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Over the past several years a number of insurance
companies have been formed by doctors, hospitals and lawyers
to insure professional liability coverage. These companies
typically operate in one state and write primarily one sub-
line of insurance (i.e., professional liability). In addi-
tion, these companies may insure only a few thousand doctors,
lawyers or hospital beds. A significant consideration in the
formation of these companies is the amount of surplus
required to establish a viable insurance operation. This
paper describes a method of calculating a minimum amount of
required surplus. In this paper the term "surplus" includes
both capital and surplus, as does the common term "policy-
holder's surplus." The approach is adapted to insurers that
write one line of business. For multiple-line carriers there
are additional important considerations (such as covariation
between the different lines) and also aspects that have much
less significance (such as skewness and uncertainty in the
adequacy of the rate level). This method may also be useful
for estimating surplus requirements for captive insurers and
analyzing the fluctuation in the underwriting experience of

self-insurers.
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FORMULATION OF THE MODEL

Insurance serves a useful social purpose by reducing
uncertainty. For the insured a (normally) fixed premium is
exchanged for the reimbursement of contingent future claims.
For the insurer, the aggregate risk or uncertainty in the
total potential claims payments is a much lower percentage of
the expected losses than for the individual insured. This
result can be explained by several theorems of mathematical
statistics. First, the law of large numbers holds that the
mean of a sample of independent random variables will con-
verge to the mean of the means of the random variables, for
an arbitrarily large number of variables.! The basic assump-
tions are that the variables are independent and that they
have finite variances. Second, the central limit theorem
holds that the distribution of the sum of a series of independ-
ent random variables converges to a normal distribution, for
an arbitrarily large number of variables.? Finally, the
variance of the sum of uncorrelated random variables is equal
to the sum of the variances of the individual variables? In
other words, the variances of a series of random variables
are additive.

For most practical insurance situations, the neces-
sary assumptions of independence and finite variance are not

too limiting. In terms of professional liability, a claim

lwilks, Samuel S., Mathematical Statistics. New York:
John Wiley & Sons, Inc., 1962, pp. 99 and 108.

2Ibid., p. 257.
31pid., p. 83.
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generally occurs through some negligent act or omission of a
covered insured toward a client. Claims are relatively
infrequent. For most states, claim frequency runs 10% to 20%
or less per year for doctors and lawyers, and per occupied
hospital bed. 5ince both claimants and insureds are virtually
always different from claim to claim and since each claim
generally arises out of unique circumstances, there would
appear to be a very low correlation between different claaims.
The assumption of a finite variance is certainly reasonable
since, even with recently reported jury verdicts, every indi-
vidual claim size is finite.

The above three theorems form the basis for the
analysis of aggregate claim fluctuations. The central limit
theorem indicates that the distribution of the sum of indi-
vidual claim sizes will be approximately normal. Numerical
approximations, such as the Cornish-Fisher expansion, are
available to adjust for departures from normality. The law of
large numbers indicates that the mean of the sum is the sum of
the means of individual claims. The additivity property of
the variances of independent claims allows the calculation of
the variance of the aggregate sum of individual claims.

Insurer surplus is required to offset adverse fluctu-
ations and business decisions, so as to maintain the insurer's
solvency. A fairly common formulation is that surplus is

required to offset fluctuations in asset values, deficient
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loss reserves and adverse underwriting results.* For profes-
sional liability insurance, with its typically delayed
reporting and settlement patterns, errors in ratemaking tend
to be highly correlated with errors in reserving (particularly
when including I.B.N.R. reserves in the latter). 1In other
words, it is simpler and possibly more accurate for analysis
to combine fluctuations in both loss reserves and underwriting
results. The thrust of this paper deals with fluctuations in
reserves and underwriting. This paper offers no particular
theory for handling fluctuations in asset values. For a
practical solution, however, reserves are discounted at a
risk-free rate of return. This approach is accurate when the
insurer invests its reserves in risk-free securities. If the
insurer chooses riskier investment alternatives, there will be
wider variations in the insurer's surplus from time to time.
The insurer, however, will earn a greater investment return
and will consequently have a larger surplus so that the
probability of insolvency may not be any higher than with
risk-free investments.

