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Using an individual insured's own past loss experience to arrive at
its rate is a procedure that 15 used in many different areas of in-
surance. In addition to the formal individual risk rating plans,

ad hoc procedures of this type are used in large risk departments

of primary companies, excess and surplus lines companies, treaty and

facultative reinsurers, and by various tvpes of insurance consultants.

The purpose of this paper is to discuss the concepts of bhias and
variance of experience rating proceduresl, and illustratelthese con-
cepts by using a computer simulation model to examine the properties
of some simple experience rating techniques. We will also discuss
the effect that the misestimation of an insured's true loss poten-
tial hes on the "risk' that the insurer faces. The rating techni-
ques used are not represented as being the best available -- however,
the paper presents some useful results concerning the superiority of

certain types of techniques.

EXPERIENCE RATES AS ESTIMATORS

View the less process as follows: a given insured's losses during

an accident year '"a" are random variables drawn from some probebility
distribution determined by a vector of parameters Ga. Let B repre-
sent a VEClOT containing all the parameters from the first accident
year of the experience period thru the year to be rated (denoted V).

So

, 8= (91,...,6V)

1. For the purposes of this paper, define "experience rate' as a rate
quoted to a given insured where the expected losses portion of the
rate is wholly or predominantly determined by the insured's own
loss experiencc over the past several years. Note that the term
insured here could refer to anything from an individual auto to

an entire insurance company (under a treaty reinsurance agreement).
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Let X be a vector representing the insured's known loss experience
during the experience period. X is a random sample drawn from the

distributions determined by 6.

Let the ultimate losses that a particular insured will have for the
policy period to be rated be a random variable "L''. The purpose of
the experience rate is to give the "best" estimate of E(L) 2' E(L)

is some function of the Gy, whereas the experience X was drawn from

distributions determined by 91""'9y-1' In order for X to be use-
ful in estimating E(L), there must be some relationship between
91,...,By_1 and ey.

The simplest assumption would be that €, = ... =8 , that is that

1 y
an insured's loss potential is constant over the experience period. A

more refined model would be that the severity and frequency componants
of the Gi's would be influenced by inflationary trends and by changes
in a measurable exposure baseS, and that, after proper adjustments for

these, the parameters would be stable over time.

The experience rating procedure is an estimatora of E(L); it is some
function "R" of the insured's past known loss and exposure informa-
tion X 5. A perfect experience rating system would be a function R

such that R(X) = E(L). However, X is also a random variable, so ful-

2. This paper will only consider estimates of E(L). In real life
cases, we might want estimates of other attributes of the dis-
tribution of L, such as Var(L) or 95% percentile of L,

3. Such as number of cars in a commercial fleet, or sybject prem-
ium in a reinsurance treaty.

4. An estimator is a function of a random sample and is therefore a
random variable; an estimate is the result of the estimator func-
tion applied to a particular realization of the random variable,
and is therefore itself a particular number.

5. (Consider X to be a vector containing all pertinant rating infor-
mation.
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filling this condition is not possible, except by chance. We can,
thever, hope that R(X) is an unbiased estimator of E(L), that is,

that E(R(X)) = E(L).

We would also like R(X) to be close of E(L), on the average. One
common way of expressing this is to minimize E(R(X) - E(L))z), the
mean square error (MSE), which for an unbiased estimator is equiva-
lent to minimizing Var (R(X)). For many simple statistical models,
the form of estimator R that satisfies these criteria can be ex-

plicitly calculated. This is referred to as a UMVU6 estimator.

For large samples, the Maximm Likelihood Estimator (MLE) usually
satisfies these properties (asymptotically). However, there are
reasons why we cannot always use the MLE, the main one being that

in order to calculate it we must explicitly know the forms of the
probability distributions that generate X. Of course, we can specify
a model of the process that we believe is ''reasonable' (as is done
later in this paper), but there still are several problems. First,
the MLE can be very difficult to calculate; second, although it is
known to have good properties for large samples, it may be a bad
estimator for smaller samples (it is usually biased); third, while
it may be a good estimator if the model we assume is in fact the true
one, it may be a bad estimator for a different model -- that is, it

may not be robust.

