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Over the past several years a number of insurance 

companies have been formed by doctors, hospitals and lawyers 

to insure professional liability coverage. These companies 

typically operate in one state and write primarily one sub- 

llne of insurance (i.e., professional liability). In addi- 

tion, these companies may insure only a few thousand doctors, 

lawyers or hospital beds. A significant consideration in the 

formation of these companies is the amount of surplus 

required to establish a viable insurance operation. This 

paper describes a method of calculating a minimum amount of 

required surplus. In this paper the term "surplus" includes 

both capital and surplus, as does the common term "policy- 

holder's surplus." The approach is adapted to insurers that 

write one line of business. For multiple-line carriers there 

are additional important considerations (such as covariation 

between the different lines) and also aspects that have much 

less significance (such as skewness and uncertainty in the 

adequacy of the rate level). This method may also be useful 

for estimating surplus requirements for captive insurers and 

analyzing the fluctuation in the underwriting experience of 

self-insurers. 
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FORMULATION 0FTHE}DDEL 

Insurance serves a useful social purpose by reducing 

uncertainty. For the insured a (normally) fixed premium is 

exchanged for the reimbursement of contingent future claims. 

For the ins'~rer, the aggregate risk or uncertainty in the 

total potential claims payments is a much lower percentage of 

the expected losses than for the individual insured. This 

result can be explained by several theorems of mathematical 

statistics. First, the law of large numbers holds that the 

i 
mean of a sample of independent random variables will con- 

verge to the mean of the means of the random variables, for 

an arbitrarily large number of variables. I The basic assump- 

tions are that the variables are independent and that they 

have finite variances. Second, the central limit theorem 

holds that the distribution of the sum of a series of independ- 

ent random variables converges to a normal distribution, for 

an arbitrarily large number of variables. 2 Finally, the 

variance of the sum of uncorrelated random variables is equal 

to the sum of the variances of the individual variables~ In 

other words, the variances of a series of random variables 

are additive. 

For most practical insurance situations, the neces- 

sary assumptions of independence and finite variance are not 

tOO limiting. In terms of professional liability, a claim 

IWilks, Samuel S., Mathematical Statistics. 
John Wiley & Sons, Inc., 1962, pp. 99 and 108. 

2Ibid., p. 257. 

Ibld., p.  83. 

New York: 
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generally occurs through some negligent act or omission of a 

covered insured toward a client. Claims are relatively 

infrequent. For most states, claim frequency runs 10% to 20% 

or less per year for doctors and lawyers, and per occupied 

hospital bed. Since both claimants ~nd insureds are virtually 

always different from claim to claim and since each claim 

generally arises out of unique circumstances, there would 

appear to be a very low correlation between different clalms. 

The assumption of a finite variance is certainly reasonable 

since, even with recently reported jury verdicts, every indi- 

vidual claim size is finite. 

The above three theorems form the basis for the 

analysis of aggregate claim fluctuations. The central limit 

theorem indicates that the distribution of the sum of indi- 

vidual claim sizes will be approximately normal. Numerical 

approximations, such as the Cornish-Fisher expansion, are 

available to adjust for departures from normality. The law of 

large numbers indicates that the mean of the sum is the sum of 

the means of individual claims. The additivity property of 

the variances of independent claims allows the calculation of 

the variance of the aggregate sum of individual claims. 

Insurer surplus is required to offset adverse fluctu- 

ations and business decisions, so as to maintain the insurer's 

solvency. A fairly common formulation is that surplus is 

required to offset fluctuations in asset values, deficient 
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loss reserves and adverse underwriting results. % For profes- 

sional liability insurance, with its typically delayed 

reporting and settlement patterns, errors in ratemaking tend 

to be highly correlated with errors in reserving (particularly 

when including I.B.N.R. reserves in the latter). In other 

words, it is simpler and possibly more accurate for analysis 

to combine fluctuations in both loss reserves and underwriting 

results. The thrust of this paper deals with fluctuations in 

reserves and underwriting. This paper offers no particular 

theory for handling fluctuations in asset values. For a 

practical solution, however, reserves are discounted at a 

risk-free rate of return. This approach is accurate when the 

insurer invests its reserves in risk-free securities. If the 

insurer chooses riskier investment alternatives, there will be 

wider variations in the insurer's surplus from time to time. 

The insurer, however, will earn a greater investment return 

and will consequently have a larger surplus so that the 

probability of insolvency may not be any higher than with 

risk-free investments. 

Mathematical risk theory has devised methods for 

analyzing and calculating the probability of ruin. The problem 

.of minimum surplus requirements can be made equivalent to a 

probability of ruin formulation. That is, the minimum 

%See, for example, Hofflander, Alfred E., "Minimum 
Capital and Surplus Requirements for Multiple Line Insurance 
Companies: A New Approach." Printed in Insurance, Government 
and Social Policy, Kimball, Spencer L., and Herbert S. Denen- 
berg, eds., Homewood, Illinois: Richard D. Irwin, 1969. 
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surplus can be set at a level which allows for less than a 

certain probability (e.g., 1%) that the insurer will become 

insolvent. The traditional ruin theory tends to look at an 

on-going insurance operation and calculates the probability 

that the in~urer will become insolvent at any future time. 5 

Two practical problems with this approach in professional 

liability insurance are that claims are not reported very 

promptly and once reported, are not settled for several years. 

