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SUMMARY 

In this paper some ruin probabilities are calculated for an example 
of a lognormal Claim distribution. For that  purpose it is shown 
that  the lognormai distribution function, A(y) ,  may be written 
in the form 

0 

where V(x) is absolutely continuous and without being a dis- 
tribution function preserves some useful properties of such a 
function. 

An a t tempt  is also made to give an approximant An(y) to A(y) 
such that  An(y) is a linear combination of a low number of ex- 
ponential distributions. For comparison, ruin probabilities are 
also calculated for two examples of An(y). 

In the considered numerical cases it is assumed that  the occur- 
rence of claims follows a Poisson process, 

I .  INTRODUCTION 

This paper can be viewed as a continuation of our previous joint 
paper (Thorin and Wikstad (1973)). In that paper we made 
numerical evaluations of ruin probabilities when the distribution 
functions of the amounts of claims, P(y), and of the interclaim 
times, K (t), both could be expressed as a weighting together of 
exponential distributions. In fact we considered i) the following 
two classes 

g 

dr (x ) ,  y >. o 
P(Y) 

I , y<o 
1) As to the class (I.x) we referred to Seal (I969). However, we should 

also have referred to Thyrion (I964) where a systematic  s tudy of the class 
(I .I)  i.a. including the Pareto example was given. 
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/I ~ (I--~) Jw(~), t _>_ o K (t) (1.2) 0 

• O, t < O  

where V(x) and W(v) were distribution functions such that  
v (o) = W ( o )  = o. 

Besides the simples cases when V(x) and W(v) are discrete 
distributions with a finite number of spikes we also considered 
absolutely continuous V(x) or W(v). In particular, we gave 
formulas and numerical values of the ruin probabilities when 
V(x) (or W(v)) was a F-distribution corresponding to a Pareto 
distribution for P(y) (K(t)). For that  case we also gave an ap- 
proximant with a finite number of spikes. It  turned out  that  the 
ruin probabilities were well approximated for moderate values 
of the initial risk reserve. For large values of the initial reserve, 
however, discrepancies appeared corresponding to entirely different 
asymptotic behaviors. 

In the present paper we a t tempt  to generalize our procedures 
to a case where V(x) no longer is a distribution function bu t  still 
satisfies the conditions: 

(i) V(o) = .0, V ( o 0 )  -~- I 

(ii) V (x) is right-continuous 

(iii) / [dV(x)[ < oo, i.e. V(x) is of bounded variation over 
0 

the entire interval (o, oo). 

Of course, no t .every  such V(x) inserted in formula (I.x) gives 
a P(y)  which is a distribution function. However, in certain cases 
we get a distribution function. Let us first take a simple example. 
We let 

[/(X) -~- a Z ( x - - a t )  + ( I - - a )  ~ ( X - - a 2 )  ( I .3 )  

where o < a l  < a 2 ,  a = a 2 / ( a , - - a l ) .  

The second weight I -  a = -  a l / ( a 2 -  at) is thus negative, 
Inserting V(x) in formula (I.I) we get 

~2 a t  
P (  y )  = I e -~' 'v  + - e -c ` 'v  = 

a2 -- at a2  -- al 

= (I -- e-~'~) * (1 -- e-~,v) 
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i.e. the convolution of two simple exponential distributions. In 
passing, we note the obvious fact that  for Y(x) in (1.3) the first 
moment  is zero and all the higher moments are negative. (This 
fact has an obvious generalization to convolutions of Jz exponential 
distributions.) 

As the reader easily realizes there is an abundance of such 
examples as (I.3) where a finite number of spikes, among them 
some negative ones, produce distribution functions P(y). The 
same can, of course, be said about K(t). The numerical problem 
of calculating ruin probabilities in such cases present no essential 
difficulties as compared with the cases where V(x) and W(v) 
consist of only positive spikes. 

The main topic of this paper is, however, a case where V(x), 
without being a distribution function, is absolutely continuous 
and, in fact, produces the lognormal distribution A(y) for P(y). 
For a special parameter  choice we a t tempt  to calculate a number 
of ruin probabilities and also, for comparison, to bring forward 
and determine ruin probabilities for an approximant As(y) to 
A(N) such that  the corresponding V~(x) consists of a low number 
of spikes, which if necessary may contain negative ones. As to 
K(~) our formulas are general. However, for numerical purposes 
we consider only the case K(0 = I -  e -~, i.e. we assume that  
the occurrence of claims obeys a Poisson process. 