6. Uniform Minimm Variance Unbiased.
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The approach taken in this paper is to take several ad hoc (but hope-
fully reasonable) estimation techniques and examine their properties
by a computer simulation model. Briefly, for an individual insured,
the computer generates several accident years of known loss exper-
ience (X.l for the ith trial) from distributions with fixed parameters.
It then applies several rating techniques to this set of known loss-
es, arriving at several different estimates of E(L). The estimates
and the actual ultimate losses are stored. This whole process (gen-
erating experience, then calculating estimates) is repeated several
hundred times -- using the same underlying distributions and para-
meters. It can then be determined how well the estimates R(Xi)
fared as "guesses" of E(L), and which estimator function R does the

best7

COMPUTER MODEL
An individual insured's past experience was ''rerun' several hundred
times in order to see how the results of a single rating method would

be distributed.

Each iteration produced a set of loss experience for six accident

vears -- a five year cxperience period to rate from and the exper-

ience for the year to be rated (denoted y = 6). Not only was the

ultimate experience generated for each of these years, but also the

portion of it that would be known at any point in time.

7. E(L) can in principle be calculated explicitly from 8. However,
for the loss generating model that was used, the calculation is
quite complex, so the actual loss outcomes L. were used to esti-

mate E(L). The standard errors on these estimates were small
compared with the standard errors of the estimates of E(R}.
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A single accident year for a single iteration was generated as

follows8 :

A random number of losses, N, was drawn from a Ncrmal9 distribution

with mean = 40, variance = 60.

For each of the N claims, the following random variables were

drawn:

=
"

Date of loss within year (Uniform with minimum = 0, maximm = 1)

= Report Lag (waiting time between accident date and report date)
(Exponential with mean = 1.5 years)

All experience was viewed as being analyzed as of year-end, so

a claim would first become known in ['(Mi + Qi - 1} vears after
the accident yearw.

P. = Payment Lag (waiting time between report date and payment date)
(Exponential with mean = 1 year)

So ['(Mi + Q.1 + Pi - 1) is the number of years after the accident vear

that the claim is paidll. Let '"a" denote the accident year, a =

1,...,y. Then I_('M.1 +Q +P; +a-1)is the year of payment of the

claim, where year 1 is the first year of the experience period.

8. The computer model allows the choice of several different distribu-
tions with arbitrary parameters. The distributions and parameters
specified here were the principle, but not only ones, that were
used.

9. The normal distribution was chosen as an approximation for the nega-
tive binomial, which is more difficult to simulate. Also, N was re-
stricted to be between 1 and 65.

10. The APL symbol 'f'', referred to as ''ceiling'', means "the smallest
integer greater than',

Note that if M. + Q.< 1 the claim is reported during the accident’
year, "zero" ydars 3fter the accident year.

11. Note that the maximum value allowed was 10 vears.
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An inflation index I(Mi + Qi +P ota- 1} of 8% per year (others
were tested as will be explained in the results), from 'year 1 until
the year of payment was assumed to affect the expected value of the

payment distribution.

The random payment amount of C; was drawn from a Lognormal distribution
with M= § + In (M, + Q, + P, +a - 1), and G'= 2.5. This means that

the mean and standard deviation trended at 8% per year.

So far, the number of claims, and (for each of these claims} the re-
port date, the payment date and final payment amount have been deter-
mined. The last thing to do is set the reserve on each open claim.
Each reserve was set as an unbiased guess of what the claim would set-

tle for, if it closed in the year for which the reserve was being set.