Thus the insurer must establish fairly sizeable I.B.N.R. (on 

occurrence coverage) and case reserves. The i~surer could 

thus be technically insolvent at some point on an accrual 

basis, but unaware of this, could generate sufficient surplus 

(from underwriting or investment profits or surplus contribu- 

tions) to pay all claims in perpetuity. Since the insurer 

cannot feasibly determine its surplus at any point in time 

with great accuracy, another approach to ruin probability is 

taken. 

Generally, an insurer becomes insolvent when its claim 

payments or liabilities plus expenses are larger than premiums 

plus surplus. (This discussion omits consideration of asset 

value fluctuations.) This point of view suggests defining 

surplus requirements as some fixed relationship to premiums. 

For professional liability, however, reserves will normally be 

larger than premiums. Reserves are made up of an I.B.N.R. 

5See, for example, Seal, Hilary L., Stochastic Theory 
of a Risk Business. New York: John Wiley & Sons, Inc., 1969, 
pp. 90-134. 
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provision, case reserves and the unearned premium reserve. 

The first and last are usually determined by some sort of 

formula and the case reserves are often inaccurate due to the 

several-year lag between reporting and payment. For none of 

the three reserve categories is the liability estimate part- 

icularly accurate. It is thus reasonable to assume that the 

aggregate reserves may fluctuate about a mean value much as 

the sum of the individual claims would fluctuate about the 

sum of the individual means. It thus becomes apparent that 

the surplus is required to offset fluctuations in the aggre- 

gate reserve. If the surplus is sufficient to offset adverse 

fluctuations, except with probability 1%, it can be said that 

the probability of ruin is 1%. 

The ruin model for this paper is thus formulated. The 

model takes the aggregate reserves (I.B.N.R., case, and 

unearned premium) as of a point in time and treats the aggre- 

gate as being composed of individual claims. The distribution 

of the aggregate reserve is approximately normal, since it 

represents the sum of essentially independent random variables. 

The surplus requirement is determined by finding the 99th 

percentile of the aggregate distribution and subtracting away 

the reserve. For example, the 99th percentile of the standard 

normal occurs at 2.33. If the expected value of the aggregate 

reserve is $i0 million and the standard deviation is $i million, 

the 99th percentile occurs at $12.33 million. The surplus 

requirement would thus be $2.33 million, assuming a normal 

distribution of the aggregate reserves and a I% ruin probability. 
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In other words, the minimum surplus r~uirement is defined to 

be the amount that, when added to aggregate reserves at a 

point in time, equals the 99th percentile of the aggregate 

reserve distribution. 

In applying this approach to practical problems, two 

specific difficulties arise, which have not been treated with 

complete success in mathematical risk theory. First, insurers 

universally purchase reinsurance. This paper deals only with 

excess of loss reinsurance. Such reinsurance will signifi- 

cantly reduce the coefficient of variation (CV) and skewness 

of the aggregate reserve distribution. Indeed, the choice of 

the excess of loss reinsurance retention (relative to the mean 

of the unlimited claim size distribution) has a significant 

impact on the aggregate reserve distribution and thus on the 

required surplus. In order to produce practical results, it 

is assumed that the claim size distribution of individual 

claims is log-normal. This assumption has proved reasonable 

for applications in professional liability insurance. 6 A 

series of simulations was then produced to determine the 

reduction in CV and skewness for different choices of 

retentions for log-normal distributions with various CV's. 

The methodology is explained more fully in later sections. 

With the exhibits presented in this paper it is thus possible 

to calculate aggregate reserve distributions for various 

choices of reinsurance retentions, under a log-normal claim 

6See, for example, Finger, R. J., "Estimating Pure 
Premiums by Layer--An Approach." PCAS LXIII (1976), p. 34. 
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size distribution assumption. Reinsurance retentions are 

defined as multiples of the unlimited average claim size (also 

termed the unlimited severity). 

The second practical difficulty in applying risk theory 

approaches to this problem concerns the uncertainty in the 

mean value of the aggregate reserve distribution, ~hat is, 

traditional risk theory methods calculate fluctuations in 

aggregate claim levels when the mean is known. As a practical 

matter, the mean is not known accurately for professional 

liability insurance. There is uncertainty in at least four 

specific areas, which produce uncertainly in at least the 

I.B.N.R., and unearned premium reserves; these are: l) the 

trend in claim frequency, 2) the trend in claim severity, 

3) the appropriateness of loss development factors, and 

4) consistency in the underlying mix and quality of business. 

Thus, in addition to fluctuations in the aggregate reserve 

value, given a known mean, there is also uncertainty in the 

mean value. Surplus is required not only for statistical 

fluctuations, but for mean-value uncertainty as well. For 

example, assume that the aggregate reserves are $10 million, 

as above. The 99th percentile of the aggregate reserve is 
m.%to., 

thus $12.33, as above, when $i0 million is the true mean. 

It is possible, in professional liability insurance, however, 

that the true mean is $8 million or $12.5 million. If the 

true mean is $12.5 million, there is clearly more than a i% 

probability of the aggregate reserve exceeding $12.33 million. 

Thus, in a practical situation, two types of uncertainty must 
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be considered. 