Mathematical risk theory has devised methods for
analyzing and calculating the probability of ruin. The problem
.0f minimum surplus requirements can be made equivalent to a

probability of ruin formulation. That is, the minimum

YSee, for example, Hofflander, Alfred E., "Minimum
Capital and Surplus Requirements for Multiple Line Insurance
Companies: A New Approach.™ Printed in Insurance, Government
and Social Policy, Kimball, Spencer L., and Herbert S. Denen-
berg, eds., Homewood, Illinois: Richard D. Irwin, 1969.
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surplus can be set at a level which allows for less than a
certain probability (e.g., 1%) that the insurer will become
insolvent. The traditional ruin theory tends to lecok at an
on-going insurance operation and calculates the probability
that the insurer will become insolvent at any future time.S
Two practical problems with this approach in professional
liability insurance are that claims are not reported very
promptly and once reported, are not settled for several years.
Thus the insurer must establish fairly sizeable I.B.N.R. (on
occurrence coverade) and case reserves., The insurer could
thus be technically insolvent at some point on an accrual
basis, but unaware of this, could generate sufficient surplus
(from underwriting or investment profits or surplus contribu-
tions) to pay all claims in perpetuity. Since the insurer
cannot feasibly determine its surplus at any point in time
with great accuracy, another approach to ruin probability is
taken.

Generally, an insurer becomes insolvent when its claim
payments or liabilities plus expenses are larger than premiums
plus surplus. {This discussion omits consideration of asset
value fluctuations.) This point of view suggests defining
surplus requirements as some fixed relationship to premiums.
For professional liability, however, reserves will normally be

larger than premiums. Reserves are made up of an I.B.N.R.

5see, for example, Seal, Hilary L., Stoctastic Theory
of a Risk Business. New York: John Wiley & Sons, Inc., 1969,
Pp. 90-134.
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provision, case reserves and thé unearned premium reserve.
The first and last are usually determined by some sort of
formula and the case reserves are often inaccurate due to the
several-year lag between reporting and payment. For none of
the three reserve categories is the liability estimate part-
jcularly accurate. It is thus reasonable to assume that the
aggregate reserves may fluctuate about a mean value much as
the sum of the individual claims would fluctuate about the
sum of the individual means. It thus becomes apparent that
the surplus is required to offset fluctuations in the aggre-
gate reserve. If the surplus is sufficient to offset adverse
fluctuations, except with probability 1%, it can be said that
the probability of ruin is 1%.

The ruin model for this paper is thus formulated. The

model takes the aggregate reserves (I.B.N.R., case, and

unearned premium) as of a point in time and treats the aggre-
gate as being composed of individual claims. The distribution
of the aggregate reserve is approximately normal, since it
represents the sum of essentially independent random variables.
The surplus requirement is determined by finding the 99th
percentile of the aggregate distribution and subtracting away
the reserve. For example, the 99th percentile of the standard
normal occurs at 2.33. If the expected value of the aggregate
reserve is $10 million and the standard deviation is $1 million,
the 99th percentile occurs at $12.33 million. The surplus
requirement would thus be $2.33 million, assuming a normal

distribution of the aggregate reserves and a 1% ruin probability.
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In other words, the minimum surplus requirement is defined to

be the amount that, when added to aggregate reserves at a
point in time, equals the 99th percentile of the aggregate
reserve distribution.

In applying this approach to practical problems, two
specific difficulties arise, which have not been treated with
complete success in mathematical risk theory. First, insurers
universally purchase reinsurance. This paper deals only with
excess of loss reinsurance. Such reinsurance will signifi-
cantly reduce the coefficient of variation (CV) and skewness
of the aggregate reserve distribution. Indeed, the choice of
the excess of loss reinsurance retention (relative to the mean
of the unlimited claim size distribution) has a significant
impact on the aggregate reserve distribution and thus on the
required surplus. In order to produce practical results, it
is assumed that the claim size distribution of individual
claims is log-normal. This assumption has proved reasonable
for applications in professional liability insurance.® A
series of simulations was then produced to determine the
reduction in CV and skewness for different choices of
retentions for log-normal distributions with various CV's.
The methodology is explained more fully in later sections.
With the exhibits presented in this paper it is thus possible
to calculate aggregate reserve distributions for various

choices of reinsurance retentions, under a log-normal claim

6gece, for example, Finger, R. J., "Estimating Pure
Premiums by Layer—An Approach." PCAS LXIII (1976), p. 34.

