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Aggregate loss probability is an effective tool in actuarial rate
making, risk charging, and retention analysis for both primary and
secondary insurance companies. A noticeable trend over recent years
indicates that it also is becoming an indispensable element in the risk
management gperations of many manufacturing and commercial firms. Some
major insurance brokerage houses in the U.S., in step with the trend,
already employ this technique routinely in selecting a retention plan
for their clients. In its broadest form, the application extends beyond
the actuarial domain into the broader area of corporate.financial planning.

Most existing procedures for estimating aggregate loss probability
distributions have significant disadvantages. Most often, these disadvan-
tages are associated with inadeqdate treatment of skewed data. The
purpose of this paper is to present a recently developed technique which
seems to handle the aggregate loss estimation problem more effectively.

The first section presents a brief review of the strength and weakness
of most popular techniques currently in use. This is followed by a
brief description of the newly developed technique. Next, the results
of a comparative study of the cost and effectiveness of these alternative
procedures are reported. Finally, we illustrate the impact of improved
aggregate loss estimation on the pricing of reinsurance. An appendix
contains the mathematical derivation for those who would like to verify

our results.

Standard Aggregate Loss Estimation Procedures

In dealing with the estimation of aggregate loss probability, there
are three fundamental approaches commonly in use. They are analyticail,

approximation, and simulation models. Each is distinguished from the

others by its own characteristics, advantages and disadvantages. The
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pure analytical model] generally is the most accurate. The handicap is
that it can be applied to only a few distribution fypes. A freguently
used approximation model is the Normal Power approximation. This is easy
to implement but yields disturbingly large approximation errors when
applied to highly skewed data.2 Another less well-known approximation
technique is the Gamma approximation.3 which seems more accurate than the
NP approximation in most occasions.? The only weakness of the Gamma
approximation is that, like the NP approximation, it does not respond

to the sensitive choice of frequency distribution. Simulation modeling
is perhaps the most widely used technique in the field of management
sciences; however, 1ike the other techniques, it has disadvantages,

too. First, since the error brought on from simulation is statistical
rather than mathematical, it can be reduced significantly only by
increasing consideradbly the number of iterations.5 This would be an
unfavorable element should the consideration of computing time and cost
become crucial. Secondly, simulation is a brute force technique and
offers 1imited insight into how a system works. Thus, any sensitivity
analysis or optimization drawn from a simulation model is virtually a

trial and error process and can not be justified mathematically.

See Appendix B for a summary.

Reports compiled from experiments decline to recommend the use of NP
approximation on data of skewness exceeding 1 or 2, see [2] and [13] .

See Appendix C for background materials on this technique.

There is a controversy in the literature [16] and [18) concerning which
approximation is superior. In our study, we found out that at least
for the distributions l1isted in this article, the result for the gamma
approximation is much better than that from the NP approximation.

See Table 7.1 given in [2] , P. 93 for relation between the degree
of error and number of iterations.
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The aim of this paper is to introduce a new model which is designed
to meet the dual requirements of accuracy and simplicity in implementation.
OQur approach is a blend of the analytical and approximation models. It
is approximate, because the answer is not the exact, ‘and analytical
primarily because the formula is derived from the fundamental character-
istics of collective risk theory. To demonstrate the precision of our
model, apart from the mathematical deduction attached as an appendix,
we compare the results of the new model with those where the exact

probability can be calculated directly using the analytical method.

A New Model (Modified Gamma Approximation)

Aggregate loss, occurring as a random process, is compiled from two
variables: one is identified as the number of claims experienced in a
given time span (normally one year) and denominated as the “frequency
of loss." The other is the size of an individual claim and is termed
the "severity of loss." Jointly, frequency and severity determine total
or aggregate loss from all claims in the given time span. The most
often. used frequency distributiens are poisson and negative binomial.6
for severity distributions, experience7 indicates that normal, gamma,

8

inverse normal, pareto, log-normal and log-gamma~ are appropriate for

casualty and property insurance.

6 Some authors also recommend a third type, the generalized Waring
distribution, for details please see [19] .

; see 31, [8], Do} , (1] . and 8] .

A summary of these distributions can be found in Appendix A.
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For convenience, we shall adopt the term generalized poisson model

for the aggregate loss distribution which uses the poisson distribution
as the frequency function and leaves the choice of the severity function

open. Similarly, the generalized negative binomial model reflects the

application of the negative binomial distribution as the frequency
function.
To describe our formula, we need the following statistics which

can be estimated? from the sample data:

A : frequency mean
d' : frequency standard deviation
/u‘ : severity mean
dp : severity standard deviation

and statistics which can be derived intrinsically:

Ia . aggregate mean (e.g., the product of A
and  fd, 1
¢ : aggregate standard deviation (e.g., ,\(’..;ra:)

for the generalized poisson mogel and “pgt 4 42 o
for the generalized m.b_ model )?8 A "ﬁVf

Xp : severity skewness
OQur formula states that the probability F(x) of annual aggregate loss
less than or equal to % is given by:1]

Fto = i_.‘. %./j"ﬂ-) !’L('_{_tikti(f_)) dt a)

See [7] for the estimation of these statistics.
See [14] p. 179 for the derivation.