For each claim that was reported but unpaid for at least a year, a
random Reserve Error, Vi’ was drawn from a Lognormal distribution with
mean = 1, and variance = 2. This was multiplied by the final payment
amount and the result was trended backwards from the payment year to
the year for which the reserve is being set. Two things are important

to note:

1. The reserve error is only chosen once for each claim, regardless
of how many years it remains open, so the reserve, once set, will

mearly be updated each year for inflation, and 2. this system leads

to under reserving -- by the amount of future inflationlz.

12. A method of setting reserves at V times the ultimate payment,
which does not lead to under reserving, was tested, but it made
no significant difference in the results.
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th

The known loss amount at time "t'"' on i~ loss from accident year

nar =
0 if Mi + Qi >t
Ki(a,t) = Ci v, I(a-1+t)
- . P, i . . < . . .
T(a T *R+P,) if M, +Q € t<M, +Q  + P,
g ifMi+Qi+PiSt
N
So the actual ultimate losses L = > _ C;-
i=1

The full experience matrix known at the beginning of year y for an

insured would be

N Ny
2K e 3 K (ya)
i=1 i=1
e 0

N-_1 ’ . :
i Ki(y-1,1) 0 -0
i=1

This represents the familiar "loss development triangle". We will
denote such an experience matrix by "$'" and the triangle of claim

counts by "#"13.

Once the experience matrices $ and # have been calculated for one
iteration, they are used as input for several different rating tech-
niques (estimators of E(L)). These will be described in the "RATING

METHODS'' section.

13. The results to date are based on rating methods that use $ and/
or # as their input statistics. Of more interest are techniques
that use triangles of some function of each known loss (such as

losses truncated at basic limits)..
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CREDIBILITY

Often in experience rating we wish to use some outside experience

that we believe is '"related" to the insured in question. For ex-

ample, we may usc an insured's own basic limits experience, but

rely on outside information for loss development factors, trend

factors and expected excess losses.

The model underlying the use of this outside data is that the par-

ticular insured being rated was randomly selected from the group of

all potential insureds of the same type. Therefore, the 6 that we

are trying to estimate is a realization of a random variable. 8's

probability distribution is referred to as a structure function

u(e) 14, If we have statistics available for many other insureds

we can estimate certain properties of the group of all potential

insureds (referred to as the collective). This then gives us valid

information to use in estimating E(L) for a particular insured.

Credibility theory addresses the question of how to combine data

from the collective with data from the individual insured to ar-

rive at the estimator of E(L) with the best propertics

for certain credibility systems have been explicitly r.‘alculalted1

15 Tne MsE's

6

however, trend has seldom bcen'l7 and loss development has not been

addressed.

14. H. Buhlmann, Mathematical Methods in Risk Theory, Springer-Verlag, 1970

15. More precisely credibility theory restricts itself to linear
combinations of collective data and individual risk data.

16. Fl. DeVylder, Introduction to the Actuarial Theory of Credibility.

17. C. Hachemeister, "Credibility for Regression Models with Applica-

tion to Trend" in Credibility Theory and Applications ed. P. Kahn,
Academic Press, 1975,
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Several rating techni'ques that use outside information, in particular
trend factors, were tested in the simulation. These tests are not
strictly valid within the framework of credibility theory because
the trend factors have not been estimated from a collective -- they
have simply been postulatedls. However, in all cases several differ-
ent trend factors have been tested, including ones known to be wrong,
in order to test the sensitivity of the rating method to incorrect

assumptions about trend.

RATING METHODS
The following methods that used only the information contained in §

were tested:lg

Method #1: Loss dollars are projected to ultimate by age-to-age
factors. A least squares linezo (restricted to a slope2 0)
is fitted to the five ultimate results to project the

sixth year.

Method #2a, b, c, d, e:

Loss dollars are projected to ultimate using age-to-age
factors. The ultimate result for each accident year is
trended to the current year by multiplying it by an in-
flation factor raised to the appropriate power. The 5
trended results are then averaged to predict the current
year. Cases, a, b, ¢, d and e refer to trend factors of
0%, 5%, 8%, 12%, and 15%, respectively.

