  are domina ted  by  the last  t e rms  and 
we find ~1 ~ (4/k), ~2 ~ 3 + (6/k), again the  values for a t ype  I I I  
t r ibut ion  and,  inc identa l ly  a p p r o x i m a t i n g  an exponent ia l  distr ibu- 
t ion when k ~ I. Thus  the t ype  I I I  could be expected  to be a 
useful app rox ima t ion  in the Po lya  case. 
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If, instead of a single negative exponential  term for the claim 
distribution, we subst i tute  the sum of a series of negative ex- 
ponential  terms, the cumulants  become more complicated as they  
involve the convolution of the component  terms but  here again the 
type  I I I  would seem to be a useful approximation.  This feature has, 
of course, been well known for some t ime--see  e.g. Bohman and 
Esscher, 1964 E2]. 

Thus it would seem tha t  in the generalised case where the claim 
frequency follows a Polya distribution and the claim distribution 
is a practical case defined by its moments,  a reasonable assumption 
would be tha t  F(x, t) can be represented by an incomplete gamma 
function so tha t  a reasonable approximation is available for the 
first term on the R.H.S. of relation (i). 

The next  step is to consider the calculation of U(o, t) = 

I 0 +'0)t 
- -  ( I  + ~) Io f(x, t) dx .  

b 

By noting the relation If I(u,  p) du = h i ( u ,  p) - -  I/p + I 
0 

I ~ / p ~ ,  p + I it will be found tha t  U(o, t) can be expressed in 

terms of 4 incomplete gamma functions. Two of these arise from the 
lower limit (x = o) and can be ignored. A few representative values 
were calculated and found to be in close agreement with Seal's 
calculation. However, our ul t imate object is the second term in (I) 
and the calculations of many  values of U(o, w) would be laborious. 
Accordingly, noting tha t  this term is in the form of a convolution 
integral it was decided to t ry  and find expressions for the moments  
of U(o, t) and f ( w  + I + ~ " t, t). 

However, since U(o, t) has a limit ~/(I + -~) when t -+ oo, it is 
necessary to consider U(o, t) - -  -~/(I + -~) and, making the lower 
limit zero, this can be shown to have the value 

l I (t + .~v() v I (t + .=v0), 

I + ' 0  0 o 

- -  ! e-Zz y - 'dz  where y = .  8t (2) 
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B y  expanding the integral in an Euler-Maclaurin series, noting 
that  the terms involving the successive differential coefficients were 
relat ively small and using the expansion (see, e.g. Bromwich 

1947 [3], P. 16o) 

a(a + 2b) 
e a~ = I + ay + 2! y2 + 

a(a + 3b) 2 
3! y2 + . . .where  y =xe  -ox 

i t w a s f o u n d t h a t ! ( U ( o , t )  I + . ~  ----~---- ) dt was approximate ly  

1.5 
(1 + ~ ) ( i -  x) (3) 

where x is found from x = e ~(2-1) and [3 = I + .75"~ 

I f i t r ) U ( o , t  ) -  "~ Id t  be denoted by  Sr then it c a n b e  
i + - ~  

i . i25x  d ( 
shown that  S r - -  I - - ~ x  dx St- ~ andthem°ments  °f U(o , t ) - -  

~q 
thus determined.  

I + ~  / 

The expressions rapidly become complicated bu t  the first few are 
as follows: 

1.5 
S o =  

( I + ~ )  ( I - -X)  

51 
I .I25.I.5X 

(1 + ~) (1 - -  x)~ (i - -  ~x) 

(1.125) 2 1.5x(I  + x - -  2~x 2) 

(1 + ~) (1 - -  x)3 (~ - -  [3x)3 

(1.125) 3 1 .5x(I  + 4x  + 213x + x2 - -  io[3x2 - -  4px 3 + 6p2x 4) 

S2 

53 -~" (I + "~) (I - -X)  4 (I --[3X)b 

For ~ = .i, x = .8638 and the moment  functions derived from 
the foregoing are mean = 99.9o8, a = I78.94, [31 = I5.4o9, [32 = 
27.251. 

T h e  [31, [32 values are appropr ia te  for a Pearson Type  VI, al though 
tt-ley are close to the Type  I I I  values. However ,  both of these curves 
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s ta r t  at a small positive value of t so tha t  representa t ion for small t 
would be poor. The  type  I I I  curve  from these moments  is .o1713 

I + - -9 i . i7  I -.oo2s473~, x measured from 99.9o8, which 

leads to the following values for U(o,  t) 

t T y p e  III T r u e  

2o .1682 .1976 
5 ° .1284 .1264 

i o o  . i lOO .lO8O 
IOOO .o911 .o91o 

The Type  I I I  s tar ts  with an infinite ordinate  at about  t = 9 
whereas the U(o, t) curve  s tar ts  with a zero ordinate  at  t = o. For  
the higher values of t the representa t ion is fairly close bu t  o ther  
methods  of est imating the curve  would be needed for low values. 
These values are, of course, not  needed by  the present  approach.  