In order to keep the concepts distinguished, special 

terminology will be used. The aggregate reserve distribution 

will represent the total variations due to both statistical 

fluctuations and uncertain mean. The conditional aggregate 

reserve distribution will represent fluctuations about a known 

mean. The surplus required for the conditional case will be 

termed the fluctuation reserve. In developing the mathematics 

there are three different distributions, which will be denoted 

by subscripts T, L, and LT. First there is the distribution 

of individual claim sizes, unlimited by any excess of loss 

reinsurance.~} Second, there is the first distributlon limited 

by reinsurance.iL ~ Finally, there is the aggregate distribution, 

due to fluctuations in both claim count and claim sizes, with 

claim sizes limited by reinsurance~LT) This final distribution 

is the conditional aggregate reserve distribution. 

For this paper, both types of uncertainty are combined 

by assuming that each is a log-normal variable. When two log- 

normal variables are multiplied together, the product is log- 

normal. Making the log-normal assumption and knowing the CV's 

of the two variables, one can calculate the CV of the product. 

The log-normal assumption is reasonable for the 

uncertainty about the mean of the aggregate reserve distribu- 

tion. Log-normal variables arise naturally where a large 

number of independent variables are multiplied together. 7 The 

7Ibld., p. 38. 
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aggregate reserve may be thought of as a product of several 

independent variables, such as frequency trend factor, severity 

trend factor, loss development factor and quality of business 

factor. The log-normal distribution has the property that 

about two-thirds of the probability lies between the range 

determined by the mean divided by and multiplied by 1.0 plus 

the CV. For example, with a CV of 0.25~two-thirds of the 

probability lies between 0.8 and 1.25 times the mean. This 

property gives a practical way of estimating and utilizing the 

uncertainty about the mean of the aggregate reserve. For 

example, assume that there is a two-thirds chance that the 

true mean lies between 0.8 and 1.25 times the estimated mean. 

Tnis implies a log-normal distribution of uncertainty about 

the mean with a CV of 0.25. 

The log-normal assumption is not particularly approp- 

riate for the conditional aggregate reserve distribution. 

The central limit theorem indicates that the conditional 

aggregate reserve distribution is approximately normal, not 

log-normal. Further, with reinsurance, the claim size distri- 

bution is truncated and no longer strictly log-normal. Never- 

theless, the assumption of log-normality should be conserva- 

tive (i.e., provide greater skewness) and is probably accurate 

enough for practical purposes. 

PRACTICAL EXAMPLES 

Before discussing the mathematical theory behind the 

model, two practical examples are illustrated. These are 

shown in Exhibit I. The CV of the individual claim size 
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distribution (CV T) is assumed to be 2.0. As will be presented 

later, for smaller retentions the CV does not have a very 

significant impact. The examples assume that the expected 

losses for the latest accident year (just ended) are composed 

of i00 claims and an unlimited average claim size of $75,000. 

(The average size is computed more accurately by eliminating 

claims closed without payment. If these claims are included, 

the CV will be larger, the mean lower and the fit of the log- 

normal, most likely, not as good.) With an expected loss ratio 

of 80%, the direct annual premium is about $9.4 million. 

The two examples differ in the retention. Case I 

assumes a retention of $150,000, or 2.0 times the unlimited 

severity. Case II assumes a retention of $375,000, or 5.0 

times the unlimited severity. Utilizing log-normal tables for 

CV=2.0 (Figure i) it is determined that 30% of the losses will 

be ceded in Case I and 12% in Case II. Typical reinsurance 

premiums might be 35% in Case I and 15% in Case II. From these 

reinsurance factors, one calculates net expected losses and 

net premiums. 

In a practical situation, one could begin with the 

actual reserves at year-end. For this paper a steady-state 

assumption is made. That is, with the payment pattern shown in 

Exhibit II and a 15% annual trend in pure premiums, the steady- 

state reserves will be 2.28 times the expected (undiscounted) 

losses in the latest year. The reserves are discounted at 5% 

interest to reflect the risk-free investments. In a steady- 

state situation, then, the reserves will be 2.28 times the 
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latest year's expected losses. It is also assumed that the 

average claim size in the reserve equals the average incurred 

claim size in the most recent accident year. (In a practical 

situation this assumption might be adjusted appropriately.) 

For both cases, then, there will be an expected value of 228 

claims in the aggregate reserve. 

The 99th percentile of the conditional aggregate reserve 

distribution (i.e., given a known mean) may be found from the 

following formula: 

deviation = CVLT [Z.99 + 7LT (Z299 -1)] (1) 

The above deviation is expressed as a fraction of expected 

losses (i.e., aggregate reserves). This formula incorporates 

the Cornish-Fisher expansion to the skewness term. 8 Z.99=2.33. 

CVLT is the CV of the aggregate distribution, limited by excess 

of loss reinsurance. ~LT is the skewness coefficient (i.e., the 

third central moment divided by the standard deviation cubed) 

of the aggregate distribution, limited by reinsurance. Both 

CVLT and ~LT vary inversely with the ~quare root of the expected 

number of claims, X, in the reserve. Figure 2 depicts ~--CVLT 

and Figure 3 depicts /~-¥LT" Both of these factors vary by 

CV of the individual claim size distribution (which is assumed 

to be 2.0 in these examples) and the reinsurance retention. 

The fluctuation reserve (i.e., surplus requirement given a 

known mean) is .236 times the reserve in Case I and .287 in 

8Mayerson, Allen L., Donald A. Jones, and Newton L. 
Bowers, Jr., "On the Cred~billty of the Pure Premium." PCAS 
LV (1968), p. 178. 
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Case II. 