18. To the extent that trend factors serve to project the effects of
fug_lllre.lnféatwn rgther than adjust eyperience fqr th.g g fects of
inrlation dyring t ex?en(énce rlgél one wou Bro a not
want to estimat8 Inflation from the data anyway, but rathér use an
exogenuous_factor_based on econgmic coErsilderamons. . . .

19. A numerical example of each ratmg technique 1s contained in Appendix B.

20, Unreic»tncted linear and exponentidl fits were tested and gave Similar
results. - 494 -



Method #3a, b, ¢, d, e:
"Adjustment to Total Known Losses method"

i _j s
Estimated expected ultimate losses = (Z_ Kj < (1+1) 6 J):_(Zl )
o )
]

'
where Kj is known losses at current ycar for accident year j
fJ. is the age-to-ultimate factor for accident yéar j
i is a trend factor which was set at 0%, 5%, 8%, 12%
and 15% for 3a thru 3e, respectively.
The derivation of this formula is given in Appendix A.

The following rating methods using both § and # were tested:

Method #4a, b, c, d, e:
Claim counts are projected to ultimate using age-to-age
factors. The estimate of the 6th year is the average of
these five results, This is multiplied by actual average

known claim size, trended to the current year as in Method 2.

Method #5a, b, c, 4, e:
Same as Method 4 except ultimate claim counts are projected

by the Adjustment to Total Known Losses method.

Method #6: Ultimate claim counts by year are projected by the Adjust-
ment to Total Known Losses method. For each accident year
these are multiplied by actual average claim size. The
results are trended by linear least squares (restricted

to a slope2 0) to project the sixth year.
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RESULTS

The computer simulation model was written in APL and run on an IBM
5110 mini-computer. Creating six year's experience (five years to
rate from, and one year as the policy's experience) for an average
of forty losses per year, then applying twenty different rating
téch.niques to the known losses took about 5 minutes, so 500 itera-

tions took about 42 hours to run.

The simulation was run under four different sets of parameters. The
first set were the ones given in the previous section. The second
set were the same except that the severity trend was 8% the first
four years (during the experience period) and 12% thereafter. The
third set was the same as the first except the expected value and
standard deviation of number of claims (N) increased by 5% each ac-
cident year starting with an expect number of 25 the first year.

This could be used to reflect either an increase in exposure units
not reflected in the rating method, or an unsuspected frequency trend.
For the fourth run, the distributions were set as uniform to test the
robustness of the previous results to wild departures in the form of
the distributions. Exhibit 1 gives a swmmary of the parameters in

each of the above cases. It also shows t:rue21

E(L) for each case --
this is the value we wish the rating techniques to be close to most

of the time.
Exhibit 2 shows the simulation results of the distribution of R (the
experience rated estimate of E(L)) for the first set of parameters.

21. Actually this value is also an estimated one, see note 7.
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EXHIBIT 1

The four sets of parameters against which the rating methods were tested.

#1 42 #3 Ha
E(L) for $731,000 $837,000 $575,000 $1,664,600
year 6
Standard
Error of $8,000 $13,000 $15,000 $29,000
Estimate based on 2025 iteruations |[based on 1000 iterations [|based on 500 itcrations | based on 1000 iterations
of E(L)
Number of Normal M= 40 Normal M= 25 x (1.05)3. 1 Uniform max = 30
Losses N o= 60 o= 40 x (1.05)"3 min = 1
j=0,...,5