The derivation of formula (1) and the subsequent tables are given
in Appendix D. 362
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where functions f(*) and 7#) in the integrand are defined by:

Table 1
Model _f& i
Generalized Poisson enp(A i) » “ahtt)
. - > S LAy -if (T3 )RE)
Generalized N8 {{,.{%ﬁ)ﬂn",&&)\-‘,{m)‘} % l') 0 ton 1(‘&:(;.;?))_‘7”)

and functions §ft} and Rft) in both models are given by:

Table 2

At) Fi 5tt) geo
Stt)Gs(ort)-1 Stosi-(orty) (r(EBE ¢ (&%%)* 41l

stle

The only quantity which has not been expressed expiicitely in the formula
is the severity skewness )" . Since each of the six severity distri-
bution functions has exactly two parameters, eac'h is defined and
described completely by the severity sample mean and standard deviation.
A1l the other guantities, including Xb , depend ultimately on the type
of the severity distribution chosen; that is on the sample mean and
standard deviation. The corresponding severity skewness of the six

alternative severity distributions are tabulated as fo]]ows:]2

Table 3
13
Type Skewness 11
Normal [}
Gamma Do
2 ,:,,)

12 The derivation of Table 3 is given in Appendix A.

13 If the skewness is zero, replace it with any small number (e.g., 10'9)
in the computation, since dividing by zero is prohibited in cur
formula.
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g
Inverse Normal 3 (ﬁ .
ParetoM 2(‘%} (%%(Eé')
Log-normal (‘%) {(%)'3 3)
. .I§

Log-gatrma“'

Formula (1) and its consequent computations may seem complex in
the form shown above. However, the implementatjon is quite simple. Any
standard numerical integration technique would handle the computation
effectively; for example, the extended Simpson's rule is adequate to
calculate the integration in (1) and 1'_5 easy to code in any scientific
programming language. A practical discussion on the use of extended
Simpson's rule and the truncated range of integration in formula (1)

is given in Appendix D.

Effectiveness of the Modified Gamma Approach

From a conceptual point of view, the new model seems to satisfy
the objective of increased accuracy at nominal cost. The ultimate
test, however, lies in its effectiveness in handling actual loss data.

By combining the poisson or negative binomial {for frequency) with
the normal, gamma, or inverse normal {for severity) it is possible to

compute an exact aggregate distribution using the pure analytical method'(A).

14
In the cases of the pareto and log-gamma distributions, the skewness

may not always exist; it depends on the relation between the sample
mean and standard deviation. Thus, if the following conditions

H

Iqﬁfﬁ;;/[}p‘ £2.709¢ for log-gamma

are not met, the new model is not applicable. See Appendix A for
details.

3’1; > for pareto

15 Since the skewness of log-gamma does not admit any closed form in

terms of the sample mean and standard deviation, it is best expressed
by its functional parameters, see Appendix A.
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This procedure was used to provide a series of control distributions
for a comparison of the relative accuracy of the normal power approxi-
mation (NP), standard gamma approximation (G), and the new, modified
gamma approximation (MG).

In the analysis each of the four methods was used to generate
aggregate probability distributions for several sets of hypothetical
loss data. The primary variation in the data refiected differences
in skewness (from a relatively modest .5 to a substantial skewness
factor of 5). The points on the probability distribution were chosen
in terms of standardized deviations from the mean rather than in
absolute dollar amounts. Calculations were made utilizing both the

generalized poisson and the generalized negative binomial models.]6

Exhibit I, presents three sets of data for the generalized poisson
model, as does exhibit [I for generalized negative binomial model. In each
set, the severity type, severity coefficient of variation and fregquency mean
are selected (in the case of negative binomial the frequency variance is
also required), and the aggregate skewness is calculated by the aid of Table A6
given in appendix C2. Two auxiliary exhibits, labeled by Ia and Ila respectively,
.display the difference between results obtained from analytic method and the
other three methods. At the bottom row, their variances, calculated by summing
the squares of the difference dividing by the number of rows, are comouted

respectively.

16 The objective of the analysis was to uncover any systematic bias

or approximation errors inherent in the alternative approximation
techniques. In normal practice the candidate distributions would be
determined by a goodness of fit criterion.
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As can be seen from both exhibits I and I1I, the new model clearly
is superior to the other two approximation models in all scenarios.
The discrepancy of NP appréximation is particularly serious not only on
highly skewed data but also on modestly skewed data (e.g., ‘°=;.). Also
notice that in both—fpe generalized poisson and negative binomial models,
the results from the standard gamma and NP approximation are determined
ultimately by the skewness, e.g., the differences in the control distri-
butions refiecting the choice of frequency distribution are not captured
by either traditional approximation methods. The new model does detect
the difference between poisson and negative binomial frequency distributions.
Finally, we want to indicate the degree of sensitivity of the estimated
aggregate loss probability to the selection of the type of severity function.
Exhibit IV assumes that the frequency distribution is poisson (with mean = 60.383)
and the estimated severity coefficient of variation is equal to 4. If the severity
function is the inverse normal the aggregate skewness would be 1.5. The same
parameter would be 9.02 for log-normal. Also a tail appears in the aggregate
picture when the log-normal is selected for the severity. This phenomenon can
be explained mathematically by the following observation: given a severity
sample mean and variance, the magnitude of the severity skewness, according to