In section 2 we consider the function V(x) producing the log- 
normal distribution. Thereafter, the section 3 gives the formulas 
for the ruin probabilities. Section 4 treats the principles for ob- 
taining As(y).  In section 5 the asymptotic behaviour of ~F(u) for " 
u--~ Go is dealt with where E(u) denotes the ruin probability for 
an infinite time when the initial risk reserve is u. Section 6 presents 
the  numerical methods. Finally, section 7 and the at tached tables give 
the numerical results. Section 8 contains some concluding remarks. 

2. THE FUNCTION V(x) PRODUCING THE LOGNORMAL 
DISTRIBUTION, A(y) 

The lognormal distribution function, A(y) ,  has the well known form 

A(y) = I N (  l ° g y - ~ ) '  a > o ,  y > o  

i . (2.I1 
o, y = < o  



23.  4 RUIN PROBABILITIES FOR LOGNORMAL CLAI3I DISTRIBUTIONS 

where N( . )  s tands  for the normal  dis tr ibut ion funct ion wi th  mean  
zero and  var iance one, i.e., 

N(y)  = 1 / e-';'12 dv 

and log denotes the na tura l  logarithm. As a general reference for 
the lognormal distr ibution see Aitchison and  Brown (1957). 

For  convenience, we introduce c¢ = e -'~ and  use ~ ins tead of , .  
Thus 

A(y) -~ N ~ , x > o ,  ~ ~>o, y > o  (2.2) 

o, y__<o 

Clearly, the  pa ramete r  ~c is a pure scale parameter  in the same 
sense as ~ in F ( y )  = I -  e -~v, y >= o is a pure scale parameter .  
In contrast ,  the parameter  ~ has a decisive influence on the  shape 
of the dis t r ibut ion A. 

We now consider the Laplace-Stielt jes t ransform of A for 
Re(s) ~ o. (Re(s) = o corresponds to the characterist ic function.)  

X(s) = ~ esv dA(y) 
0 

0 

In  order to cont inue X(s) analyt ical ly  into the r ight  s-halfplane 
we sl ightly rewrite X(s) for s negative real and  get 

t 

Making the subst i tu t ion ,t = (I /~)e -~v we find 

X(s) = e -o1~ "-~' d N ---~--- 

I ~ e_<xl~) ,-or -V, (v+<lo~(-,))/o)~dy. (2.3) =--~_ 
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Since the last member  of (2.3) represents an entire function of 
log ( - - s )  we see that  we have in (2.3) not only a representation 
of X(s) for Re(s) =<o, s # o, but also an analytic continuation 
into the right halfplane if we avoid the point s = o which is a 
branch point. If we avoid also the positive real axis we get in the 
remaining part  of the plane, say D, a single-valued function. The 
boundary values of X(s) when we approach the positive real axis 
from above and from below, respectively, we denote by X+(x) 
and X-(x),  respectively, where x :> o. 

From (2.3) we conclude that 
/ . log x x'(,,) - vq~-~ ( -"'°,'-~'-~'t~'--r--'~)' d y '  

eat(ca') : e-(xt')*-Z*-½ ~ --.-~--] +~(v+ dy 

-- V~Snal(2~a) -=: 8-(xl~t)e-l~-~ y=÷f(nlfDy dy (2.4) 

and 

e #t(2~) -(xt~,),-~,-y: ~-,(.ta) u dy (2.5) 
x - ( ~ ) = x ' ( ~ ) =  V ~  _.[ 

Taking real and imaginary parts we find 

Re X ÷ (x) - -  V ~  

.~af(2~ z) 

/m x* (x) - V~ 

Note that  

lX+(x) t = IX-(x) l 

- (x l : )  e- ~w_ ½ y= r~'V 

e cos-d- dy (z.6) 

Y 
j ¢ sm y dy (2.7) 

=< [/~ -.: e dy = e ~I(2~z) (2.8) 

Furthermore, the formula (2.3) shows that  X ( s ) ~  o uniformly 

in /~, the closure of D, when I st--~ co. I t  is also evident that  

X(s) ~ i uniformly in D when [sl --~ o. In conjunction with (~.8) 
these facts show that  