-125-



size distribution assumption. Reinsurance retentions are
defined as multiples of the unlimited average claim size (also
termed the unlimited severity).

The second practical difficulty in applying risk theory
approaches to this problem concerns the uncertainty in the
mean value of the aggregate reserve distribution, “Fhat is,
traditional risk theory methods calculate fluctuations in
aggregate claim levels when the mean is krnown. As a practical
matter, the mean is not known accurately for professional
liability insurance. There is uncertainty in at least four
specific areas, which produce uncertainly in at least the
I.B.N.R., and unearned premium reserves; these are: 1) the
trend in claim frequency, 2) the trend in claim severity,

3) the appropriateness of loss development factors, and

4) consistency in the underlying mix and quality of business.
Thus, in addition to fluctuations in the aggregate reserve
value, given a known mean, there is also uncertainty in the
mean value. Surplus is required not only for statistical
fluctuations, but for mean-value uncertainty as well. For
example, assume that the aggregate reserves are $10 million,
as above. The 99th percentile of the aggregate reserve is
thus $12.3§?A§E above, when $10 million is the true mean.

It is possible, in professional liability insurance, however,
that the true mean is $8 million or $12.5 million. If the
true mean is $12.5 million, there is clearly more than a 1%
probability of the aggregate reserve exceeding $12.33 million.

Thus, in a practical situation, two types of uncertainty must
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be considered.
In order to keep the concepts distinguished, special

terminology will be used. The aggregate reserve distribution

will represent the total variations due to both statistical

fluctuations and uncertain mean. The conditional aggregate

reserve distribution will represent fluctuations about a known

mean. The surplus required for the conditional case will be

termed the fluctuation reserve. In developing the mathematics

there are three different distributions, which will be denoted
by subscripts T, L, and LT. First there is the distribution
of individual claim sizes, unlimited by any excess of loss

reinsurance. Second, there is the first distribution limited

&)
by reinsurance{L) Finally, there is the aggregate distribution,
due to fluctuations in both claim count and claim sizes, with

claim sizes limited by reinsurance. This final distribution

T)
is the conditional aggregate reserve distribution.

For this paper, both types of uncertainty are combined
by assuming that each is a log-normal variable. When two log-
normal variables are multiplied together, the product is log-
normal. Making the log-normal assumption and knowing the CV's
of the two variables, one can calculate the CV of the product.

The log-normal assumption is reasonable for the
uncertainty about the mean of the aggregate reserve distribu-
tion. Log-normal variables arise naturally where a large

number of independent variables are multiplied together.? The

71bid., p. 38.
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aggregate reserve may be thought of as a product of several
independent variables, such as frequency txend factor, severity
trend factor, loss development factor and quality of business
factor, The log-normal distribution has the property that
about two-thirds of the probabilit; lies between the range
determined by the mean divided by and multiplied by 1.0 plus
the CV. For example, with a CV of 0.25,two-thirds of the
probability lies between 0.8 and 1.25 times the mean. This
property gives a practical way of estimating and utilizing the
uncertainty about the mean of the aggregate reserve. For
example, assume that there is a two-thirds chance that the
true mean lies between 0.8 and 1.25 times the estimated mean.
Tnis implies a log-normal distribution of uncertainty about
the mean with a CV of 0.25.

The log-normal assumption is not particularly approp-
riate for the conditional aggregate reserve distribution.
The central limit theorem indicates that the conditional
aggregate reserve distribution is approximately normal, not
log-normal. Further, with reinsurance, the claim size distri-
bution is truncated and no longer strictly log-normal. Never-
theless, the assumption of log-normality should be conserva-
tive (i.e., provide greater skewness) and is probably accurate

enough for practical purposes.

PRACTICAL EXAMPLES
Before discussing the mathematical theory behind the
model, two practical examples are illustrated. These are

shown in Exhibit I. The CV of the individual claim size
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distribution (CVT) is assumed to be 2.0. As will be presented
later, for smaller retentions the CV does not have a very
significant impact. The examples assume that the expected
losses for the latest accident year (just ended) are composed
of 100 claims and an unlimited average claim size of $75,000.
(The average size is computed more accurately by eliminating
claims closed without payment. If these claims are included,
the CV will be larger, the mean lower and the fit of the log-
normal, most likely, not as good.) With an expected loss ratio
of 80%, the direct annual premium is about $9.4 million.