Table 3, can be arranged in the following increasing order:

pareto
normal, gamma, inverse normal, {

log-normal

Since the aggregate skewness varies along with the severity skewness, the
selection of log-normal as severity function always yields a larger aggregate

skewness than does the selection of inverse normal.
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Increased Limits Factors for Stop-Loss Reinsurance

One of the practical applications of estimating aggregate loss
probability is its use in excess of loss pricing, aggregate pricing and
stop-loss reinsurance. The case of excess of loss pricing has been
covered extensively in a recent article by Robert S. Hiccolis.]7 He
would like to concentrate on the latter two situations here.

Agqregate pricing and stop-loss reinsurance are fundamentally one
concept. Stop-loss reinsurance is a process which transfers the risk
above an aggregate limit to a reinsurer. Aggregate pricing structure
can be envisaged as zero limit stop-loss reinsurance pricing structure,
e.qg., the reinsurer absorbs all the loss. Thus, as far as the pricing
structure is concerned, we can treat aggregate pricing as a special
case of stop-loss reinsurance pricing.

If F(x), as before, represents the aggregate loss probability
distribution, without an aggregate 1imit, then let fi/x) be the
truncated distribution where an aggregate limit C is introduced‘/uL and

oL are respectively the mean and standard deviation of [iu). The
formula for premium, excluding loss expense, charged for stop-loss

18

coverage of an aggregate 1imit L is given ~ as follows:

[ =/a‘_+co"’_‘ (2)

17 see [15] .
18 See [5] p. 85-8Y. An alternate suggestion for the safety loading

in formula (2) is to use the standard deviation aL instead of
variance 0[ , see [1] .
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where the loading coefficient C generally is chosen from experience. If

L is zero (e.g., this is a full stop-loss coverage for the primary carrier)
ldL and JL become aggregate F and ¢ as specified before. Suppose a

is the loss expense ratio, then the total premium charged for a stop-loss
coverage with limit L is (ua)E. Then by definition, the increased 1imit

factor.I(L), of a stop-loss policy limit L imposed on a stop-loss basic

vimit L is

Total premium of policy Timit L

L)=
I() Total premium of basic limit Lo

_(#e)P Myt cOL (%)
(HO)H.. - /"Lofca:'

A formula is needed to calculate /"L and q': . This can be worked

out from the truncated distribution E(.). Since the aggregate loss of
the refnsurer under a stop-loss coverage with a policy limit L is

reduced by an amount of L dollars, the probability E(,) is given by:
Fo)= Fix+L) )

Hence, the jﬂ moment,pL i accordingly is defined by:
'
co= [yl
/"L,; /o x JF;_(:)
= [T xTdF(x4L)
{replaced variable x4l byx )
= j:'(.-L)f'dF(-)

particutarly, when j = 1 and 2, we have
e, = /:(r-L)JF(-) = /."rJP-)-/:-JFh)-L/‘_"JF")
= pu=[fedfin) = L (1-F1) (s)
b= /f'(r- L) dFe
= [o3d0 =[x R =2 L [in-L oot

=o' e[S dFn) -2 Lpa $L(-AL) (6)
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Notice that d::/uLl-p"‘ , thus two more values:
()

[ 8
LLXiJR'), j:x,z (7

have to be calculated before we compute formula (3). For this, the

precise form of fw) would come into play. Since by (1),

£ - {,—/, Het) s (x tfr 4 §0) I (3)

Substitute Jﬁu) in (7) by (8). Ye have

/:x'.dFl') = 7;r /.Lz’.h/:f(ﬁ&S(xt/v+7(ﬂ)df

(exchange the order of integration)

= #/"m)dt /_Lz is(etfe 3t dx (1)

Now the first integrand /.inax(rfﬁ "}(‘H)JX (denoted by “;‘l'”) in (9)

has a closed form, and the desired values are given as follows:
Table 4
—aft) 2
Lcrﬂ;ll.t/rmq)*‘- oslitirtf-Gst)}  Cofin(Ltfratt) . er‘cos{ffp  +54t)
t t ! _ 2l (Lﬂrg‘;n}-ﬁ;/mﬂ

where g(t) and f(t) are given as before in Tables 1 and 2.

In summary, the increased limits factor I(L) is calculated by

formula (3), where d;ﬁ,u.,,:with /"L and }u‘{given by (5) and {6).
Whereas in formula (5) and (6), /.Lfaﬁ;) ja2is calculated by:

Table 5
[xdm) NS
e, reom i dt [ Hoamdt
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The integrations in Table 5 can be handled by any numerical integration
technique as discussed before, e.g., extended Simpson's rule, etc.
Exhibit [II illustrates an increased limits table derived by formula (3)

and tables 4 and 5.