IX(s) t < c ~l(~) 

for s ~ D (Phragm~n-Lindel6f principle). 
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However,  it is easy to see direct ly tha t  
I .  ~ l o g (  - s)~2~ (tLrg( - *))~ == 

I ( - ~., R, ~ ~,v- - -V- - )  I dy e 2~, - -  

(2.9) 

i, 

I" x* (x) - -  x-  (x) x(s) = 
2 ~  J x - -  s 

o 

I m  X ÷ (x) / (nx) 

J I ~ SiX 
o 

I m  X ÷ (x) 
Defining V'(x)  = 

~x 

we find 

V'(x)  dx 
X(s) = J (2.12) 

I ~ SIx 
o 

Using (2.7) we m a y  wri te  (2.Ix) in the form 
gr~l(2~ ~) 

s i n - ~  dy (2.13) v'(~) - j ,  
-m 

In order to prove that 

.~ I V'(X) I dx < ~/~: j" e ~/~ dt < e ~ / ~  (2.i4.) 
o o 

we introduce 
Q(y) ~ e ~ : " ~  ~t 

_ _  =~/~ -./ e - a "  sin-F- dt (2.15) 

I f Im x+(x) = ~ d x  = 

1~ x ~  s 
o 

(2.~o) 

( 2 . ~ )  

when - - ~  < arg ( - -s )  < r. i.e. for all points in D.  

According to Cauchy 's  integral  formula  we have 

f x(s') ds' X ( s ) -  2r, i s ' - - s  
C 

where s ~ D and  C is a simple closed curve  surrounding s. 

:Because of k(s)'s propert ies when is1 --~ co and I sl--~-o we m a y  
modify  C in such a way  tha t  we get 
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Then we can rewrite (2.I3): 

1 - (xl~t) e -  ~ 
dQ(y) = 

and get 
I 

-OOy -(xl~t} e -P'U 
+ ~Q(?)+ + d? (2.16) 

-m 

0 ~ - *o  D 

= f IQ(y) I dy (2.i7) 
- g  

However, it is easy to rewrite Q(y) in the following form (com- 
pare the derivatives t) + =- 

- vZl~ ~/~ tst2 
e cos  ( ty )  dt (2 . I8 )  Q(Y) = - -  g ~  " . 

Thus 

- e ''t" d t  ( 2 . I 9 )  

From (2.I7) and (2:I9) we get the asserted inequalities (2.14). 

I t  is now easy .to invert (2 .x2) to  

o 

= [ ( I - - e - x u )  dV(x) (2.20) 
0 

where V(x) is absolutely continuous and satisfies the conditions 
(i), (ii) and (iii) required in section 1. 

I t  is easy to see that  V'(x) must have infinitely many zeros 
with a limit point in oo. For that  purpose we consider the succes- 
sive derivatives of Ira X+(x). For convenience we also consider 
the derivatives of Re X+(x). In fact we get from (2.6) and (2.7) 

where Xn - -  

d-  
dx n Re X ÷ (x) ---- X. Re ),+ (x e )+++') 

d n 
I m  X + (x) : X .  Ira x* (x e "~') 

d x  ~ 

entail2 

- -  is the nth moment  of A(y).  

(2 .2 I )  

(2.22) 
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Since we k n o w  t h a t  Re X+(o) = l ;Re  X+(co) = o, Im X+(o) = o ,  
I m  k+(co) = 0 the  re la t ions  (2.21) and  (2.2z) give some i n f o r m a t i o n  
a b o u t  the  shape  of Re X+(x) and  I m  X+(x). We  thus  conclude  t h a t  
Re X+(x) s t a r t s  out  f rom the va lue  one a t  x = o,  where  all the  
der iva t ives  to  the r ight  are posi t ive,  in fact  t h e y  equa l  Xn for  
n = I ,  2 . . . . .  I n  par t icu lar ,  Re X+(x) near  x = 0 is increas ing  
and  convex .  Since ReX+(oo)= 0 there  m u s t  exist  a po in t  x0 
such t h a t  the  de r iva t ive  is zero in xo. Then  (2.21) shows t h a t  
ReX+(x) has  a zero a t  x0. e s ' .  T h e n  there  m u s t  exist  a po in t  
xl > x0 e s" where  the  de r iva t ive  is zero. This  reasoning  can  be 
con t inued  to show t h a t  there  are inf in i te ly  m a n y  zeros t end ing  to 
infini ty.  Clearly,  t he  cons t ruc t ion  m a y  be pursued  in such  a w a y  
t h a t  all zeros of Re k+(x) are included.  No te  t ha t  Re X+(x) m u s t  
change  sign inf ini te ly  m a n y  t imes.  

