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Abstract

Generalized linear modeling (GLM) is becoming a regular tool for insurance
ratemaking. Actuaries and underwriters have begun to realize that classes may
not simply interact, whether additively or multiplicatively. Some class
combinations may synergize, or more than simply interact; others may
counteract, or less than simply interact. But lest actuaries be tempted by
abundant computer power and affordable GLM software to over-refine rating
classes, they must know how to test whether class refinement is statistically
significant. This paper provides the theory for this testing, and performs an
illustrative test on a small dataset of automobile physical-damage claims.

Mr. Halliwell is a consulting actuary in Chattanooga, TN, with EPIC Consulting,
LLC. His phone and e-mail are 423-296-2739 and Ihalliweli@ask-epic.com.
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Testing the Significance of Class Refinement

Leigh J. Halliwell, FCAS, MAAA

One benefit of generalized linear modeling (GLM) is that with it one can test
whether the explanatory power of a model with more classes is significantly
greater than that of a model with fewer classes. In other words, one can
scientifically determine whether a refinement of a classification scheme is
worthwhile. This article presents basic statistical theory, and illustrates class-

refinement testing with a simple exercise.

The exercise is to estimate frequencies of automobile physical-damage claims by
state, sex, and age, a reasonable prerequisite to rating an auto owner’s physical-
damage insurance coverage. Exhibit 1 shows the summarized data for five
states, two sexes, and four age groups. Since every combination is represented,
there are 5x2x4 = 40 observations. As per the bottom of Exhibit 2, young
insureds are less than twenty-one years old; those in their prime are from twenty-
one to forty; middle age ranges from forty-one to sixty-five; and old age is over

sixty-five. The age groupings and the data itself are purely illustrative.

A standard actuarial treatment might summarize the exposures and claim counts
as in Exhibit 2. It is usual to select certain classes as base, here the base being
females in their prime (i.e., from twenty-one to forty years of age). In this dataset

the frequency of males is 1.073 times that of females. Frequency decreases by



age until old age, the relativities being 1.899, 1.000 (base), 0.825, and 1.142.
One can combine these “one-way" relativities to derive that the PD-frequency of
old-aged males, for example, is 1.072 x 1.142 = 1.225 times the base frequency.
However, one can just as reasonably calculate one table of “two-way” relativities,
and conclude that the old-aged-male frequency is 1.288 times greater than base.
If premium were proportional to PD-frequency, the “two one-way or one two-way”

decision would make a 4.8 percent difference in the premiums of old-aged maies.

The two one-way factors require six relativities, or more accurately, four after
allowing for one base per factor. The one two-way factor requires eight
relativities, or seven without the base. Combining many one-way factors is
simpler and easier than using one many-way factor; but it is also less accurate.
Only a statistical model can test whether the loss of accuracy is significant.
Moreover, in Exhibit 2 sex and age are not controlled for state; but a statistical

model can filter out the effect of state.

The standard linear model is y=XB+e, where y is the (tx1) vector of
observations, X is the (txk) “design” matrix, each of whose columns is called a
factor or explanatory variable, B is the (kx1) vector of parameters to be
estimated, and e is the (tx1) random vector of error terms. The errors are
assumed to be of mean zero, of identical variance (i.e., “homoskedastic”), and of
zero covariance. In matrix terminology, the error vactor has mean 0 (tx1) and

variance o’l,, where 1, is the (ixt) identity matrix. The columns of X must be
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linearly independent, i.e., X must be of full column rank. Since the k columns of
X explain, or account for, the t observations (with a residue of randomness), it is

desirable for t to be much larger than k. With the model so described, the best

linear unbiased estimator (BLUE) of B is B=(X'X)'X'y. The variance of this

estimator, which will be important for hypothesis testing, is Var[p]=o?(X'X)".