Conclusion

The effectiveness of the estimation of aggregate loss probability
and the aggregate pricing mode! introduced in this article will, to a
great extent, depend on how consistantly the loss-experience data is
treated. In our model, we assume that all the losses have already been
adjusted to the present or ultimate level. That is: losses have been
developed to the ultimate; IBNR has been adjusted and inflation has
been trended to the forecasting year, etc. The reason that we did not
discuss those in here is because they are rather standard actuarial
techniques practiced in most areas of rate-making and have been covered
extensively elsewhere in the Hterature.]9

The analysis shown above indicates that for many classes of
distributions the new modified gamma approximation is superior in
estimation accuracy and poses no significant increase in computation
effort or expense. The new technique thus, is potentially valuable

in more effective pricing of certain classes of reinsurance.

An alternate approach is to incorporate those effects into the
parameters of distribution as suggested in [12] and [15].
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Generalized Poisson Model

Aggregate Probability F(x ) (%)

Exhibit I

x- ¥ = .5, Sev = Gamma ¥ =1, Sev = Inv. Normal f=5,$ev=Gamna
?(=—T.L) A MG G NP A MG G NP A MG G NP
-1.6 4.87 4.87 4.87 5.04 2.49 2.60 1.90 2.23 * * * *
-1 15.58 15.58 15.56 15.87 14.17 14.21 14.29 15.87 M * * *
- .5 32.93 33.09 33.06 33.28 34.69 34.79 35.28 36.16 * * * *
i 53.14 53.33 53.33 53.30 56.33 56.36 56.65 56.45 78.49 78.47 78.52 71.44
.5 71.28 71.32 71.33 N4 73.52 73.51 73.50 72.76 87.18 87.20 87.20 78.81
1 84.33 84.33 84.35 84.13 B5.05 84.99 84.88 84.13 91.44 91.44 91.46 84.13
1.5 92.30 92.3¢ 92.31 92.16 91.99 91.85 91.82 91.29 94.00 94.00 94.01 88.05
2 96.56 96.56 96.56 96.49 95.86 95.80 95.76 95.45 95.68 95.68 95.68 90.97
3 99.44 99.44 99.46 99.45 98.98 98.98 98.97 98.90 97.63 67.63 97.63 94.81
4 99.93 99.93 99.93 99.94 99.77 99.77 99.77 99.78 98.64 98.64 98.64 97.01
5 99.99 99.99 99.99 99.99 99.95 99.95 99.95 99.96 99.20 99.20 99.29 98.27
Frequency Mean 100 77.84 100.5
Severity Coefficient
of Variation 2.5 3 25
Note: (*) Points below zero dollar Jimit.
(1) All four models are calculated by a HP-19 programmable calculator.

- 372 -



Generalized Negative Binomial Model

Aggregate Probability F(x) (%)

Exhibit 11

Z(:%% ¥ =2, Sev = Normal ¥ =3, Sev = Normal ¥ = 5,Sev = Garma
A M6 6 NP A MG G NP A MG G NP
-1, * * * * « * * *
21 * * * * * * * * * *
- 39.86 39.32 39.35 42.97 40.43 40.63 41.11 50.00 * * * *
0 63.51 63.39 63.21 61.90 69.33 69.35 69.25 66.06 78.61 78.59 78.52 71.44
78.03 78.190 77.69 75.16 81.57 81.49 81.47 76.79 87.22 87.21 87.29 78.81
1 86.71 86.77 86.47 84.13 88.37 88.42 88.29 84.13 91.46 91.46 91.46 B84.13
1. 91.95 92.01 91.79 90.04 92.47 92.52 92.40 89.18 94.01 94.01 24.01 88.05
2 95.13 95.09 95.02 93.84 95.05 95.08 94.99 92.64 95.67 95.67 95.68 90.97
3 98.33 98.32 1 98.17 97.72 97.79 97.78 97.75 96.63 97.63 97.63 97.63 94.81
4 99.40 99.40 99.30 99.19 98.99 99.00 98.96 98.47 98.64 98.64 98.64 97.01
5 99.78 99.78 39.75 99.72 99.53 99.53 99.51 99.31} 99.20 99.20 99.20 98.27
Frequency Mean 90.25 11 100
Severity Coefficient
of Variation 2 25

Hote:

(*) Points below zero dollar limit

(1) A11 four models are calculated by a HP-19 programmable calculator.
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Exhibit la

Generalized Poisson Model

Variances of Modified Gamma, Gamma_and NP
" vs_Analytical Model

x- Yo 5 Sev= Gamma Y= ! S&¥= Inv.Normal  ¥= 5 Sev = Gama
1= MG/A /A NP/A MG/A G/ NP/A_ MG/A G/A  NP/A_
-1.5 o o .7 A -89 -2 X x x
-1 0 -.02  -.01 04 32 170 x o ox x
-.5 d6 .13 65 10 .59 1.47 x o x x
0 d9 19 e 03 2w -.02 .03 -7.05
5 04 .05 .14 -0 -0 -.74 02 .02 -8.37
1 0 .02 -.20 -06 -7 -.92 o .02 7.3
1.5 o .01 -4 -1 -7 -0 0 .01  -5.95
2 o 0 -07 -06 -1 -4 0 0 -4n
3 0 .02 .00 0o -.01 -.08 0 0 -2.82
4 o o .0 0 o .01 0 0. -1.53
5 o 0 0 0 o .0 0o 0 -.93
variance .006 .005 051 005 .080 652 0 0 30.243
vs Analytical
Mode1
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Variance
Vs