A s imilar  reasoning  works  for / ~ X + ( x ) .  Since this func t ion  
s t a r t s  out  f r o m  Im X+(o) = 0 the  p resen t  a rgumen t ,  however ,  does 
not  exclude the  possibi l i ty  t h a t  the  zeros also have  a l imi t  po in t  
a t  x = o. No te  t h a t  all the  de r iva t ives  a t  x = 0 are zero. 

F r o m  (2.11) we see t h a t  also V'(x) m u s t  have  an  in f in i ty  of 
zeros wi th  co as a l i m i t  point .  S imi lar ly  V'(x) m u s t  change  sign 
inf ini te ly  m a n y  t imes.  Thus, i.a., V(x) cannot be a distribution 
function. The  fact  t h a t  all the  de r iva t ives  a t  x = 0 of Im X+(x) 
are zero en ta i l  t ha t  V'(x) has the  s ame  proper ty .  

No te  also t h a t  all the  absolu te  m o m e n t s  

x" I V ' ( x )  I d x ,  n = o ,  I ,  2 . . . .  

0 

are finite. F o r  n = o we h a v e  jus t  p r o v e d  it. Fo r  n > o i t  follows 
d i rec t ly  f rom (2.13). 

The  m o m e n t s  themse lves  are all zero for n = r ,  2 . . . .  b u t  
one for n = o.  The  l a t t e r  fact  is ev ident .  The  fo rmer  f ac t  can  be 
fol lowed f rom (2.13) b y  s t r a igh t - fo rward  in tegra t ion .  In  f ac t  we get  

e n2l(=a~ - ~'tv 2 r:y d y  x e d x  x" V ' ( x ) d x  = e s i n - - v -  
ii - ~ Q 

_ (n~ I ) [=ne  ='l(=~') ; -½v'+.~u ~ Y d y  
m 

-- ~2~ _ _  ' sin -~- 
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The integral in the last membrum equals o . 

i e  -½(~'-'~)' s in (  ~ ( y - n ~ )  + m r ) d y  = 
• 

Thus 

= ( - - I )  n e e sin =y  dy  = o 

- m  

i x .  V'(x) dx = o ,  n = I ,  2 . . . .  (2.23) 
O 

However, a more rapid way to show (2.23) is to differentiate 
(2.20) n times and to let y = 0 observing that  all the derivatives 
of A(y) are zero at y = o. 

3. THE RUIN PROBABILITIES 

We now consider the ruin  #roblem when the claim distribution 
is A(y) and K(t) is arbitrary. The initial risk reserve is assumed to 
be u >ffi o and the gross risk premium per time unit to be c > o. 

We are interested in the probability ~F (u, t) that  the risk reserve 
becomes negative somewhere in the time interval (o, t]. We t ry  
to get a formula for 

( . ,  z) = [ e" dt ~" (~,, t) ,  Re  (z) ~ o (3.I)  
Q 

in order to invert this formula by  a numerical procedure. 

In the same way as in our previous paper (Thofin and Wikstad 
(I973)) we find the formula 

B (x. z) V'(x) e-xv dx 
(~,, z) = 

k(z--cx) [(I/k(z.--cx)--Re X ÷ (.~))' + (Ira x ÷ (x)) ~] 
0 

+ X gj(z) e - "  ' , , ~  (3.2) 

where A ( - ,  . ) ,  B ( - ,  • ), k ( . ) ,  g j ( . ) ,  s2~(') are the usual auxiliary 
functions weU known from our previous paper. 

i ;  
A (o, z) 
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In part icular,  k(z) = ~eg~ dK(t )  ~nd so.t(z ) are the roo t s - - l y ing  
o 

in D and  such tha t  Re set(z) > o- -o f  the equat ion 

k ( z  - -  c s~j(~)) x (s~j(z)) = 1. (3.3) 

Fur thermore ,  

gj(z) = B(s~1(z), z) 
A (o,z) [k(z - -cs , j ( z ) )  X'(s,t(z ) - -  ck'(z--cs2j(z))  (s2j(z))] s21(z) 

(3.4) 

- -  I 

A check formula  is ~F (o, z) = 1 (3.5) 
A ( o ,  z) 

For  the case K ( t ) =  I -  e -c,  i.e. Poisson occurrences we get  
certain simplifications of the formulas in the following way.  