The next step is to adjust for uncertainty in the mean 

aggregate reserve value. It is assumed that there is a two- 

thirds chance that the aggregate reserve falls between .83 and 

1.20 its stated value. That is, that the CV of the uncertainty 

in the mean value is .20. Using Exhibit III one can calculate 

the additional surplus needed to cover uncertainty in the 

expected aggregate reserve. The percentage figures in Exhibit 

III are calculated as a ratio to the larger CV. Adding both 

surplus provisions together yields minimum surplus requirements 

of .316 (Case I) and .356 (Case If) of the stated reserves. 

(It is assumed that stated reserves are equal to their expected 

value.) Equivalently, the maximum net premium to surplus ratios 

are 1.61 (Case I) and 1.47 (Case II). 

DERIVATION OF FORMULAS 

The basic formula for calculating the variance of the 

conditional aggregate reserve distribution is: 9 

var T = ~2 A + ~2A 2 

where ~2 is the second central moment of the claim size distri- 

bution, ~ is the mean of the claim size distribution and A2 and 

A similarly describe the claim frequency distribution. The 

above formula holds when the frequency and severity are inde- 

pendent. This assumption may not strictly hold given deduct- 

ibles, nuisance claims and inconsistent handling of claims 

closed without payment. It should nevertheless prove adequate 

9Ibid., p. 179. 
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to estimate parameters based on observed values and assume 

that subsequent statistics are maintained on a consistent 

basis. 

The second central moment of the claim frequency 

distribution is not easy to measure. In many situations it Js 

assumed that the claim count process is a Poisson process, 

where A2=A. This assumption will only be true when each 

exposure unit has the same claim frequency. In practice this 

is probably true only in unusual circumstances. Surgeons, for 

example, have frequencies about triple physicians. In auto- 

mobile insurance the negative binomial distribution has proven 

a better fit to claim frequencies than the Poisson. I0 The 

negative binomial distribution derives naturally from a situ- 

ation where individual exposure units sustain claims according 

to a Poisson process, but individual frequencies are gamma- 

distributed. In general, A2 is larger than A. Hansen 11 has 

shown that A 2 can be bounded above by an exponential structure 

function. In fact, A 2 is bounded by A(l+f), where f is the 

average frequency in the exposed population. For the Figures 

and calculations in this paper A2=l.2~Awas chosen. It will be 

shown that this assumption has relatively little significance 

to the final result. 

The CV of the aggregate limited distribution is now 

l°Dropkin, Lester B., "Some Considerations on Auto- 
mobile Rating Systems Utilizing Individual Driving Records." 
PCAS XLVI (1959), p. 165. 

lIHansen, Ernest J., "A Note on Full Credibility For 
Estimating Claim Frequency." PCAS LIX (1972), p. 51. 
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calculated. Figure 4 depicts the effect on the CV of excess 

of loss reinsurance for various retentions. These graphs were 

developed by randomly-generated log-normal variables. A 

sample of variables (e.g., 1,000) was generated. For selected 

retentions (e.g., i, 2, 3, 4, 5, .' . .) the individual claim 

values were limited and the limited CV was calculated. 

Figure 4 depicts~, the ratio of the limited CV (CV L) to the 

unlimited CV (CVT). For example, for CVT=2.0 and a retention 

of i0 times the unlimited mean CVL=(.81)2.0=1.62. The graphs 

are approximate, since it was very difficult to generate 

samples with actual CV close to the theoretical CV. 

Returning to the basic formula varLT=U2,LA+UL2A2 

where L subscripts denote the limited distribution, but 

A2=1.2~ 

~21L=CVL2=(~CVT )2 

~L 2 

thus VaELT=(~uLCVT) 2A+UL21.2A 

var var % 
I'--LT)%=LT 

CVLT='~LT 2 ~L ~ 

CVLT=J[UL[(4CVT)2+I.2] % 

AWL 

CVLT=[(~CVT)2+I.2] % 

The ~2 assumption has relatively little significance. 

Assume, for example, that,=.81 and CVT=2.0. For A2=I.2A, 

~CVLT=I.96. For A2=1.3~, /[CVLT=i.98. For A2=i.iA, J[CVLT = 

1.93. Thus, for these examples a 10% change in A 2 has only 
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about a 1% effect on CVLT. 

The skewness of the aggregate limited distribution is 

calculated in a similar manner. Figure 5 shows the reduction 

in the skewness coefficient, 8, for various CV and reinsurance 

retentions. If YT is the skewness'of the unlimited claim size 

distribution and YL is the skewness of the limited claim size 

~L 
distribution, theft8=--. A derivation for the skewness of the 

YT 
aggregate limited distribution is shown in Appendix A.3. 

1 8 (CVT z +3) CV T (qCVT) 3+3 (~CV T) 2+1 

YLT~ [ (,~CVT) 2+1] 3/2 

For this derivation a Poisson distribution was assumed for the 

claim frequency. That is, A=A2=A 3. Little is gained by making 

A2 larger than A since 12 appears in both numerator and denom- 

inator. 

At this point the fluctuation reserve can be calculated 

from the limited CV and limited skewness, as given by equation 

(i). Exhibit IV shows the fluctuation reserve for probability 

of 1% (i.e., Z=2.33), for expected claim counts of 50, I00, 250, 

500 and 1,000. Figure 6 graphically depicts the fluctuation 

reserve for reserves with 50 claims. From Exhibit IV and from 

Figures 2 and 3 one can see that fluctuations do not vary a 

great deal, at lower attachments, for different CV's of the 

claim siae distribution. This is due to the impact of reinsur- 

ance in cutting down on large claims. It is thus clear that 

the retention is a far more crucial variable than is the CV of 

the individual claim size distribution in determining surplus 

requirements. 