Analytical
Model

Exhibit ITa

Generalized Negative Binomial Model

Yariances of Modified Gamma, Gamma and
vs Analytical Model

¥=2 Sev = Normal ¥=3 Ssev = Normal 1 =5 Sev= Gamma
MG/A G/A_ _NP/A MG/A G/A _NP/A MG/A G/A NP/A
X 3 x x X X X x X
x x X x x x x X x
-.54 =51 3.1 .20 .68 9.57 3 X x
-.12 -.30 -1.61 .02 -.08 -3.27 -.02 -.09 -7.17
.07 -.34 -2.87 -.08 -.10 -4.78 -.01 -.02 -8.4)
.06 -.24 -2.58 .05 -.08 -4.24 0 0 -7.33
.06 -.16 -1.91 .05 -.07 -3.29 0 0 -5.96
-.04 -1 -1.29 .03 -.06 -2.91 0o .01 -4.70
-.01 -.16  -.61 -.01 -.04 -1.16 0 o0 -2.81
0 =10 -.21 .01 -.03 -.52 0 0 -1.63
-.03 -.06 0-.02 -.22 0 -.93
.036 .066 3.654 .006 .055 17.933 .000 .001 30,612
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Exhibit III

Sensitivity on the Selection of Severity Distribution

Aggregate Probability (%)

frequency = Poisson
frequency mean = 60.383
Severity coefficient of variation =4

1= (L£ Inv. Normal log-normal
-1.5 0 .01
-1 10.71 .02
-.5 37.34 8.07
0 . 59.98 74.71
.5 75.66 92.52
1 85.64 94.92
1.5 91.70 96.23
2 95.28 97.09
3 98,52 98.15
4 99.55 98.77
5 99.87 99.15
Severity skewness 12 68
Aggregate skewness 1.5 9.02

- 376 -



(1)
Lo
[

I

-
'
— w

—_
AW N - O o,

Increased Limited Factors

Exhibit Iv

(8)*

() 3) (4) (5) (6) (7
F(v) 3 [xdro Lfupe KT = i “:HH‘ , B Lig=
(B ){nifrin) -tz e-2)-15) (. 434
.048710 .284267 .186949 1.32407 11.745089 1.353434 3.14457
.155801 .362889 .860435 1.061534 13.363123 1.094942 2.54399
.330885 . 885834 2.425967 .680985 14.543811 .717345 1.66668
533291 1.589031 4.873183 .397018 13.354180 .430403 1.00000
.713208 2.302312 7.704674 .210377 10.460275 .236528 .54955
.843333 2.882251 10.292049 .101770 7.101659 .119524 .27770
.923029 3.276798 12.246940 .045233 4.248274 .055854 12977
965591 3.508574 13.509924 .018602 2.273409 .024286 .05643
.994601 3.685267 14.588247 .002567 . 490539 .003793 .00881
999351 3.718841 14.825890 .000284 .077647 .000478 .001M
.999937 3.723562 14.863940 .000026 .009605 .000050 .00012

(*) Parameters: Frequency mean = 100.551724, severity coefficient of variation =2.5,

laoding coefficient ¢= .0025%0"

aggregate coefficient 5_'— e 3724138,

. Aggregate mean is selected as the stop - loss basic policy limit

Note: Columns (2), (3) and (4) are calculated by using extended simpson's rule with integration range [.o,loJ
subdivided into 50 intervals.
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Appendix

Backgrounds on distributions listed in this naper.

Al. Function types
Table Al

Frequency Distributions

Type Density Function P(n) Range of parameters

Poisson e ,\"/n'l A>0

Negative Binomial 20 -$)()EH™ w0, 0<g¢l
Table A2 _

Severity Distributions

) Cumulative
Type Notation Dist. Function Range of parameters
Normal N(xip,7) E.-;f?ﬁe'i#"l; fo, T 70
»

Gamma G{x; b,p) 7%/:3"’9“%3 b, pro
Inverse Normal I{Xia, b) #e‘“b/:e"l""/'ft? a, bro
Pareto Pxicm) 1-(14 xfe )™ €¥o, m32
Log-Normal L“("id;“) 5—;‘;/:6.‘“ o ’l’.“"} u,d»o
Log-Ganma LG{x;a,v) -'% ]:{173)"-‘7-(#04, 0,022

A2. Characteristic Functions

A powerful feature in the study of distribution functions and their

moments is the characteristc function, ﬁ(f), associated with a given
21

distribution function F. which is defined as

20. Th t iven by: o= (2-a Yoo 422N
Tne poraneters are given by: o= (g3-2 g, /@

21. See [9] Chap. 4 - 280 -



plo= L2 e aFen

where i < FT 1s the imaginary number. The overwhelming advantages of
using the characteristic function is evident from the following:
(1) A moment generating function is defined over real number; the
characteristic function is its compiex analogue. It retains all the desir-
able properties of  the moment generating function and untike

the moment aenerating function, it always exists;
(2

a standard mathematical technique known as the Laplace transformation

(or Fourier transformation) asserts that as long as the characteristic

function is known, one can rediscover the associated distribution
function. This invertible property (not valid for moment generating
function) offers an algorithm to compute the aggregate loss probability
directly.
HWithout using these two features of characteristic functions,
the derivation of our formula for the new model would be virtually
impossible.
Among the six severity distribution functions listed in Table A2, only

the first three have an explicit form for their characteristic function.