- z ~ (x - -  s~(z)) V'(x) e-~" dx 
( u , z )  = st(z)  j (I + cx - -  z - -  Re X+(x)) ~ + (Iron X+(x)) 2 

o 

- u s,flz) 

+ ~ gj(z) e (3.6) 
J 

where 

I + c s : j ( z ) - - z - - X ( s , j ( z ) )  = o,  Re  (s,j(z)) > o,  s,s(z ) ~ D (3.7) 

x + c s t ( z ) - - z - - X ( s l ( z ) )  = o ,  Re( s t ( z ) )  __< o (3.8) 

gj (z )  = z ) s,j(z) x ' ( sv (z ) )  - -  c 

The check formula  now reads 

- -  z 

( o , z )  = i (3 . Io )  
c s,(z) 

For  the numer ica l  i l lustrat ions we keep to the Poisson assumpt ion  
K(0 ---- I -  e - t ,  t __> o and  thus  use the formulas (3.6) th rough  
(3.1o). We inver t  the relat ion (3.1) using the same Piessens' algo- 
r i thm (see Piessens (1969)) as we used in our previous paper.  
As to the lognormal  dis t r ibut ion we fix the parameters  to 

= 1.8o 
= #,,~ = e~., 2 (3.zx) 
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The choice of ~ = 1.8o is taken from the paper by  L.-G. Benckert 
and J. Jung to the Astin-coUoquium in Essex, 1973 (Benckert and 
Jung (I974)). These authors found the value ~ = 1.8o in their 
investigation of the Swedish claim experience of fire insurance of 
stone dwellings reported 1958-1969 (see their Table 3 Model A). 
The value ~ = e~.8~ is chosen in order to get the mean amount 
one. (As pointed out above ~ is only a scale parameter.) 

In our numerical illustrations we give a representative collection 
of values for u = o b y  the use of formula (3.Io). For  other values 
of u we must use the formula (3.6). For the time being we have 
avoided such combinations of c and t which necessitates a search 
for roots s2j(z) in the right halfplane. From the graph of Re X+(x) 
it is possible to mark out the critical regions 'of z for which such 
roots appear. If such critical z ' s  must be used for a certain com- 
bination of c and ~ we have thus avoided the said combination. 
However, even if we are outside the critical regions but  rather 
near one of them difficulties arise. In fact if a s~j(z) lies very near 
the real axis, either effectively in D or so to speak being on the 
way into D ,  the integrand in the integral term of (3.6) must be 
expected to have a "peak"  which requires some caution in the 
numerical quadrature.  

The critical z-regions for our choice of parameters can be char- 
acterized in the following way. For c >_ I . I3 (about) there are, in 
principle, no critical regions. For I < c < I . I3 (about) there is a 
certain x-interval Ic in which R6X+(x) lies above the straight 
line I + cx .  The boundaries of the critical regions, one above the 
real axis and one below the same axis consist I) of the following curves 

Re(z )  = I + c x - -  R e  x+(x) 

Ira(z)  = ± Im X+(x) 

where x runs through Ic, and 2) of corresponding intervals on 
the imaginary axis. 

From what we said above entails that  also z's lying outside the 
critical regions but  near them may be "critical" (even for c lying 
sufficiently near but  above 1.I3). 

I t  is possible to go around the indicated difficulties by  modi- 
fication of the integration line using the analytic continuation of 
the integrand. However,  in the present work we have made no 
a t tempt  in this direction. 