Usually o® must be estimated, the formula for the unbiased estimator being:

ot = Y= XB)(y - X8)

t-k

Exhibit 3 presents and solves the one-way model. The design matrix consists of
zeroes and ones. Therefore, the explanatory variables are categorical. For
example, the first column of X tells whether the observation pertains to California
(yes = 1. no = 0). The last column tells whether the observation pertains to old-
aged insureds. There are no columns for the base classes of female and prime;
hence, nine variables account for as much as possible of forty observations,
leaving thirty-one degrees of freedom in the estimation of o®. One reads down
the exhibit through the intermediate calculations of X'y and X'X to (X'Xy™" and B.
Below that is the estimate of the variance of 8. To the right of the design matrix
are predicted values and residuals, and below these are sums of squares and
cross products. From these we conclude that the model explains 99.6 percent of

the actual values. and that the estimate for o? Is 0.049.
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The logarithm of frequency is here modeled as a linear combination of
parameters with an error term, i.e., In@=XB+e. Thus, ¢ =exp(XB+e). The
exponential function is a monotonic link between frequency and a standard linear
model, and it is this link that makes for a generalized linear mode! (GLM). Sex
and age-group relativities, displayed in the “One-Way" table at the bottom of
Exhibit 5 are exponentiated p values, e.g., the old-age reiativity is exp(0.261) =
1.298. This relativity, for which state and age have been controlled, is much

larger than the naive relativity of 1.142.

Similarly, Exhibit 4 works out the two-way model, with its five state parameters
and seven combinations of sex and age group (S x AG). Having three more
explanatory variables, it explains more than the one-way model (99.7 versus 99.6
percent). However, due to its fewer degrees of freedom its estimated o? exceeds
that of the one-way mode! (0.051 versus 0.049). Exhibit 5 shows that each
model outpredicts the other exactly half the time, and neither method prevails on
average or squared deviations. At this point most would claim, quite rightly, that
the accuracy gain of the two-way model is trifling, and would prefer muitiplying
the two one-way factors. However, this is an imprecise, unscientific judgment,
and it makes a sizeable difference to the relativities of females in their middle age

and males in their prime (13.8 and 12.7 percent, according to Exhibit 5).

The key to the hypothesis is the recognition that the one-way model is a subset

of the two-way. Let index i range over female and male, and index j over young,



prime, middle, and old. And let f3; be the one-way factor for sex, B, the one-way
factor for age group, and B; the two-way factor for the combination of sex and
age group. The two-way model reduces to the one-way if and only if for all
ie{l.2} andforall je{1,2,3,4}, B, =B, +B,. Now, because they are bases, p,_,,

B,.. and B ,, are zero, and are not paired with explanatory variables. The
proper form of the hypothesis must eliminate all B; and B, variables, and contain
constraints on f; variables only. The bases allow us to achieve the form. For
i=1 and for all j B, =B,.,+B,=0+B,=p,. And for j=2 and for all i,
B2=B,+B,.. =B, +0=p,. Therefore, for all i and j, B, =B, +B,,. However,
some of these equations are non-binding tautologies. In particular, for i=1,
By, =Pz +B,, =0+B,, =B,,. This leaves constraints of the form Bz =By +By,-
But even here, when j =2 we have the tautology B,, =P, +B,, =By, +0=p,.

Therefore, the two-way model reduces to the one-way when subjected to the

three constraints (corresponding to its three fewer degrees of freedom):

B2y =Bz +Byy
Bz =Bz +Bys
Bz =B +Bis

Expressed in matrix notation, the hypothesis Hy that the two-way model is

equivalent to a one-way is:
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R(3.7)B(1-|) =l
Matrix R appears in Exhibit 7, but augmented with five columns of zeros to

accommodate the state parameters.

Before developing the statistic for testing this hypothesis, it is instructive to see

how the two-way mode! of Exhibit 4 under the constraint RB=r =0 reduces to
the one-way model of Exhibit 3. In an earlier article! the author showed that the

restricted BLUE B* of the model y = XB+e subject to the constraint R =r falls

K

One can discem this form in the three additiona! rows and columns of the middle

out of the equation:

section of Exhibit 6. The three lambdas are Lagrange multipliers, byproducts of
the constrained least-squares problem that may be ignored. One may check that

the seven sex-age parameters are sums of the proper sex and age-group

' Leigh J. Halliwell, “Statstical and Financial Aspects of Self-Insurance Funding,” Altemative
Markets/Self Insurance (CAS 1996 Discussion Paper Program), 1-46. Appendix A and its citati not
only solve the restricted least-squares problem, but provide proofs for all the statements herein to follow.




parameters of Exhibit 3. But the equivalence of the two models is apparent from

their identical predictions (the XB columns) and o? estimates.