-134- 



The final theoretical step is to adjust for uncert- 

ainty in the mean value of the expected losses (or equivalently 

in the mean value of the aggregate reserves). Appendix A.2 

demonstrates that the multiplication of two log-normal vari- 

ables yields a log-normal variable. There is thus a relatively 

simple formula which provides the CV of the product of two 

log-normals, given the CV's of the individual Variables. For 

current purposes, one CV is the CV of the conditional aggregate 

reserve distribution. The other represents the uncertainty in 

the mean value of the aggregate reserve. Exhibit III shows the 

CV of the product of two log-normal variables as the increase 

in the larger of the two CV's. For example, assume both CV's 

are 0.30. According to Exhibit III the CV of the product will 

be (0.30)(1.45)=.44. As might be expected, when one CV is 

significantly larger than the other, the CV of the product is 

not much larger than the larger CV. 

TO determine deviations in the aggregate reserve, for 

both statistical fluctuations and uncertainty in mean value, 

the CV of the product of two CV's, representing these items, 

may be substituted in equation (i). In effect, the percentage 

increase in surplus requirements due to uncertainty in the 

mean, is the percentage increase shown in Exhibit III for the 

product of two log-normal variables. (Note, however, that 

values in Exhibit III apply against the larger CV. In some 

cases [e.g., large numbers of claims] the statistical fluctu- 

ation may be less than the uncertainty in the mean.) 
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CONCLUSION 

This paper has presented a method for calculating 

minimum surplus requirements. The method is tailored to a 

monoline insurer, captive or self-insurer. The minimum surplus 

requirements is defined to be the amount which, when added to 

aggregate reserves (case, I.B.N.R. and unearned premium), 

equals the 99th percentile of the aggregate reserve distribu- 

tion. That is, the aggregate reserve is treated as a random 

variable, a sum of its individual claims. There are two types 

of variations in the aggregate reserve: i) statistical fluc- 

tuations in the number and size of claims about a given mean 

value and 2) uncertainty in the mean (or stated) reserve. 

Variations about a known mean are calculated by assuming: 

i) a log-normal distribution for individual claim sizes and 

2) independence between the number of claims and the individual 

claim size distribution. Variations are calculated for various 

excess of loss reinsurance retentions. Reinsurance has a 

significant impact on surplus requirements, since it can 

greatly affect the CV and skewness of the claim size distri- 

bution. Conversely, different assumptions for the CV of the 

claim size distribution have relatively little impact on 

surplus requirements, for smaller retentions. Surplus require- 

ments are roughly proportionate to the reciprocal of the 

square root of the number of claims in the aggregate reserve. 

Uncertainty about the mean of the aggregate reserve value can 

be combined with the fluctuations about a known mean by 

assuming that both are log-normal variables. The combined 
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variation is a log-normal variable, since a product of two 

log-normal variables is also log-normal. The combined vari- 

ation is then used in a formula, which also incorporates the 

Cornish-Fisher expansion, to derive the 99th percentile of 

the aggregate reserve distribution. The result is the minimum 

surplus requirement, which is expressed as a fraction of the 

aggregate reserve. 
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APPENDIX A 

A.I THE LOG-NORMAL DISTRIBUTION 

-(Io 9 x-u) 2 
Density Function 1 e 2o 2 

¢~ax 

Mean ~=e ~+°2/2 

Variance ~2=e2~+°2(e°2-1) 

Coefficient of CV=~ e~-l 
Variation 

Skewness 
= o 2 y E (x-u) 3: (e°2+2) Je -i 

0 3 

= (CV2+3) CV 

O~x<® 
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A.2 MULTIPLICATION OF TWO LOG-NORMAL VARIABLES 

Let Yl and Y2 be independent log-normal variables 

Let X = (Yl) (Y2) 

Then In X = in y! + in Y2 

Sums of independent normal random variables are normally- 

distributed with mean equal to the sum of the individual means 

and variance equal to the sum of the individual variances. ! 

Since in y! and in Y2 are normally-distributed, in X is 

also normally distributed. Thus X is log-normally distributed. 

For a log-normal variable, if the log is distributed with 

mean p and variance o 2 , the log-normal variable is distributed 

with mean, M=e p+%u2 and CV= (eU2-1)%. 2 The CV is independent 

of the mean. 

Let CV I be the CV for Yl and CV2similarly for Y2. 

CVl=(eUl2-1)% (for log-normal variables) 

o12=in(CV12+l) (on rearrangement) • 

Thus o2~,~ = in (CV]2+i) + in (CV22+i) 

(since the variances add and in X is normal) 

Thus CV x = (e ln(cvla+I) + ln(CV22+l)-l)% 

~See Appendix A.i. 