*6 



2 4 2  RUIN PROBABILITIES FOR LOGNORMAL CLAIM D I S T R I B U T I O N S  

4. Trim APPROXlr4ArCT Aa(y) 

We have a t t e m p t e d  to approximate  A(y)  for ~ = 1.8o by  a 
four or five terms combinat ion of exponential  dis tr ibut ions 

An(y) = i - -  X ~ ~-~.~ 
w - - t  

m 

o < ~ j < ~  for j <  k, X a ~ =  I ,  m = 4 o r S .  
t t l  

Similarly as in our previous paper  we determine {a v, a~}I n as 
the solution of the sys tem of equat ions 

i - -  A ( y )  = ~ - -  A s ( y )  

jr (i - -  A(.~)) d~ = f (i - -  A,(~)) d~ (4.~) 
W It 

y -~  O, I 0  ~, V ~ O, 1, . . . ,  ' t t ~ - - 2 .  

For  the de termina t ion  of tFa(u, t) in the Poisson case we use 
the relations 

,t,~(,,. ~) = jr ~,, d, 'Z(,,, 0 1 

k 

_ . ( ( 4 . 2 )  

'F~(u,  z) = X gj(z)  e -u  *,,~*~ ) 
I - 1  

where s,t(z ) are the m roots in the right halfplane of 

I + c s -  X~(~) = z (4-3) 

f i  ( i  - -  s~j(~)/,,,,) 

gs(z) = " '  (4.4) 

g- -L  
, # l  

Note t ha t  the number  of terms in Aa(y) ,  necessary to get  an 
acceptable approximat ion,  depends on ~3. For  "small" ~ the n u mb e r  
of terms m a y  be prohibit ive as m a y  be inferred from the fact  t h a t  
A(y) tends to , (y ~ 1/0t) when ~ ~ o. In fact, an acceptable  
approximat ion  of ¢ (y ~ I/a) by  a linear combinat ion of ex- 
ponential  dis tr ibut ions requires a " la rge"  number  of terms.  
(¢ (y - -  x/a) is not  representable in the form (2.20).) 
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5. THE ASYMPTOTIC BEHAVIOR OF a'Ia'('U) AND LFa(I~) FOR ~ ..-c- 

As is ve ry-wel lknown the asymptot ic  behavior (c >X~) of 
Wa(u) is exponential.  

In  fact, 

• ~(~,) ~ C e-R~,, ,, ~ oo (5.I) 
where C and R are positive constants. 

In  contrast, XF(U) has another  asymptot ic  behavior:  

v ( . )  ~ ~ c  (i - -A(y ) )  dy, ,, ~ ~o 

(Cf. Thorin (I974) pp. 97-98). 

But  we have 

( x - - M y ) )  dy = 
I I  

Wellknown asymptot ic  expressions for I -  N(x) (see Cram~r 
(I955) p. 38) now give for u ~ oo 

( i - -  A(y)) dy 
tJ  

~3 X~ I e-Yz (t/13 ~) ( log(~ 6 -  ~'t u ) )  z 
1 / ~  log (~ ~,) log (~ e-~' ~0 

and thus for u--~ co 

'F(u) ~ c--X-----'~" l/~'~ log (,x u) log (~ e -°'  u) 

(5.2) 

6. NU~IERICAL METHODS 

The calculations are carried out in the same way as described 
in our previous joint paper (Thorin and Wikstad  (I973)) except 
for the solution of the equation x + c s - - z  = X(s) in the left 
s-halfplane. The equat ion is writ ten 

s = ( 1 / c ) ( z - - I  + X(s)) ~ - f ( s )  
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so that  the familiar recursion forrmula s( n+l~ = f ( s ( n ) )  is obtained. 
As starting value s~ 1~ = I /c  (z ~ o.5) is chosen. No convergence 
problems have arisen. 

The main integral in (3.2) requires calculations for a great 
number of points. The positive axis is divided into intervals by  
use of a logarithmic scale. In each interval a Gaussian quadrature  
based on twelve points is carried out. 

The computer  programs used are written in FORTRAN.  The 
calculations are performed on a CDC 6600. 

7" NUMERICAL RESULTS 

The (a,, ~v)~ have been found to be 

m=4 

z o.ooo9872Ioi o.oi287817 
2 o.o354o9oz 0.09724921 
3 0.285514I 0.6569755 
4 o.678o897 5-440050 

m= 5 

I o.ooooo7137o59 o.ooz887727 
2 o.oozz731oo o.oz48o7o5 

3 o.o3587177 0.09958433 
4 o.28543 Iz o-66oi54o 
5 o.6775169 5.445927 

All other results are presented in the tables. 