Date of Loss Uniform max = 1
within year min = O

i
Report Lag Exponential mean = 1.5 Uniform max = 4

: min = 0

i
Payment Lag Exponential mean = 1 Uniform max = 4

P. min = 0

i
Payment Amount | Lognormal M= 8 + In I (a+ !‘\Ij + Qi + Pi - 1) , o-z = 2.5 Uniform max = 100,000 x

i

__ [mean = 10,405 x T, standard deviation = 34,793 x 1)_ _

t-1 [T e R L
_ ot _$1.08 R - t-1 : _t ! .
I(t) = 1.08 1(t) _51.084 x 1.12¢ S t>5 T(t) = 1.08 I(t) T=r1 (.l+rj) where lj
generated randomly uni-
form (.2, 0)
Reserve Error Lognormal = -.519 Uniform max = 2
= 1.099 min = (}

V.
1

(mean = 1, variance = 2)




ACTUAL INFIATION 8% PER YEAR
TRUE E(L) = $731,000

Chosen
Rating Information Trend
Method- Used Factor
1 $ fit
2 s 8%
3¢’ $ 8%
ac’ $, 8%
5c”/ S, 4§ 8%
6 g, 4 fit
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EXHIBIT 2

Distribution of R

Bias

$240,000

50,000
- 30,000
- 70,000
- 90,000

- 50,000

Standard
Deviation

$870,000
370,000
250,000
220,000
180,000

540,000



The bias (E(R-L})colunm shows whether each method will produce too
much or not enough premium on the average. The standard deviation
of R measures of how wide a range of results the various methods

will give. Because there is only one right answer ($731,000), the

smallest possible spread of estimates is the most desirable.

The six rating methods can be sorted into two groups depending on
how they handle trend. Methods 1 and 6 fit a least squares line
thru the estimated ultimate results for the past five years to pro-
ject the sixth year. They, therefore, try to estimate the under-
lying trend based solely on the insured’'s experience.” Both of these
perform poorly in terms of standard deviation, and method 1 is high-

ly biased.

Methods 2 thru 5 use a postulated trend factor that adjusts each ac-
cident year to current level. '0Of course, the bias for the version
using an 8% trend factor (Methods 2c thru 5c) should be low because
that is the true inflation rate underlying the model. The bias need
not be zero because the rating technique may not take inflation in-
to account exactly the way the loss generating model does (the rat-
ing techniques all trend past accident years to the current year
whereas in the loss model inflation acts on all open claims across

calendar years).

A way of reflecting trend in Methods 2 thru 5 that appears to be
superior22 to trending each accident year separately and averaging

the results (as is done in methods 2 thru 5,b thru e) is to adjust

22. The conditions under which each of the two methods are superior

are discussed in Appendix C. The simulation did not provide con-
clusive results either way.
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the untrended result for three years trend; in other words, trend
the average result rather than average the trended results. The
methods labled 2c’thru 5c’are ones for which the untrended results
(Za thru 5a) were adjusted by (1.08%). 2% The bias and standard de-
viations shown in Exhibit 2 for methods 2c¢’thru Sc/were not arrived
at by simulation, but rather a straight adjustment of the simulated

results for methods 2a thru 5a (the untrended versions).

Methods that use both § and # (methods 4 thru 6) have a smaller vari-
ance than those that use $ alone (methods 1 thru 3). a However,
all the ones using $ and # tested here suffer from a serious defect.
That is that they have no way of detecting reserve deficiencies from
the data. In this model, (the expected value of) reserves are de-
ficient to the extent of future inflation, so this leads to a down-
ward bias in the techniques. Methods that analyze loss development
from § can attempt to detect such under reserving (at least to the

extent that the earliest experience year is truly fully mature).

One obvious conclusion is that the more things we try to estimate from
the data (e.g., trend, reserve deficiency) the higher the variance of
the estimator will be. This suggests that for a given set of data we
should be realistic about what effects we can estimate from it. This
is, of course, the "full credibil'{ty" question: ‘'How much data do you
need to give your estimator satisfactory variance?’ In the case of
the risk sizes used in this simulation it seems that one should not
5
23. Actually the gnbiased adjustment is 5/3 ,—'0—'1 which is very
close to 1.08”, =
24. This is plausable result, which should be true in all but very
unusual cases. However, it should be noted that the loss model

further tilts results in this direction because it uses constant
frequency parameters.
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try to estimate trend (methods 1 and 6) but onc can use a method

that is sensitive to reserve deficiency (method 3).