The next  stage is to find the moments  (with respect  to t) of 
f ( w  + I + v~t, t) where 

e V.8t 
f - -  F(.8t----~ and z = .St + ~ (w + ~ t). 

"~ ) it can be shown Using the same method  as for U(o, t) - -  I + "~ 

tha t  approx imate ly  

~o 
~ f ( w  + I + ~qt, t) dt = Io  = .75~ - -  
o 

and 

~ tT ( . )  at = Ir  - -  - -  
o 

Thus 

e a ( z  - 1) 

I - -  [3x 
. x where a = 6w (4) 

I.I25X d 
I - -  ~x  dx  I,._ 1 

I " ~ I i) 11 = (I ---5 ~ ) 2  + [3 (I - -  13x) 1.125 I0 etc. 

Now the funct ion whose value we are seeking is the second te rm 
on the R.H.S.  of relat ion (I) which m a y  be wri t ten  as 

li ( I ( I  ~ -  ~]) Q f ( ' )  U(o,  t -z}  I -~  I 2 f  
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We know the m o m e n t s  of the second t e rm and we can find the 
appropr i a t e  values of the m o m e n t s  of the first te rm by  convolut ion,  
i.e. f rom the p roduc t  of the two m o m e n t  genera t ing  functions,  which 
are bo th  known. These can be added  to obta in  the m o m e n t s  of the  
whole expression (5). 

Calculat ions were made  using w - -  IO which led to the following 
result  : 

) i I ~o "q dv + "~ f ( . )  dv = (~+~) f(') U(o,t_,) 1 + ~  1 +  

go; ( ~  - 1) X 

= .75"~ i - -  [3x "36589 

mean  = 2.o116.1o 2 

cr = 2.761.1o ~ 

~t = 9.323 
f3~ = 16.287 

These are the m o m e n t s  of a Pearson T y p e  I curve, but  close to a 

type  I I I .  The  final s tage is to find values of the dis t r ibut ion function 
for values  of t, hav ing  given these moments .  The values of ~1 and  ~2 
are within the range  of the tables of percen tage  points  calculated by  
Amos (1971) but  the results  will again be poor for low values of 1 
because the type  1 curve  s ta r t s  with an infinite ordinate  at  a small  
posi t ive value of t. A Type  I I I  curve  (with a negat ive  value of p) 

could be used, but  in teres t ing values are crowded together  at  a very  
inconvenient  p a r t  of the t abu la t ed  values in Pearson ' s  tables  of the 
Incomple t e  G a m m a  function.  

For  ]/~1 = 3.0 and  ~2 = 16.4 Amos gives the following values:  

p .oooo .oolo .0025 .0050 .OLOO .025 ° o.5oo .IOOO .2500 .5ooo 
--.6617 --6617 --6617 --6617 --6617 --6615 --6606 --6559 --613o --3979 

291.6617 7.1421 5.9o25 4.9746 4.0585 2.8737 2.oo71 1.18o2 .1924 
x being measured in units of standard deviation from the mean. 

This  curve  s tar ts  a t  l = 18 approx ima te ly .  B y  in terpola t ion  for 
selected values of t the following values are found for U(w, t) 
where F ( . )  is calcula ted f rom the type  I l i  app rox ima t ion  and  the 
t rue values of U are in te rpo la ted  f rom Seal 's  values of U(io ,  t) : 
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t F ( . )  adj U00,_ ~ True Value 

2o .956 .037 .919 .918 
5 ° .921 .135 .786 .816 

IOO .911 .194 .717 .738 
2o0 .921 .753 .678 .681 

IOOO .982 .357 .625 .634 

The accuracy is sufficient for many practical purposes so that the 
primary object of this paper is achieved. 

I am conscious that paper is very untidy and that there are a 
number of directions in which improvement is possible or further 
research is indicated. Probably the most untidy aspect is the 
inadequacy of the Pearson system to cope with the distribution for 
low values of t. There is some indication that a functional form 
t~(t + a) Is÷r) e TM, i.e. a confluent hypergeometric function, 
would be suitable but the simplicity of the numerical inversion 
using Amos' table would be lost. The evaluation of the integrals is also 
incomplete, the form of the answers suggesting that there is an 
approach via. the calculus of residues. Finally, the moments of the 
"adjustment" terms derived numerically from the moment generat- 
ing functions may possibly be obtained in a more direct fashion. 
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