8. CONCLUDING REMARKS 

This paper has been written as a par t  of the work carried out 
by  the Swedish committee for the practical applications of the 
risk theory. Of the two authors Thorin is responsible for the sections 
z-5 and Wikstad for the sections 6- 7 including the at tached tables. 
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Tables showing numer ica l  valz~es of  ru in  probabili t ies 

TABLE I 

Claim d.f.:  lognormal  with parameters  ~ = z.8o, ~ = e ~'~ 

Interclaim t ime d.f. : K(t)  = I - -  ¢- t 

(Empty  places correspond to "cr i t ical"  regions) 

T---- ZOO 

= IO00 

T = 0 o  

W C ~ .  I.O 5 I . I O  I . I  5 1.20 1.25 1 .30  2.00 

o .82192 .7987 o .7757z .753z4 -73IZ5 -7o982 .488o5 
zoo .o37oz .o346I  .o3246 .o3o54 .o288z .o2726 .oz525 

ZOO0 .O00I I  .O00 I I  .O00I I  .O00II  .O00ZZ .O00I I  .O00IO 

o .92556 .88534 .854o7 .823oi .79293 .76423 .49967 
zoo . . . . .  i674o .235zz .IIZZ3 .o9334 .o2483 

xooo . . . . .  oozo8 .oozoo .ooo93 .ooo87 .ooo45 

o .95238 .9o9o9 .86957 .83333 .8oooo .76923 .5oooo 
zoo .55074 .34395 .23573 .273o9 .23384 .zo765 .02535 

IOOO .o4299 .ozo99 .oo574 .oo384 .oo288 .oo23 o .ooo6o 
zoooo .oooo8 .oooo 4 .oooo2 .oooo2 .ooooi  .ooooz .ooooo 

TABLE 2 

Claim d.f.:  Aa(y) = Z a~ (I - -  e-=,Y) 

Intercla im t ime d.f . :  K(O = z - -  e- ~ 

T ~ I00 

t& C . ~  I.O 5 

o .82617 
zoo .o3483 

I000 .00000 

I.IO l.I 5 1.20 1,25 1.30 2.00 

• 8o295 .77986 .757zx .73487 -7x324 .48869 
• o3286 .o3xx2 .o2956 .o28x7 .o269x .ox664 
.00000 .00000 .00000 .00000 .00000 .00000 

• 88722 .856ot .82497 .79487 .766o9 .49997 
.2o936 .I6664 .I35z4 .zIz63 .o9382 .o2439 
.00003 ,00002 .00001 .00001 .00001 .00000 

• 90909 .86957 .83333 .80000 .76923 .50000 
• 3296o .22367 .z634o .I26o9 . Ioi4o .o2439 
.ooi22 .ooo22 .oooo6 .oooo 3 .ooooz .ooooo 
,00000 ,00000 ,00000 ,00000 .00000 .00000 

T - ~  I000 

T=oo  

0 

IO0 

IO00 

O 

IO0 

IO00 

IO000 

.9x738 

.26749 

.00004 

.95238 

.53669 

.ox688 

.00000 
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TABLE, 3 

Claim d.f." Aa(y) = E a ~ ( I - - e  -~,v) 

In te rc la im t ime d.f.: K ( t )  = I -  e - t  

T = I00 

~( C = I.O 5 I.IO 1.15 1.20 1.25 1.30 2.OO 

"O .82587 .80263 .77954 .75679 .73455 -71294 .48861 
1OO .O3497 .03292 .O3111 .02949 .02803 .O2671 .OI595 

I000 .00011 , 0 0 0 I I  .00011 ,00011 ,O001I .O00II .00010 

T-~-  I000 

T = O O  

o .91706 .88676 .85540 .82423 .794oi .765i6 .49968 
lOO .26511 .2o635 .06323 .13159 .1o817 .o9o58 .o239~ 

IOOO .00118 .OOIII .OO104 .OO098 .00093 .00089 .00050 

o .95238 .90909 .86957 .83333 .80000 .76923 .50ooo 
xoo .53784 .33082 .22471 .i6425 .12677 .lOI95 .02447 

Iooo .03440 .00941 .oo52o .00358 ,oo173 .oo22I .00060 
I0000 .00000 .00000 .00000 ,00000 .00000 .00000 .00000 
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