The two examples differ in the retention. Case I
assumes a retention of $150,000, or 2.0 times the unlimited
severity. Case II assumes a retention of $375,000, or 5.0
times the unlimited severity. Utilizing log-normal tables for
CVv=2.0 (Figure 1) it is determined that 30% of the losses will
be ceded in Case I and 12% in Case II. Typical reinsurance
premiums might be 35% in Case I and 15% in Case II. From these
reinsurance factors, one calculates net expected losses and
net premiums.

In a practical situation, one could begin with the
actual reserves at year-end. For this paper a steady-state
assumption is made. That is, with the payment pattern shown in
Exhibit II and a 15% annual trend in pure premiums, the steady-
state reserves will be 2.28 times the expected (undiscounted)
losses in the latest year. The reserves are discounted at 5%
interest to reflect the risk-free investments. In a steady-

state situation, then, the reserves will be 2.28 times the
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latest year's expected losses. It i3 also assumed that the
average claim size in the reserve equals the average incurred
claim size in the most recent accident year. (In a practical
situation this assumption might be adjusted appropriately.)
For both cases, then, there will be an expected value of 228
claims in the aggregate reserve,

The 99th percentile of the conditional aggregate reserve
distribution (i.e., given a known mean) may be found from the
following formula:

s 2 _
deviation = CV . [2_99 + ypo (2354 1] (1)

The above deviation is ewpressed as a fraction of expected
losses (i.e., aggregate reserves). This formula incorporates

the Cornish-T'isher expansion to the skewness term.? =2.33,

Z.99
CVLT is the CV of the aggregate distribution, limited by excess

of loss reinsurance. is the skewness coefficient (i.e., the

Tur
third central moment divided by the standard deviation cubed)

of the aggregate distribution, limited by reinsurance. Both
€V, and Y vVary inversely with the s$quare root of the expected
number- of claims, A, in the reserve. Fiqure 2 depicts /X—EVLT
and Figure 3 depicts /T—YLT. Both of these factors vary by

CV of the individual claim size distribution (which is assumed
to be 2.0 in these examples) and the reinsurance retention.

The fluctuation reserve (i.e., surplus requirement given a

known mean) is .236 times the reserve in Case I and .287 in

8Mayerson, Allen L., Donald A. Jones, an¢ Newton L.
Bowers, Jr., "On the Credibility of the Pure Premium." .PCAS
LV (1968), p. 178.
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Case II.

The next step is to adjust for uncertainty in the mean
aggregate reserve value. It is assumed that therec is a two-
thirds chance that the aggregate reserve falls between .83 and
1.20 its stated value. That is, that the CV of the uncertainty
in the mean value is .20. Using Exhibit III one can calculate
the additional surplus needed to cover uncertainty in the
expected aggregate reserve. The percentage figures in Exhibit
III are calculated as a ratic to the larger Cv. Adding both
surplus provisions together yields minimum surplus requirements
of .316 (Case I) and .356 (Case II) of the stated reserves.

(It is assumed that stated reserves are equal to their expected
value.) Equivalently, the maximum net premium to surplus ratios

are 1.61 (Case I) and 1.47 (Case II).

DERIVATION OF FORMULAS

The basic formula for calculating the variance of the
conditional aggregate reserve distribution is:®

var, = uz} + u?a;
where u; is the second central moment of the claim size distri-
bution, u is the mean of the claim size distribution and A, and
2 similarly describe the claim frequency distribution. The
above formula holds when the frequency and severity are inde-
pendent. This assumption may not strictly hold given deduct-

ibles, nuisance claims and inconsistent handling of claims

closed without payrent. It should nevertheless prove adequate

91bid., p. 179.
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to estimate parameters based on observed values and assume
that subsequent statistics are maintained on a consistent
basis.