The last three do not admit any closed form for the characteristic functions.

We will derive the characteristic function of the inverse normal distribution here,

and leave that of the normal and gamma to the interested reader.22

'etting the variable 4 g <t in the c.d. f of inrverse normal (Table A2),
423

wWe have

b1 A3t aYat
I(riﬂ.")"%e“ée A (to)

22. See [9] pp. 147 and 152 - 381 -



Now, observe that 2bdj=d(by+afy) +J(b§-a[} ), thus
b roe _ 12 _thi
1lxia,b) =,,%,,3-: {/:/s'e V-0 4 vas5) "l;e ) /,ld(“_%)}

next setting variab]eszbhd/g. in the first integral and 5=53-d/} in the

second, it follows that

oyl -Q‘J
I(xia,b) =;—,_1rr{e"°b{m/§“3 +£.—ame +}
h ze
(change ‘1 i_/‘d'—)‘.— “b/_ﬁb-aﬂ; +/¢a7;-bﬁ} e-;‘/z "3-
-n—r{f M~ /.
Thus, we have a practiéa1 form for the inverse normal distribution

expressed in terms of the normal d;stribution: 11)
T(x;a,b) = e Nf-bG-afiF ;0,1) + N[eAR HE;01)
The calculation af the characteristic function foliows closely the

pproach which led to the derivation of formula (11). In fact, by definition,

Q0 =prettt ek
{(change 3} = "'/" )
— ;_b__ 2ab /w e-(“-"“/é""'é‘d;
kg 0

= -/ ) 2k 2D [;-Ie'av/a'-b‘s‘d,)

Compare the form inside the narenthesis with the r.h.s of (10}, it is identical

23
to (e, /a‘-]t’ b ), taking the fact that cumulative probability is always equal to

1 when the argument tends to infinity, then

B ft) = exp(ab(a-/a-i¥)) (42)

The comparable results for the normal and gamma distributions are given by

?NH) = e"(A(’l-z'-dJ{‘)’ for normal
f@ = (1-1t/b y-f ,  for ganma

23. Since parameters of distribution have to be real numbers, while, here we have
complex numbers involved, it is thus confusing to use same notation. However,
in this particular case (and except this ambiguous notation) the property of
distribution still holds in the extended situation, see M. Abramowitz and
I.A. Stegan: “Handbook of Ma_t%rgat_ica\ Functions" National Bureau of Standards.
formula 7.4.3 p. 302

(13)




A3. Background information on_the Inverse Normal Distribution

An immediate consequence of deriving the characteristic function is
that one can readily determine the cumulants of a givwn distribution
function. Since, by definition, log . (t) can be formally expanded as
follows:24
log Qo (t) = fualit) + TP+ TR X e (19)
where ﬁ‘l U,f and T, are the mean, variance and skewness of . Now, apply (14)
to inverse normal distribution, we have
. 4
Tos (o H) = 2ab (1- (1-itfa)?)
= 2ab($ (e $ G Y+ )

From a comparison with the right hand side of {14), it can be deduced that
=b Jl=: Yd’::i'(b)
fn=8, a5 Ha, 2 Ts a,

Next, solving the first two equations for a and b, and placing the results

in the last equation, it can be seen that:

a =rfmf2) , b=, YN=3lG/m) 8

A4, The skewness of severity distribution

The last equation of (11) proved the case of inverse normal distribution

stated in Table 3. The case of the normal is quite straight forward, since:

Tog ﬂ{ﬂ = 4{,& “{'r"{l

24. see[9] formula (4.3.3) p. 11, note that in -[9], the term semi-invariants,
instead of cumulants, is used.
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]
thus Ypdp=e i.e., Y=zo. As for the gamma distribution:

109 ¢, (#) = =F !7 (1-it/s)
= £0it) + it P e fplitr? 4 ---
or  fuz f/b,dj‘:f/b‘ and Y,%”Zf/b’. It follows that
da
% =2(3)
which completes the case for the gamma distribution.
For the other three types, it is necessary to use an alternative definition
of skewness, which (if it exists) is 25"
X =fis 43
n=E| G 1
— - 3
= g3 (E00]- i EDCT +24d)  (1€)
In carrying out the calculation of the first three moments of the pareto,

log-normal and log-gamma distribution, we have the following table:

Table A3
Tye E() £() E(x’)
Pareto ‘/(H) 2 /((.-‘)( =-2) 5‘7(('0-4)(1‘"-2)()1-5))
log-normal ?XP(d*".“) exp(zduu‘) EXP(N#!'U')
1og-gamma (1-1fa)~" (£-2/a)~V t-3fa)~v

where in order to ensure the existence of the integration in the derivation of the

3rd moment, the following conditions have to be satisfied:

{ m>3, in pareto case (17)

a 73; in log-gamma case

25 See [9) p. 73
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Bysolving the first two columns of Table A3 for parameters in each case

and substituting the results in the last column and in formula (16), we have the
following table:

Table A4

Type Parameters Skewness

Pareto < =y (e B2 pi) o222 fl-Ae3) zﬁ‘:}(iﬁ%é.fi
fog-nommal “’W, d=lolilfid)  (EERre3)
logamt® @y wa-lybp/lyli-ife) ey apgsl)

By using an explicit value for m in (17), the assertion of the footnote 14
for the pareto case is established. For the log-gamma case, since (l/a.) is
the root of H{&,x ) {see footnote 26) and the graph of H{&.x.) can be

portrayed as follow:

H 4
HeNg--------

where (€-2)/2(€-1) is a Tocal minimun point of H(€,X). Thus the requirement

of (17) asserts that (4a) <y . vhich is equivalent to H(¢, 4fa) >0, or

We thus prove the last assertion of footnote 14. - 385 -

26. Since from the first two columns in Table A3, we have L? =-V!ca ""/a_)
Tog ( gt #pf ) =-tlog (4-2/a), hence (@) is the solution of the ollowing

equation Heex) = !‘7"_")_‘1‘}“_,) =0, where En!-;(d"l“:’/lvﬂn



B. Apalytical Model
A fundamental equation in collective risk theory demonstrates that the

aggregate cumulative distribution function F(z) of annual aggregate loss less

than orequal to Z, is given by 21
[
F@& = 2 pla) s**® 2
f=o

x
where " (#) 1s the nth convolution of S or, equivalently, the cumuiative
distribution of exactlynclaims with total loss less than or equal to Z and

p(4) is the freguency density function as listed in Table Al.

Formula (18) has practical value only when the characteristic function
of S has a closed form, so that the precise form of S"*(z) can be derived.
Among the severity functionsin Table A2, only the first three meet this
condition. For the rest three which do not admit a closed form for the
characteristic function an alternative numerical technique has to be devised to
calculate their characteristic functions,this would cause the whole computation

not only time consuming but also, sometimes, very messy.

In the case of normal, gamma and inverse normal, where their characteristic
functions are known, it is possible to use the following twe fundamental proverties
of characteristic function:

(i) the characteristic funciion of the convolution of two functions is
B the product of their respective characteristic functions;

(ii) if two distribution functions possess identical characteristic
functions, then the distribution functions are equal,

*
we can derive the explicit form for the " (z) as shown in the following table:

27. For an expository treatment of collective risk theory, olease see [2]
and 117,
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(1) (2) (3) (4}

Type (@) Bult) R (=Hwit) S
Normal N(Ezipyr) oplitp-de)  eplip-intt) N, fic)
Gamma G(2;5,p) (4-it/b)* (t-2¢fo) P @(2b,mp)

Inverse Normat I{!;a,b) ﬁ'(lb(ﬂm)) “P(l"b(“m» 1(‘,‘“.'*)

In colum (3). property (i) is used and in column (4)’property (i1} is used.

C. Gamma Approximation

Cl. The derivation of the gamnma approximation

The gamma distribution G(x;b,p) has only two parameters which are
determined by the first two sample moments. If we add one more parameter o«
to the function, G{x+et; b,p }, then the third moment is required to estimate

the parameters. This procedure is called the gamma approximation.

To specify parameters x, b and p, one sets up three equations
for the first two moment and skewness, then solves them for x, b and p. To
do this let us first calculate the characteristic function of G(xte; b, p ).
Since the density function of G(x+a&;b, £ )is
P

A Glaaibp) = 0 (xearblebltn)  _ygx oo

then the characteristic function is defined by
P roe -
(G{f): —rb@ L‘ed'l ('4’\P4e bfibu)d‘

{ letting y = x + &)

S et i by o

= et ttfo )P : (19)
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take logrithm both sidesand expand the left hand side into power series

of {it), we have
L K 1 i3 i
tos ey = -alit) + p (6 + $0454 §Ege--),
compare the coefficients of the three Towest terms of (it), we set up three

M, = 15/’b -a
ob = p/bt
pas= 2p/6°
solve them for x, b and p, we have
ba2figmy , #(3/n), <=k @)
Therefore the gamma approximation is expressed as
G(x+ajhb)= .'% /:-ﬂ,u/m 48R,

(Tetting 3=29/(1,03))
- GUE™ B, 1,2 y) can

equations:

C2. Aggregate skewness

In applying NP or gamma approximation, one needs the input of aggregate
mean, standard deviation and skewness. In this section we are going to derive
the aggregate skewness for both generalized poisson and negative binomial
models.

As usual we first calculate the characteristic function of either model.
Taking the fact that characteristic function of Sn* is the product of n
characteristic functions of S, together with formula (18) and the explicit
form of p{n) in Table Al, it is not difficult to see that the characteristic

function of the aggregate distribution function F is given by.

exp(,\lg(f) -4 ))’ for poisson
o= (22)

4~ hy~&r
1~ ,
- 388 -
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. ] - .
unere B¢ ) =1+ Ry (it) +fu frGt R foCit e ooenis the
characteristic function of the severity distribution S. Taking the 1ogrithm

both sides, it becomes

log ?;__H)= /\(‘fsﬁ‘)-l), for poisson (23)
-HI?(I— ;-_"-lgm-”)' for negative binomial

. 28
Identifying the coefficients of H:)3 both sides, we can evaluate the

aggregate skewness. They are given as follows:

Table AS

Aggregate Skewness

Generalized poisson model Generalized negative binomial model

_L&_7u 3 2fd-AY s /A + 300020 s ftn* A,
TN (uy)' (Tapt + a2 )

Table A5 is a general formula for aggregate skewness and does not use the precise
form of severity statistics. If the individual severity type is incorporated the

formula for skewness would bear the following form.