Method SC/gives the best overall result with a variance slightly
higher than methods 4c’and 5¢/ but the smallest (absolute value of)
bias of any method. It is interesting that the Adjustment to Total
Known Losses method (methods 3 and 5), which takes the total known
losses for all years and divides that sum by an overall adjustment
factor for loss development, has a smaller variance than simply
projecting accident years to ultimate and averaging the results
(methods 2 and 4). This is analoguous to the earlier comment about
more efficient trend adjustment. Appendix C shows that under some

conditions this is a Best Linear Unbiased Method.

The calculation of the bias and standard deviation for any of the
methods 2 thru 5 where a trend factor different from 8% was (incor-

rectly) selected is straight forward:
1+ r)3
bias for trend r = (E(L) + bias for 8%) (TUB‘

std. dev. for trend r = (std dev for 8%) (%—&Bl)

A 50% error in selecting r (i.e., 12% or 4% instead of 8%) will in-

troduce a bias of about + 12% to an otherwise unbiased technique.

Exhibit 3 shows how well each method performed under parameter sets
2, 3, and 4. Remember set 2 has an accelerating severity trend,

set 3 has a frequency trend and set 4 uses all uniform distributions.
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EXHIBIT 3

Parameters #2 Parameters #3 Parameters #4
True E(L) = $837,000  True E(L) = $575,000  True E(L} = $1,664,000

Rating

Method Bias R Std. Dev. R Bias Std. Dev. R Bias Std. Dev. R
1 $170,000 $1,140,000 $100,000 $780,000 $800,000 $5,120,000
2c” - 30,000 460,000 - 60,000 290,000 130,000 1,870,000
3c” - 120,000 260,000 -120,000 210,000 -280,000 380,000
dc” - 170,000 250,000 -140,000 170,000 -330,000 470,000
5c’ - 190,000 230,000 -130,000 160,000 -370,000 330,000
6 -

140,000 540,000 -100,000 360,000 -460,000 570,000
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Method 2¢/does the best in terms of bias, however, has a high stand-
grd deviation. This exhibit shows that the ranking of methods from
low to high standard deviation and from low to high bias seems to be
fairly insensitive to changes in parameters. However, performance in
terms of absolute value of bias depends on how the trend underlying

the model compares with the trend chosen in the rating method.

VALIDITY OF THE RESULTS

Two issues should be considered when assessing the validity of the

results.

1. Are 500 iterations a sufficient number to give stable estimates
of the mean and variance of the distribution of R? The stand-

ard errors of the bias can be estimated as (Var(R-L))11
e

A 95% confidence interval around the estimates of the bias shown
in exhibits 2 and 3 should be roughly two standard errors on

either side of the estimated value.

Taking Var(R-L) to equal Va/r\(R) + Va/r\(L) where these are the vari-
ances estimated by the simulation, give standard errors of the
bias estimates ranging from $15,000 to $30,000 (the rating methods
with larger Var(R) having larger standard errors). This means
that a rating method that is actually unbiased could show a bias

of roughly + $50,000 based on 500 simulations.

The stability of the estimates of Var(R) are not known.
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Note that because several (but not all) rating methods were
tested during the same computer run (the same set of 500 simu-
lated experience periods) there is a positive covariance between
the estimates of E(R-L) (and also Var(R)) for rating methods 1
thru 4,and 5 and 6, but the estimates between these two groups

of methods are independent.