The second central moment of the claim frequency
distribution is not easy to measure. In many situations it is
assumed that the claim count process is a Poisson process,
where A,=A. This assumption will only be true when each
exposure unit has the same claim frequency. In practice this
is probably true only in unusual circumstances. Surgeons, for
example, have frequencies about triple physicians. 1In auto-
mobile insurance the negative binomial distribution has proven
a better fit to claim frequencies than the Poisson.!? The
negative binomial distribution derives naturally from a situ-
ation where individual exposure units sustain claims according
to a Poisson process, but individual frequencies are gamma-
distributed. 1In general, ), is larger than i. Hansen!l has
shown that A, can be bounded above by an exponential structure
function. 1In fact, A, is bounded by A (1+f), where f is the
average frequency in the exposed population. For the Figures
and calculations in this paper i,=1.2Awas chosen. It will be
shown that this assumption has relatively little significance
to the final result.

The CV of the aggregate limited distribution is now

10propkin, Lester B., "Some Considerations on Auto-
mobile Rating Systems Utilizing Individual Driving Records."
PCAS XLVI (1959), p. 165.

llgansen, Ernest J., "A Note on Full Credibility For
Estimating Claim Frequency." PCAS LIX (1972), p. 51.
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calculated. Figure 4 depicts the effect on the CV of excess
of loss reinsurance for various retentions. These graphs were
developed by randomly-generated log-normal variables. A
sample of variables (e.g., 1,000) was generated. For selected
retentions (e.g., 1, 2, 3, 4, 5, .'. .} the individual claim
values were limited and the limited CV was calculated.

Figure 4 depicts <, the ratio of the limited CV (CVL) to the
unlimited CV (CVT). For example, for CVT=2.0 and a retention
of 10 times the unlimited mean CVL=(.81)2.0=1.62. The graphs
are approximate, since it was very difficult to generate
samples with actual CV close to the theoretical Cv.

Returning to the basic formula var X2

- 2
LTV 2, L ML

where L subscripts denote the limited distribution, but
Aa=l.2a

=cv 2= 2
¥y, CVL (KCVT)
uo 2

L

= 2 2
thus var; LKuLCVT) A+uL 1.2

varLT)8=varLT%

v 2 A

= (
LT upe L

=/7 2 5
CVim /qu[(4ch) +1.2]
kuL

chT=[@<ch)2+1.2]*
X
The X, assumption has relatively little significance.
Assume, for example, that &=.81 and CVT=2.0. For A3=1.21,
/XcV =1.96. For A,=1.3x, /ACV ,=1.98. For Ap=l.11, /xCV o=

1.93. Thus, for these examples a 10% change in 1}, has only
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about a 1% effect on CVLT'

The skewness of the aggregate limited distribution is
calculated in a similar manner. Figure 5 shows the reduction
in the skewness coefficient, B8, for various CV and reinsurance
retentions. If Yo is the skewness of the unlimited claim size
distribution and Yy is the skewness of the limited claim size
distribution, then =;$. A derivation for the skewness of the
aggregate limited distribution is shown in Appendix 4.3,

L B(CVL +3) 0V, (RCV,L) 343 (ACV,) 241
.
LT [ tcvp) 241772

For this derivation a Poisson distribution was assumed for the
claim frequency. That is, A=lp=A3. Little is gained by making
A2 larger than A since ), appears in both numerator and denom-
inator.

At this point the fluctuation reserve can be calculated
from the limited CV and limited skewness, as given by equation
(1). Exhibit IV shows the fluctuation reserve for probability
of 1% (i.e., Z=2.33), for expected claim counts of 50, 100, 250,
500 and 1,000. Figure 6 graphically depicts the fluctuation
reserve for reserves with 50 claims. From Exhibit IV and from
Figures 2 and 3 one can see that fluctuations do not vary a
great deal, at lower attachments, for different CV's of the
claim size distribution. This is due to the impact of reinsur-
ance in cutting down on large claims., It is thus clear that
the retention is a far more crucial variable than is the CV of
the individual claim size distribution in determining surplus

requirements.
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The final theoretical step is to adjust for uncert-
ainty in the mean value of the expected losses (or equivalently
in the mean value of the aggregate reserves). Appendix A.2
demonstrates that the multiplication of two log-normal vari-
ables yields a log-normal variable. There is thus a relatively
simple formula which provides the CV of the product of two
log~normals, given the CV's of the individual variables. For
current purposes, one CV is the CV of the conditional aggregate
reserve distribution. The other represents the uncertainty in
the mean value of the aggregate reserve. Exhibit III shows the
CV of the product of two log-normal variables as the increase
in the larger of the two CV's. For example, assume both CV's
are 0.30. According to Exhibit III the CV of the product will
be (0.30)(1.45)=.44. Aas hight be expected, when one CV is
significantly larger than the other, the CV of the product is
not much larger than the larger CV.