The statistical test makes use of the fact the least-squares estimator g has mean
B and varance o%X'X)"'. Therefore, RB has mean Rp and variance
o’R(X'X)"'R". Also important is the assumption that the distribution of B is
multivariate normal. This is true, if e is multivariate normal; but even under
certain robust conditions the distribution of B will be asymptotically multivariate
normal. Then RB will be multivariate normal with mean R and variance
o’R(X'X)"'R’, and RB - RP multivariate normal with mean zero and variance

S?R(X'X)'R’. Wherefore it follows that the expression

(RB-RB}o?R(X'X)"R (RB-Rp)

_(RB-RPYR(X: xz)"R'T‘(Ra -RB)

o
is chi-square distributed with j degrees of freedom, where j is the number of rows
of R. However, normally we do not know o and have to estimate it. But the sum
of the squared residuals divided by o? is chi-square distributed with ¢ -k degrees
of freedom, and this sum does not covary with B. Therefore, under the
multivariate normal assumption, the following two expressions are independent

chi-square random variables:
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(Ra-Rm(mx-xg-'R-T‘(Ra-Ra)

[s)

_ _ H
(v xazgv XB)zg_z(,_k)
Finally, this implies that the following expression is approximately and
asymptotically F-distributed with jand t — k degrees of freedom:

CELISININGE Rﬁ),ﬂ'x’" (R8 - REYR(XX) "R '(RB -RB)j

c =
(BRI TN o

a

Hence, under hypothesis Ho: Rf =, the statistic

(RB—Ra)(R(X'X);'R'T'(RB—Rﬁ)/j

o

is F-distributed with jand t ~ k degrees of freedom:

Accordingly, Appendix 7 tests whether the B of the two-way model differs
significantly from the 8 of the one-way model, which is the two-way $§ under
hypothesis Hyo. R is a 3x12 matrix of zeroes and ones, and r is the 3x1 zero
vector. X is the design matrix of Appendix 4, from which B, (X'X)™' and ¢? also
are taken. The F statistic as described above has the vélue 0.546, which is at
the 65.5 percentile of the F; 2g distribution. In other words, if Hy be true, in
approximately one-third of repeated samples will the F statistic be greater than
0.546. Few statisticians would deem 65.5 percent as significant enough o reject

the hypothesis; most would here accept the simpler, one-way model.



Exhibit 1

Automobile Physical-Damage Data

Age
State Sex Group Car Years PD Claims Freq Log Freq
CA F Young 821.9 94 0.114 -2.168
CA F Prime 11,181.7 644 0.058 -2.854
CA F Middle 4,792.1 212 0.044 -3.118
CA F Oid 931.6 39 0.042 -3.173
CA M Young 6776 66 0.097 -2.329
CA M Prime 12,4183 696 0.056 -2.882
CA M Middle 51340 222 0.043 -3.141
CA M Old 928.5 58 0.062 -2.773
FL F Young 5154 45 0.087 -2.438
FL F Prime 6,578.1 229 0.041 -3.193
FL F Middle 4,694.1 162 0.035 -3.366
FL F Old 1,209.2 54 0.045 -3.109
FL M Young 542.0 60 0.111 -2.201
FL M Prime 5.796.9 249 0.043 -3.148
FL M Middle 4,476.7 171 0.038 -3.265
FL M Old 1,166.0 66 0.057 -2.872
MI F Young 373.0 6 0.016 -4.130
Mi F Prime 5,168.0 24 0.005 -5.372
MI F Middle 15450 17 0.011 -4.510
Ml F old 161.2 3 0.019 -3.984
M M Young 367.8 5 0.014 -4.298
Mi M Prime 5,966.4 54 0.009 -4.705
Mi M Middle 1,802.5 13 0.007 -4.932
MI M Old 183.8 3 0.016 4115
NY F Young 447.3 34 0076 -2.517
NY F Prime 5.092.4 220 0.043 -3.142
NY F Middle 3,289.3 121 0.037 -3.303
NY F Old 611.4 36 0.059 -2.832
NY M Young 565.9 59 0.104 -2.261
NY M Prime 5,978.7 340 0.057 -2.867
NY M Middle 3.528.5 133 0.038 -3.278
NY M Oold 625.9 30 0.048 -3.038
X F Young 1.009.3 84 0.083 -2.486
AR, F Prime 8,931.7 513 0.057 -2.857
X F Middle 4,4299 206 0.047 -3.068
X F Oid 705.2 46 0.065 -2.730
™ M Young 1,003.4 112 0.112 -2.193
X M Prime 9.067.5 568 0.063 -2.770
X M Middie 4,478.0 225 0.050 -2 991
™ M Ou 641.7 50 0.078 -2.552