2. Are the results specific to the form of the loss generating model
that was used; how different would the ranking of efficiency of
the rating methods been under a somewhat different mode1?25
Many possibilities suggest themselves: inflation may affect
different sizes of losses differently, reserves may be set in a
different fashion with strengthenings occurring during a calendar
year across all accident years, frequency and severity may not
be independent. At least the model has shown that an extreme

change in parameters (set 4) does not affect the conclusions

greatly.

At the time of the writing of this paper, the computer model was not
sufficiently sophisticated to test rating techniques of real interest,
such as ones that adjust losses for changes in exposure during the
experience period, ones that truncate losses at various levels,
credibility weighing techniques and excess of loss experience rat-
ing techniques. Hopefully simulation results on some of these types
of techniques will be available for presentation at the Spring meet-
ing.

25. One error in the current model is that the severity distribution

should allow for claims closed without payment.
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RISK
Viewing premium as a random variable raises some new issues in the

calculation of profit loading.

The random variable of ultimate interest to an insurer is its pro-

fit26 on a given insured or group of insureds.

Let U be the random variable underwriting profit on the individual

insured.

Let W be a fixed profit loading27

Let R be the experience rated estimator of E(L)

So U = Experience rated premium - L= (W +R) - L

The variance of profit on a single insured is

Var(U) = Var( W + R - L)

Var(R) + Var(L) - 2 Cov(R,L)

R is based on known losses for prior vears whereas L is losses for
the period to be rated. We have been assuming that loss occurrences

are independent, so Cov(R,L) = 0.

26. For simplicity's sake we are ignoring investment income consid-
erations here.
27. Of course, this term should depend on the ''riskiness" of insured.
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If U were not random, the insurer would face no tisk or variability
of results. The insurer's risk28 arises from the variability of U,

which in turn arises from the variability of both R and L.

The insurer is frequently in a situation of being one of several
companies quoting prices From which the insured will pick the low-
est. This means that E{U) no Tonger equals E(R) - E(L) +iT (or
bias plus loading) but rather

E(RIR#*W< k) - E(L) + 7

where k is the minimum of the other quoted prices for the insured.

Consider an unbiased rating technique R . Assume that the "proper"
expected profit margin (based on risk considerations) has been de-
termined to be ™/, That is, we wish

EQU) = ®'

n

E(U) = ERIR +T<k) - E(L) + T

n

E(R) - E(L) - (E(R) - E(RIR +7T<k)) + T

So Tr=T'+ (E(R) - ER|R +7 < k))

This says that the profit margin added to an unbiased estimate of
expected losses should contain two pieces, 1. a risk loading (m')

and 2. a factor to load for the antiselection you expect to suffer

28. The proper measure of '"risk' for an insurer (or in fact for any
financial transaction) is a much debated topic. Two the leading
candidates are Var(U), which seems to be favored by actuaries,
and Cov(U,M) where M is the return the entire market of assets,
which arises from the CAPM. The CAPM unfortunately implies that - 506 -

insurance underwriting is almost riskless, because

Cov(U,M) = Cov(R,M) + Cov(L,M) (with our independence assumptions)
and both of the terms on the right should be near zero.



in a competative bidding situation (if your quote is accepted, it
is more likely that you underestimated expected losses). Notice
that an estimator R with a smaller variance will be desirable be-

cause it will decrease both components of the loading.

29. ’l‘wo implications of this:
in a renewal situation with no outside quotes, an insurer

should be able to quote a lower price than otherwise be-
cause he will not need this loading
2. the more companies quoting, the higher this loading should

be
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APPENDIX A

Derivation of "Adjustment to Total Known Losses method"

For Accident Year j
kj = Known losses (thru current year)
Uy = Actual ultimate losses
IBNRJ. = IBNR
fj = Age-to-ultimate factor

i = Trend factor

u = True expected losses for year 6

5 .
Assume 1) u =é— 2;;—1 uj(1+i)€'_J

2} u, = k. + IBNR:
J ) J

L. E Le) LT N
So S = 2 K ()T e B IBNR, (1) (%)

.1 u :
Assume 3) IBNRJ. =(1 Tj) (U——i")u-]