IParzen, E. Modern Probability Theory and Its Applications. 
New York: John Wiley & Sons, Inc., 1960. Page 406. 
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A.3 SKEW~%~ OF THE LIMITED DISTRIBUTION 

Basic Formula: y = E[T-E(T)]3 
(E[T-E (T) ]2) 3/2 

~L reduction in skewness coefficient of 
Given: B = -- YT limited ~laim size distribution 

~=CVL 

CV T 

~L reduction in mean of claim size 
F = -- ~T distribution 

E[T-E(T)]2 = .2~+.2XZ 

Other Formulas:J E[T-E(T)]3 = ~3A+~p2~A2+~3A3 

~T = (CVT2 +3)CVT log-normal distribution 

~I = ~2 = A3 (true for Poisson process) Assumptions: 

Derivation: i. 

reduction in CV of claim size distribution 

EL[T-E(T) ] = U3,LA + 3~2, LPL + UL3A 

YL = P3rL 

OL3 

~3,L = ~L°L 3 

B~TUL3 

B (CVT2+3)CV T (CVLP L) 3 

= 8 (CVT2+3)CVT(~CVTFV) 3 

~2~L = (CVLUL)2 (note: o = ~2) 

= (~CVT?P) 2 

Z~[T-E(T)]3 = ~[8(CVT2+3)CVT(~VTrU)3+ 

3(~CVTF,')2Fu + (F.) 3] 
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2. EL[T-E(T)]2 = UZ, L 1 + ~L21 

= ~[(CVL~L) 2 + ~L 2] 

= A(F~)2[(~CVT)2+i ] 

3. YLT = A(FU)3[8(CVT2+3)CVT(~CVT)3+3(J'CVT )2+I] 

(A(F~)2[(~CVT)2+I]) 3/2 

= .!_ 5(CVT2+3)CVT(~CVT)3+3(~CVT )2+I 

/f [(~CVT)2+i]3/2 
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3.  

Exhibit Z 

CALCULATION OF SURPLUS REQUIREMENTS 
(Assuming CVT=2.0 ) 

i. CURRENT YEAR PREMIUMS 

a. Claim Count i00 

b. Direct Average Claim Size $75,000 

c. Direct Expected Losses (lax ib) 7.50 million 

d. Expected Loss Ratio 80% 

e. Direct Premiums (ic ÷ id 9.38 million 

2. REINSURANCE CASE I CASE iI 

a. Retention $150,000 $375,000 

b. Times Unlimited Mean (2a ÷ ib) 2.0 5.0 

C. Net Expected Losses (Figure i) .70 .88 

d. (ic x 2c) 5.25 million 6.60 million 

e. Net Premiums .70 .90 

f. (le x 2e) 6.57 million 8.44 million 

FLUCTUATION RESERVE 

a. Reserves to latest year (Exhibit 2) 
Expected Losses 2.28 2.28 

b. Net Reserves (2d x 3a) 11.97 million 15.05 million 

c. Reserve Claim Count (lax 3a) ~28 228 

d. /~CVLT (Figure 2) 1.46 1.72 

e. /~¥LT (Figure 3) 2.16 3.80 

f. CVLT (3d ÷ 3~c) .097 .114 

g. i% Level (2.33 + [3e ÷ 3~] .738) 2.44 2.52 

h. Deviation (3f x 3g) .236 .287 
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4. 

5. 

Page 2 of Exhibit I 

ADDITIONAL UNCERTAINTY DUE TO UNKNOWN MEAN 

a. Uncertainty about mean .20 .20 

b. Increase in CVLT (Fxhibit III) 34% 24% 

c. Total Deviation (3h x [l+4b]) .316 .356 

REQUIRED SURPLUS 

a. Aggregate Amount (3b x 4c) 3.78 million 

b. Net Premium to Surplus Ratio 
(2f ÷ 5a) 1.74 1.58 

c. Surplus to Net Premium Ratio 
(Sa ÷ 2f) .58 .63 

d. Surplus to Net Reserves Ratio (4c) .316 .356 

5.36 million 
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RELATIONSHIP OF RESERVES AND EXPECTED LOSSES AT STEADY STATE 

15% Annual Trend 
Payment Relative Discount 

Year Pattern Unpaid Value Factor Reserve 
(once reported) (year end) (5% interest) 

1 5 95 1.000 .882 83.8 

2 I0 85 .870 .914 67.6 

3 20 65 .756 .941 46.2 

4 30 35 .658 .956 22.0 

5 20 15 .572 .976 8.4 

6 15 0 - - - 

Total i00 295 .846 .913 228.0 

25% Annual Trend 
Relative 

Value Reserve 

1.000 83.8 

.800 62.2 

.640 39.1 

.512 17.1 

.410 6.0 

.775 208.2 

x 
D ~ 

r~ 

H 
H 



Exhibit III 

CV OF PRODUCT OF TWO LOG-NO~4AL VARIABLES 
(AS PERCENT INCREASE IN LARGER CV) 

COEFFICIENT OF VARIATION 
CV .05 .i0 .15 .20 .25 .30 .35 .40 .45 .50 .60 .70 .80 .90 1.00 

.05 42 12 5 3 2 2 1 1 1 1 1 - 

.i0 

.15 

.20 

.25 

.30 

42 21 13 8 6 5 4 3 2 2 2 1 1 - 

43 26 18 13 10 8 6 5 4 3 3 2 2 

43 30 22 17 14 11 i0 7 6 5 4 4 

44 33 25 21 17 15 11 9 8 7 6 

45 35 29 24 20 16 13 11 10 9 

.35 

.40 

.45 

.50 

.60 

.70 

.80 

.90 

1.00 

46 38 32 27 21 17 15 13 12 

47 40 34 27 22 19 17 15 

48 42 33 27 23 21 19 

50 40 33 28 25 23 

54 45 39 34 31 

58 50 45 41 

63 56 51 

68 62 

73 
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FLUCTUATION RESERVE 
(SURPLUS REQUIREMENT WITH KNOWN MEAN RESERVE) 

i 

P( ) =1% 
Z = 2.33 

deviation = CVLT['Z.99+YLT(Z.992-1)] 