Exhibit 2
Relativity Companson

Age
State  Sex Group Car Years _ PD Claims Fi

CA 36,885.7 2,031
FL 23,9784 1.038
Mi 15,567.8 125
NY 20,139.4 73
™ 30,286.5 1,804 k
Total 126.837.8 5,869 0.047]
SXAG
Car Years PD Claims Freq Retativity Relativity Diff
F 61,4877 2,789 0.045 1.000
M 65,350.1 3.180 0.049, 1.073
Young 8,323.6 565 0.089 1.899
Prime 75,179.7 3,537 0.047 1000
Middie 38,170.0 1.482 0.039 0825
Ou 7.164.6 385 0.054 1.142
F Young 3.166.9 263 0.083 1.832 1.899 3.7%
F Prime 35.851.9 1,830 0.045 1.000 1.000 0.0%
F Middle 18,750.3 718 0.038, 0.845 0.825 -2.3%
F Old 3.6186 178 0.049| 1.085 1.142 5.3%
M Young 3,156.7 302 0 096 2110 2.037 -3.4%
L] Prime 39,227 8 1.807 0.049 1.072 1.073 01%
M Middie 19,419.7 764 0.039 0.868 0.885 2.0%
M Oid 35459 207 0.058 1.288 1.225 -4 8%
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Exhibit 3

Linear Model with Two One-Way Fectors
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Exhibit 4

Linear Model with One Two-Way Factor

e LY - M Fvorg flode  FOU Woug WP Warm  WOW
x
T g
1
1 1
1 1
1 1
1 1
1 1
1 t
1 1
1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1 1
1 1
1 '
1 '
1 1
1 1
[ 1
1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1 1
1 1
1 1
1 1
v 1|
1 1
X
8 [] [] [ [] 1 1 1 1 1 1 4
] 8 o 0 [} 1 1 1 1 1 1 1
o o L] 0 o 1 1 1 1 t 1 1
o o o L] [\ 1 1 1 1 1 1 1
0 ¢ o ] 8 1 1 1 1 ) 1 1
1 1 1 1 1 ] [ 0 o o [ 0
1 1 1 1 1 o s 0 0 0 o of
1 1 1 1 1 0 [ 6 0 0 0 o
1 i 1 1 1 o 0 ° 5 0 ° 0
1 1 1 1 1 0 0 0 0 H [ 0
1 1 1 1 1 [ ] 0 0 [ 5 0
1 1 1 1 1 [] 1] ] 0 0 Q 5
LU
J11)[ 0306 0175 0176 01756 0176
-3257f 075 0300 0175 015 0175
4814 0175 Q176 0300 0175 0173 0200 -0200 0200 0200 -0200 0200 -0 200

-3220| 0175 0178

0009
0009
0009
0018
0009
900
0010
£ 010
0010
£ 010
£ 010
2010

00610
0010
20010
0010
4010
oo
6010
oo10
0010
0010
0010
0010

0010
Q0010
0010
0010
Q010
0010
o
0010
0010
0010
0010
0010

0010
o010
0010
0010
000
0010
0010
oo21
0010
0010
o010
0010

0010
2010
€010
o010
0010
0010
0010
o010
[:1: -3}
[ 10
0010
0010

010
0010
Q010
0010
0010
0010
0010
ogw
0010
0025
0010
0010

010
€010
200
0010
0010
0010
o010
0010
oo10
0010
oa21
0010

[
x
o
o
o

[1000% oo7% 03]
)