To determine deviations in the aggregate reserve, for
both statistical fluctuations and uncertainty in mean value,
the CV of the product of two CV's, representing these items,
may be substituted in equation (1). In effect, the percentage
increase in surplus requirements due to uncertainty in the
mean, is the percentage increase shown in Exhibit III for the
product of two log-normal variables. (Note, however, that
values in Exhibit III apply against the larger CV. 1In some
cases [e.g., large numbers of claims] the statistical fluctu-

ation may be less than the uncertainty in the mean.)
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CONCLUSION

This paper has presented a method for calculating
minimum surplus requirements. The method is tailored to a
monoline insurer, captive or self-insurer. The minimum surplus
requirements is defined to be the amount which, when added to
aggregate reserves (case, I.B.N.R. and unearned premium),
equals the 99th percentile of the aggregate reserve distribu-~
tion. That is, the aggregate reserve is treated as a random
variable, a sum of its individual claims. There are two types
of variations in the aggregate reserve: 1) statistical fluc-
tuations in the number and size of claims about a given mean
value and 2) uncertainty in the mean (or stated) reserve.
Variations about a known mean are calculated by assuming:
1) a log-normal distribution for individual claim sizes and
2) independence between the number of claims and the individual
claim size distribution. Variations are calculated for various
excess of loss reinsurance retentions. Reinsurance has a
significant impact on surplus requirements, since it can
greatly affect the CV and skewness of the claim size distri-
bution. Conversely, different assumptions for the CV of the
claim size distribution have relatively little impact on
surplus requirements, for smaller retentions. Surplus require-
ments are roughly proportionate to the reciprocal of the
square root of the number of claims in the aggregate reserve.
Uncertainty about the mean of the aggregate reserve value can
be combined with the fluctuations about a known mean by

assuming that both are log-normal variables. The combined
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variation is a log-normal variable, since a product of two
log-normal variables is also log-normal. The combined vari-
ation is then used in a formula, which also incorporates the
Cornish-Fisher expansion, to derive the 99th percentile of
the aggregate reserve distribution. The result is the minimum
surplus requirement, which is expressed as a fraction of the

aggregate reserve.
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A.1 THE LOG-NORMAL

Density Function

Mean

Variance

Coefficient of
Variation

Skewness

APPENDIX A

DISTRIBUTION

-(log x-u)?
_i e 202
V2nox !

Yol
d=e"*o /2

462 g2
d2=e2"*%" (e 1)

2
cv=§=¢e° -1
—u)3 2 [z _
Y=§i§—£l-=(e° +2) /e’ -1
[+]

=(Cv2+3)CV
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A.2 MULTIPLICATION CF TWO LOG-NORMAL VARIABLES

Let y, and y, be independent log~normal variables

Let X = (y;) (y3)

Then 1n X = 1In y; + 1n y,

Sums of independent normal random variables are normally-
distributed with mean equal to the sum of the individual means
and variance equal to the sum of the individual variances.!

Since 1n y, and 1ln y, are normally-distributed, 1n X is
also normally distributed. Thus X is log-normally distributed.

For a log-normal variable, if the log is distributed with
mean p and variance ¢2, the log-normal variable is distributed
with mean, M:e"“’o2 and CV= (eaz—l);’.2 The CV is independent
of the mean.

Let CV; be the CV for y; and CV; similarly for y,.
CV.=(e°‘2-1)H (for log~normal variables)
012=1n(CV, 2+1) (on rearrangement)

Thus o2; y = 1n (CV)2+l) + 1n (CV,2+1)

(since the variances add and 1n X is normal)

2 2
Thus cvy = (eln(cvl +1) + 1ln(cv, +1)_1);,

2See Appendix A.l.