6 
Retention 
(times 
unlimited CVLT 3'LT 

~'r~ ) CVT= 1.5 2.0 2.5 3.0 1.5 2.0 2.5 

I. 50 CLAIMS 

1 
2 
5 

i0 
Ult.* 

II. i00 CLAIMS 

1 
2 
5 

i0 
Ult.* 

IiI 250 CLAIMS 

1 
2 
5 

i0 
Ult.* 

Deviation 
3.0 1.5 2.0 2.5 3.0 

.184 .190 .199 .208 .205 .223 .247 .269 .456 .473 .501 .526 

.202 .206 .215 .223 .288 .305 .361 .415 .514 .528 .558 .589 

.236 .243 .249 .256 .517 .537 .642 .782 .640 .663 .698 .744 

.263 .276 .286 .291 .764 .792 .995 1.238 .761 .804 .875 .945 

.263 .322 .386 .451 .829 1.581 2.761 4.472 .774 1.128 1.686 2.540 

.130 .134 .141 .147 .145 .158 .175 .190 .317 .328 .347 .363 

.143 .146 .152 .158 .204 .216 .255 .293 .355 .363 .383 .402 

.167 .172 .176 .181 .366 .380 .454 .553 .434 .449 .469 .496 

.186 .195 .202 .206 .541 .560 .704 .876 .508 .531 .576 .613 

.186 .228 .273 .319 .586 1.118 1.952 3.162 .514 .719 1.029 1.488 

.082 .085 .089 .093 .092 

.090 .092 .096 .i00 .129 

.106 .109 .iii .114 .231 

.118 .123 .128 .130 .342 

.118 .144 .173 .202 .371 

.i00 .ii0 .120 .197 

.136 .162 .186 .219 

.240 .287 .350 .264 

.354 .445 .554 .304 

.707 1.235 2.000 .306 

.204 .215 .225 

.224 .235 .247 

.273 .283 .296 

.320 .340 .357 

.411 .560 .768 



i 

Retention 
(times 
unlimited CVLT 7LT Deviation 
claim size) CVT= 1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0 1.5 2.0 2.5 

IV. 500 CLAIMS 

3.0 

1 .058 .060 .063 .066 .065 .071 .078 .085 .138 .143 .151 .157 
2 .064 .065 .068 .071 .091 .096 .114 .131 .153 .157 .164 .171 
5 .075 .077 .079 .081 .163 .170 .203 .247 .183 .189 .195 .203 

i0 .083 .087 .090 .092 .242 .250 .315 .392 .209 .219 .231 .241 
Ult.* .083 .102 .122 .143 .262 .500 .873 1.414 .210 .275 .363 .481 

V. 1,000 CLAIMS 

1 .041 .042 .045 .046 .046 .050 .055 .060 .097 .i00 .106 .Ii0 
2 .045 .046 .048 .050 .065 .068 .081 .093 .108 .ii0 .115 .120 
5 .053 .054 .056 .057 .116 .120 .144 .175 .128 .132 .136 .141 

10 .059 .062 .064 .065 .171 .177 .222 .277 .144 .152 .159 .165 
Ult.* .059 .072 .086 .i01 .185 .354 .344 1.000 .145 .186 .223 .309 

*Ult. ~ Unlimited 

u~ 

O 

X 



Reten t ion  
( t ~ m e ~  ~.m..l lml~ed mean)  

. 1 . . . . . . . . .  T . . . .  TI 
i ~ ~-~ ll~l: 1 ~ ~-~-- ~ ~ . ....... ~i ~ I ~  ~ ~ 

l~.~.~m-~ ~---~l-- ~.--~: ---- ~-..~-~.~.- .~l''ll'~--'X~'~l~l~.'l~ . . . .  

• i l l l l  l i l l i  l i i ~ i  ~ 1  J l  I l i l i  i l i i l  i i l l l i a  ~ l l l l ~  n ~ 1  ~ ~ R R  I ~ .  i ~  l i f  I I 1  
l l J ~ l l l  J l l l l l l l l l l l l l  1 l l l l  l l l l l l l l l l l l l J l  l l l l l  ~ l l  I l l I I  1 ~ 1 ~ 1 1  

l l l l  l l l l l l l l l I I I I n  l l l l l l l l l l l l l l l l l l l U l l l l l  l l i l l l l l l l  l l ~ l  I n l l  1 1 1 l ~ l l l  i l l  l l l l l l  ~, I I 
I I U I  U I  I l U l l l l l l l l l l l l  I I I I  I I  I I U I  I I I I I  h i l l  I I R I  I I I I U  ~ 1  i ~ I  ~ l 
l l n  I l l l  I l l  I l l l  I I I I I  I I I I 1 1  I l l l  I I n  I l l l l  i l  I l I  I W I I l l l  l ~ l ~  R i l l  ~ l l l ~ l  ~ l  
l l l l l l  I I I I I  I I I I I  I I I I I  I I I I I  I l l l l  I I I I I I I I I I  I l l l l l l l l l  I l l l l l l ~ l I ~ l f  I I  , I 
I I I l I I  I I l I  I I I I I I I I l l  I I I I l l l l l l l l l l l  I I I I I  I l l l l l l n l  I l l l l l r ~ l ~ l ' ~ l ~ i l l l  | 
l l l l I  I I I I I  I I I I I  I I I I I  I I I I l l l l l l l l l l l  I I I l l l l l l l  I I ~ l l l l l l l  r~ I l l l ~ l ~ I I  i ~  I I  
I l n l  I R i l l  I I I I I I I I I I  I I I I I I I I I I  I I I I I I I I I I  U l l l l ~ l l l l l l  ~ l l l l r  I I ~ l ~ i •  , ' ill 