28. This is done by expanding ‘f,( + ) into series of (it), and using footnote 20
for the negative binomial model.
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Severity/Frequency

Tabie A6
Aggregate Skewness

Poisson

Negative binomial

rome! (1433 {aw3c)+at/e
sanma (14297 f3Tred) fAl MRS 4A 6
inverse normal (ses 41t s )ffraciy {2(cSeacies) A} /B
pareto s[ie5 fl-20ix) {3ated)fo-c3)+A3/B
Tog-noraal (1 & V5[5 fAsdr’e A} /B

o 3fa ] %3 (5 4) Bofts H2EE BN
— (shfigo Y ARLEb D

where €= dj/p‘ is the severity coefficient of vatiation,
A3 (4-,\)0«})”{:,‘,-)«)’/,\ and B8=( $‘+ Acd Ph

D. Modified Gamma Approximation

D1. Derivation fo the new model

The approach we adopt for the new bodel is that, first we use the
ganma approximation technique to match the selected severity distribution
(one of the six types in Table A2) f)y identifying the statistics ’lﬁlq'-o
and ¥, with those of the slected type, then utilize the following well

known forrrlu]a30

Fo = £ - -/ et ¢l 08)

to invert the aggregate distribution function from its characteristic
function. Thus what we have to do here is to substitute ﬁ({-) in

(24) by (22), then simplify it to the form given in (1), Table 1 and Table 2.

29. See footnote 26 for a and v.
30. This formula uses property (ii) discussed in section A. For detailed
information on Laplace transformation please see [{7],
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Now, et {(-f ) be the modules (or absolute value) of ﬁ_(f/,-)

and=g{t) be the arguments of ?F(%), then 3

@ltr) = ) e~ 30 (s
where both f(t) and g{t) are real numbers. Replace

s=fe in(24) and replace fF(-;-) by (28), it turns out that
[ =L (§0A + 2
F) == g (S8 L) #0500 4450t

(Change the 2nd integral by s =-t)

=4- 2';’7 / /:'{(0 (eu'lmo-u/d_ e i(jwo-u/r)) %31

(taking the fact that @'%-&'Y 221 Sim(y) )

=+ ey Snbbleidt) 4

which is the form given in {1). The next step is to find out f(t) and
g(t) in either models. To continue our derivation, let us decompose
%(é)-l into two parts:
Bltfr)-1 =) + %6 (ze)

then identify (25) with (22) via (26), we have

)‘(Q eia\f&) , for poisson
e - (27)

{«)e""“’={ "
("(7.%’“ _‘-%)-a’- for negative binomial

The case of the generalized poisson model! in Table 1 is obvious from (27).

31. An complex number can be expressed by its modulus and argument, see [8] 0.6
32. HYere we take the following fact that
» 00, S—— .
‘%('t)=l_~mf'JF“)“I.,.“""“F"’ 3f2(t) (the conjugate of ﬁ{f) )

to demonstrate that {H):f{f) end §{-#)z=-¢f). and uititize in our
derivation, for conjugate number see [6] -
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For the generalized negative binomial, by the definition or

3
modulus and argumEnt’ , we find that

fit)= { (- thpém ) + (-,%fﬂa‘f‘g
=t (ALEOL)

last item that has to be verified is Table 2. This is straight-forward,

since by (19) and (20), we have

Bltle) = St = Sm[tnxa(e +ismpth) (28)

where

. S&) = absolute values of I-ifa;ﬁ[z ).(%)l )
o= B 4 e o o lglrithn)

Camparing both stdes of (26) and (28), anc exploring the teft hand side of (29),

we come to the results of Table 2

D2. Formula (1) via Extended Simpson's Rule

The extended Simpson's rule 1is adequate to handle the numerical
integration of formula {1)and Table 5. Since integration over an infinite
interval is practically impossible, it is necessary to integrate over
a truncated interval. The limit, R, of the range of integration has to be
determined. Also the size, h, of the equally divided subinterval has to be

chosen in ultilizing Simpson's rule.

33. See [61 p.5-7

34, For a detailed treatment of this, please see Stephen G. Kellison:
'Fundamentals of Numerical Analysis® Richard 0. Irwin. Inc. 1975, -Thap. 8
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If a precision up to the sixth decimal point is required, h=.2 would be
satisfactory. The selection for R would be more complicate. A quick and

practical way to select the appropriate R is to input t until the value of

1) Sin (x/fr + §(1) f2rt)

is less than, say, 10'6. Choose that t for R. Generally, the appropriate

value of R would fall in to the range from 10 to 100, depend on ]; and A .
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