1Parzen, E. Modern Probability Theory and 1lts Applications.
New York: John Wiley & Sons, Inc., 1960. Page 406.
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A.3 SKEWtuisS OF THE LIMITED DISTRIBUTION

- 3
Basic Formula: y = Mﬁ
(E{(T-E(T)]2)"/2

g = A7 reduction in skewness coefficient of

Given:

Yop limited tlaim size distribution
ch
« = oo reduction in CV of claim size distribution
T
r = e reduction in mean of claim size
Ve distribution

E[T-E(T) ]2 = upa+u2),

E[T-E(T)]® = uad+3uauratudng,
Other Formulas:

CV = g
1]
Yp = (Csz +3)CV, log-normal distribution
Assumptions: A} % X2 = )3 (true for Poisson process)

; ions - 3
Derivation: 1. EL[T E(T)] = wgpht 3"2,L“L + 3

= 3
Vg, T TLL

= Bygap’

2 3
8 (CVT +3)CVT (CVLuL)

B (CV2+3)CV (ACVpT) 3

ug 1 = (CVpu )2 (note: o = u3)

(CVpru) 2

E [T-E(T)]3 = a[8(CV,243)CV (XCVpTu) 3+
3 (V) 2ry + (tw)?)
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- 2 2
2. E[T-E(T)] bg,ph * oup2A

v 2 2
altevpup)? + v ?]

A(ru) 2[(ecv,y) 241]

. 3 2
Ypp = MTu) 2[B(CVL2+3)CV (o0, ) 343 (eCV ) 241]

(P 2[ (xcvg) 24111 /2

= 1 B(CVL243)CV (CVy) 343 (CV,y) 241
0

[ (ecvy) 241]°/2
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Exhibit I

CALCULATION OF SURPLUS REQUIREMENTS
(Assuming CVT=2.0)

CURRENT YEAR PREMIUMS

a. Claim Count 100

b. Direct Average Claim Size $75,000

c. Direct Expected Losses (la x 1lb) 7.50 million

d. Expected Loss Ratio 80%

e. Direct Premiums (lc + 14 9.38 million
REINSURANCE CASE 1 CASE 11

a. Retention $150,000 $375,000

b. Times Unlimited Mean (2a + 1b) 2.0 5.0

c. Net Expected Losses (Figure 1) .70 .88

a. (e x 2c) 5.25 million 6.60 million
e. Net Premiums .70 .90

£. (le x 2e) 6.57 million 8.44 million

FLUCTUATION RESERVE

a. Reserves to latest year (Exhibit 2)

Expected Losses 2.28 2.28

b. Net Reserves (2d x 3a) 11.97 million 15.05 million
c. Reserve Claim Count (la x 3a) 228 228
d. /chLT (Figure 2) 1.46 1.72
e. Ny o (Figure 3) 2.16 3.80
£. Cvn  (3d + /3c) .097 .114
1% Level (2.33 + [3e + /3c] .738)  2.44 2.52
h. Deviation (3f x 3q) .236 .287
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Page 2 of Exhibit I

ADDITIONAL UNCERTAINTY DUE TO UNKNOWN MEAN

a. Uncertainty about mean .20 .20
b. Increase in CVLT (Fxhibit III) 34% 243
¢. Total Deviation (3h x [1+4b]) .316 .356
REQUIRED SURPLUS
a. MAggregate Amount (3b x 4c) 3.78 million 5.36 million
b. Net Premium to Surplus Ratio
(2f : 5a) 1.74 1.58
C. Surplus to Net Premium Ratio
(5a + 2f) .58 .63
d. Surplus to Net Reserves Ratio (4c¢) .316 .356
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RELATIONSHIP OF RESERVES AND EXPECTED LOSSES AT STEADY STATE

15% Annual Trend 25% Annual Trend
Payment Relative Discount Relative
Year Pattern Unpaid Value Factor Reserve Value Reserve
(once reported) (year end) (5% interest)

1 5 95 1.000 .882 83.8 1.000 83.8

2 10 85 .870 ,914 67.6 .800 62,2

3 20 65 .756 .941 46.2 .640 39.1

4 30 35 .658 .956 22.0 .512 17.1

5 20 15 572 .976 8.4 +410 6.0

6 15 0 - - - - -
Total 100 295 .846 .913 228.0 .775 208.2
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Exhibit III