• l i i l l  I I I I I  I I I I I I 1 ~ 1 1  I I ' , l l  l l "  . i  I - - I n i l ~  d l l l l l "  ~ l ~ l l l l l l l l l  l i b e l  
IIlll IIIII IIIIIII III l'.Ill ~'.II l'Ill~ ~IIII~ .illI l l l l l l l l l l I U l l l  
i i  I i I I l l m l l l l l l l l l l l l  ~ I l l l ~  ~ I n  ~ 1 I i  ~ ~ I i l  I U  ~ l l ~ l l l l  I l l  ~ l m l l i l l  I I  I l l  
I I l l l l l l l l l l l l I I I I I  P l  I I I I  ~ ~ l l ~ d l l  I ~ I M I  I ~ ~ l l l  N i l  I I I I I I I I I 1 ~ 1 ~  l 
l l I N I I I I I I I I I I l l  ~ l l l P ~ l l  i l l  ~ l i l i l  I I N l l U l l l l l l l l n l l l l l l l N N  
I Ilfllllllilmlllm~Illl Imp IIIP IIIII SI~IIIIlIIIIlIIIHIIIIIIINIIIIINI 
IIlllllIIIllll dIIIl dI~lllm IlnI IIIIIIHIIIHIHIIIIIHIHNIIIII 
I I l I I I I I l l l I ~ I I I ~ I I P  I l l ' f i l l i P  ~ l l n l l l l i l l l l l g l l g l l H I I l l l l l I  
I l l l l l l l l l  f f ~ l l l ~ I  I ~ l" ," ~ I l l  ~ I l l l l  ~I~ I 1  I I  I l l l l l U l l l l U l l  I I I l l l l l l  I I l l l l l l ~  I 

I =~_~.~_~ ~:'-..~_~.~ . - ~ . . ~  e ~--.~ ~ .~ N . . . . . . . . . . . . . . . . . . .  
I~- . . . . . .  

• ' I  I I I  i l l  I I  I I l  I l l l  l .  I I l l  I I I I  I I . . I  l i . I I  I I I  I I I  I I l I  I l l  I I I  I I  I I I  I I  I I I I I  I l l  ~ 
I l l  I I I I  I I l l l  I I I  I I I  I I  l i  I I I I I  I I I I I  I I I I n  I I I  I I I  I I I I  I l l l I  I I I  I l a l l  I I l ~ l l l l ~  
I l l l l l l l l l  I I l l l l l  I I I I I  1 I l l  l l l  I l l l l l l  ~ l l I  1 I l l l l l l l l  1 1 1 1 1 1  I l l l l  l l l l l l  I 

1 1 l l l l l l l l l l l l l l l  l l  1 l l l l l l l  l 1 1 1 I I l l l l ~  I I  I I  I I  I l l l l l l l l l l l l  I I I I I I  I l l l l l  
l l l l l I  I I I I l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l  I l l l l l l l l l l l l l l l l l l l l l ~  
I l l l l l l l l l l l l l l l l l l l l  I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I l I I I I I I I  
I I I I I I I I I I I I I I I I I I I l l l l l l l l l l l l l l l l l l l l l  I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  
llllllllIIllllllllllllllllllllllllllllllllllllllll iiiiiiiiiiiiiiiiiiii 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  I I I I I I I I I I I I I I I I I I I I I I U I I I I I I I I I I I I I I ~  

J ~ I 

~ p ~ ~  (r) F l ~ ' e  1 

! 
i 

!I 

l l  | o 



! 

R e t e n t $ o n  
( t f ~ e s  unJ.~..Izlted 

- ~  = ~  - - ~  . . . . . .  

" ~ - ~  -=-~_~ --~--___~ : - : . - ~  --..._....== - Z - . ~  : - - -  

~ ' ~  . - . . ~  : - . .  . . . .  _ _ _  ,---'-': 

.~-.-.--~ " ~ - - ~  .~.- .~----  r - ' " ~ ' ~ ' 2 .  " ~  

i I ' J ~  
~ -  : - ~ .  . . . .  7 " 7  

Z - - - ' ~  ~ ~  ~ - -  ~ __ , , ' - 

7-_.--_-- - - - -  = ~ = - ~ . ~  . . . . . . . .  . . . _ _ _  

: : - ~ :  : . _ _  ~ l_ar_~ __ 
, ~  - -  

- -  :T~ , 
Z - J R  , 

/ ~  31 ' ' ,  

i!i ~ "  ':',1 : : 

i -~ -  i - ~ -  ~ =  
~:_: L-:--- ~-:-"-~ I, 

- - - -  -t-r--" -..----t 

F i ~ ' u r  e 2 

_ _ _ _ j  

i 

?5  

- 1 ~  



R e t e n t i o n  
( t  

l 
i! :I 

-15o- 



Retentfon 
(in.sues unl:Lmited mean) 

n ~ = l o ~  zN c v  C~) 
(FoP d i f f e r e n t  CVT) 
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FLUCTUATION RES~VE FOR 30 CLAIMS 

(As a p e r c e n t a g e  o£ e x p e c t e d  l o s s e s ;  CVT=2.0) 
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