12
k]
0051
oazr



N Exhibit 5

Comparison of Models

Age One-Way Two-Way One-Way Two-Way
Slate Sax Group Actugl Predicted Predicted Closer Closar
CA F Young -2.168 -2 382 -2.389 1
CA F Prime -2 854 -3.053 -3.113 1
CA F Middle 3118 -3172 -3.102 1
CA F oM -3.173 -2.792 -2795 1
CA M Young -2329 -2 292 -2.286 1
CA M Prime -2 882 -2.963 -2904 1
CA M Middle -3.141 -3081 -3 151 1
CA M Oid 2773 -2.702 -2 699 1
FL F Young -2438 -2 527 -2.533 1
FL F Prime -3193 -3.197 -3257 1
FL F Middle -3 368 -3318 -3248 1
FL F Ol -3.109 -2936 -2939 1
FL M Young -2 201 2438 -2.430 1
FL M Prime -3 148 -3107 -3.048 1
FL M Middle -3.265 -3.226 -3295 1
FL M O -2.872 -2.848 -2.843 1
Mi F Young -4.130 -4 083 -4.090 1
MI F Prime -5.372 -4.754 -4 814 1
Mi F Middle -4.510 -4.872 -4 803 1
MI F (o] -3.984 -4.493 -4 498 1
Ml M Young -4.298 -3.993 -3 987 1
Mi M Prime -4.705 -4.664 -4 805 1
M! M Middle -4932 -4.782 -4 852 1
Ml M [o.)] -4 115 -4.403 -4 400 1
NY F Young -2577 -2480 -2 497 1
NY F Prime -3142 -3.161 -3.220| 1
NY F Middle -3303 -3.279 -3.210 1
NY F oud -2.832 -2 900 -2.902 1
NY M Young -2 261 -2 400 -2.393 1
NY M Prime -2.867 -3on -3011 1
NY M Middle -3278 -3 189 -3.258 1
NY M o]} -3038 -2.810 -2.807 1
T F Young -2.486 -2283 -2280 1
TX F Prime -2 857 -2.954 -3.014 1
TX F Middle -3 068 <3073 -3 003 1
TX F Oid -2.730 -2.693 -2 696 1
TX M Young -2193 -2.193 -2 187 1
TX M Prime -2.770 -2.864 -2 805 1
™ M Middle 2990 -29883 -3.052 1
™ M (o] -] -2.552 -2 803 -2 600, 1
Mean Absotute Deviation 0000 0138 0.137] 20 20|
Root Mean Square Deviation 0000 0.195 0190
l_ One-Way Relativies l_ Two-Way Relalvies One-Ways Muhipli Diff]
F 1.000 0.0% F.Young 2082 +«1062% 1956 +856% 54%
M 1094 +94% F.Prime 1.000 00% 1.000 00% 00%
Young 1958 +956% F.Middle 1.011 +1.1% 0888 -11.2% 13.8%
Prime 1.000 0.0% F.Old 1374 +37 4% 1298 +29.8% 59%
Middle 0888 -112% M Young 2287 +1287% 2140 +1140% 8.9%
Oid 1298 +298% M Prime 1233  +23.3% 1094 +94% 127%
M Middle 0963 -37% 0.972 -2.8% -10%
M Oid 1.512 +512% 1421 +42.1% 84%
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Exhibit 6

Rezuictac Linear Madel with One Two-Way Factor

LYY MW T Py Ak POW Wvarg Wee WAk MOM
[3
T
1
1 '
1 1
s 1
. 1
1 1
1 1
1 .
i
1 ’
' 1
" .
1 1
1 1
1 [
t 1
.
. 1
1 [
1 1
1 1
1 1
1 1
0 .
'
1 '
. .
1 ]
1 1
. 1
. [l
1 1
1
1 1
1 1
v 1
. 1
. 1
. 3
Fxl
13 0 o ] 1] g T T T T T g 3 [ Y
o ] 0 o o ' 1 [l 1 1 1 1 3 [ of
[ [ 8 0 o 1 1 1 1 1 1 [l o 0 of
[3 [ Q 8 0 1 ] [ ] 1 1 0 [ of
[ [ [ [} [3 1 [ 1 1 1 1 3 [l 0 o
1 1 1 1 1 [ a 0 [ [ o of 1 [ o
1 1 ' 1 1 3 [ 0 [ [ [ of 0 1 o
1 L 1 1 1 o [ s a o 0 o] o [ 1
1 1 » ] 1 o [} 3 3 [l [} o [} ol
1 1 1 1 1 o 0 o o ) 0 o \ 1 v
1 1 1 1 1 [} [ [3 0 [ 1 o [} [
1 1 1 1 1 'y o 0 0 [ '3 8l [ 0 fl
[ 0 0 6 ] T [ B T ] of 0 q ¢l
o 0 o [ L] [ 1 o 0 1 - o 0 [ g
[ 0 o [ 9 [ [} 1 [ 1 9 - 9 Q 9

<100
<100
<100
0200
0100
0100

276




LLT

Exhibit 7
Test: Is the two-way model significantly better than the one-way modet?
Nufl Hypothesis H,: RB = 0

cA FL ™ NY ™  Frowg  Fiide FOd  MYang MPnme  Madde MO
1 0 0 1 1 0
[ 1 0 ] 1 -1 [}
] 0 1 [] 1 ] -

-0.625
1875

-0.625