CV OF PRODUCT OF TWO LOG-NORMAL VARIABLES
(AS PERCENT INCREASE IN LARGER CV)

COEFFICIENT OF VARIATION
cv .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .60 .70 .80 .90 1.00

.05 42 12 5 3 2 2 1 1 1 1 1 - - - -

.10 a2 21 13 8 6 5 4 3 2 2 2 1 1 -
.15 43 26 18 13 10 8 6 5 4 3 3 2 2
.20 43 30 22 17 14 11 16 7 6 5 4 4
.25 44 33 25 21 17 15 11 9 8 7 6
.30 45 35 29 24 20 16 13 11 10 9
.35 46 38 32 27 21 17 15 13 12
.40 47 40 34 27 22 19 17 15
.45 48 42 33 27 23 21 19
.50 50 40 33 28 25 23
.60 54 45 39 34 31
.70 58 50 45 41
.80 63 56 51
.90 68 62
1.00 73
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FLUCTUATION RESERVE
(SURPLUS REQUIREMENT WITH KNOWN MEAN RESERVE)

~oti-

P() = 1%
2 =2.33
. . — 5 2-
deviation = CVLT[Z.99+YLT(Z.99 1)]
Retention 6
(times
unlimited LT YT Deviation
Treon ) CVT= 1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0
I. 50 CLAIMS
1 .184 .190 .199 .208 .205 .223 .247 .269 .456 .473 .501 .526
2 .202 .206 .215 .223 .288 .305 .361 .415 .514 .528 .558 .589
5 .236 .243 .249 .256 .517 .537 .642 .782 .640 .663 .698 <744
10 .263 .276 .286 .291 .764 .792 .995 1.238 .761 .804 .875 .945
Ult.* .263 .322 .386 .451 .829 1.581 2.761 4.472 .774 1.128 1.686 2.540
II. 100 CLAIMS
1 .130 .134 141 .147 .145 .158 .175 .190 . 317 .328 .347 .363
2 .143 .146 .152 .,158 .204 .216 .255 .293 .355 .363 .383 .402
S .167 .172 .176 .181 .366 .380 .454 .553 .434 .449 .469 .496
10 .186 .195 .202 .206 .541 .560 .704 .876 .508 .531 .576 .613
Ult.* .186 .228 .273 .,319 .586 1.118 1.952 3.162 .514 .719 1.029 1.488
TII 250 CLAIMS
1l .082 085 .089 ,093 .092 .100 .110 120 .197 .204 .215 .225
2 .090 .092 .096 <100 .129 .136 .162 .186 .219 .224 .235 .247
5 .106 .109 .111 .114 .231 .240 .287 .350 .264 .273 .283 .296
10 .118  .123 .128 .130 .342 .354 .445 .554 304 .320 .340 .357
Ult.* .118 .144 173 .202 .371 .707 1.235 2.000 .306 .41] .560 .768



-Lyi-

Retention

(times cv
unlimited LT Yir Deviation
claimsize) ch= 1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0
IvVv. 500 CLAIMS
1 .058 .060 .063 .066 .065 .071 .078 .085 .138  .143 .151 .157
2 .064 .065 .068 .071 .091 .096 .114 .131 .153  .157 .164 171
5 .075 .077 .079 .081 .l163 .170 .203 . 247 .183 .189 .195 .203
10 .083 .087 .090 .092 .242 .250 .315 .392 .209  .219 .231 .241
Ult.* .083 .102 .122 .143 .262 .500 .873 1.414 .210 .275 .363 .481
V. 1,000 CLAIMS
1 .041 .042 .045 .046 .046 .050 .055 .060 .097 .100 .106 .110
2 ,045 .046 .048 .050 .065 .063 .081 .093 .108 .110 .115 .120
5 .053 .054 .056 .057 .,ll6 .120 .144 .175 .128 .132 .136 .141
10 .059 .062 .064 .065 .171 .177 222 .277 .144 ,152 .159 .165
Ult.* .059 .072 .086 .101 .185 .354 .344 1.000 .145 .186 .223 .309

*Ult. = Unlimited
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Pigure 2
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Figure 3
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Figure 6

FLUCTUATION RESERVE FOR 50 CLAIMS
(As a percentage of expected losses; CVp=2.0)
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