S0 B, (14100 = uGs-E 1)
j= ) =t

substituting this into (*) gives
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APPENDIX B

Numerical Fxamples of Rating Methods

Let
$242,744 $202,907 $216,946 $223,772 3243,633
135,700 536,598 608,794 636,252 D
§ = 70,734 535,107 733,341 0 0
42,031 222,841 0 ] 0
185,689 0 0 0 0
M 2) ) ) (5) (6)
Reciprocal of
Accident  Age to-fige Age to Ultimate Known Ultimate Age to
Year Factor” Factor Losses Losses Ultimate Factor
1 1 1 $243,635 $243,633 1
2 1.0888 1.0888 636,252 692,751 9184
3 1.0415 1.1340 733,341 831,609 .8818
4 1.2232 1.3871 222,841 309,103 L7209
5 3.0485 4.2285 185,689 785,186 L2365
Total $2,021,756 $2862,282 3.7576

Method #1  Column 5 projected to accident year 6 by linear least

squares = $782,294
S -
Method #2¢’  ((Sum of column 5) : 5) x 5/F 73 = $716,877
[T

Method #2c  (§243,633 X 1.08°

+ 692,751 x 1.08%

+ 785,186 X 1.08) + 5 = §711,317
Method #3a ((Sum of colum 4) : (Sum of colum 6)) = $538,044

636,252 + 223,712

30. e.g., 10415 = 648 794 + 216,946
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Let

10 21 28 28 29
23 45 49 52 0
§ = 14 44 54 0 0
11 29 0 0 0
11 0 0 0 0
(7 ®) )] (10) (11) (12}
Reciprocal of
Accident Age-to-Age Age to Ultimate Known Ultimate Age to
_ Year Factor Factor Counts Counts Ultimate Factor
1 1 1 29 29 1
2 1.0357 1.0357 52 53.86 .9655
3 1.0390 1.0761 54 58.11 .9293
4 1.1909 1.2815 29 37.16 .7803
5 2.3966 3.0712 11 33.78 .3256
Total 175 "211.91 0007

Method #4a  ((Sum of Colum 11): 5) x (($243,633 : 29
+ 636,252 1 52
+ 733,341 + 54
+ 222,841 : 29
+ 185,689 + 11) + 5) = $498,263

Method #5a ((Sum of Colum 4) + (Sum of Column 32)) = $505,351

(13) (14) (15} (198)
Accident a1 - a2)x 21;.91
Year (10) + (14) (15) x (5) + (10)
1 0 29 $243,633
2 1.46 53.46 654,116
3 3.00 57.00 774,082
4 9,31 38.31 294,381
5 28.58 39.58 668,143

Method #6  Columm 16 projected to accident year 6 by linear least
squares = $673,657.
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APPENDIX C

Comparison of "adjusting, then averaging" vs "averaging, then adjusting"

Let X, be a random variable representing observed losses for accident

year i

Assume that these losses arise from distributions with expected
values that are constant over time, except for an adjustment factor.
This adjustment factor can represent either a loss development fac-

tor or a trend factor or both.

128 .
So xi ”a; +ei iz1l,...,n

where M= underlying expected losses
a, = non-random adjustment factor (1)

€. = random error E(éi) =0, Var (Ei) =d["

We wish to estimate M

» 1 n
Let Wy== 2 X. a
n o Gopii

This represents trending (and/or developing) known losses for each

year and averaging the results
> ) [E
A - 1
let M, (i=1 xi)' li=1 5—.)
i
This represents the '"adjustment to total known losses method'!

It is easy to see that both j and i, are unbiased, ie

EA) = E(Ay) = m - 511 -



Calculate the Best Linear Unbiased Estimate (B.L.U.E.)J1 of s
That is, find weights ¢ such that M( ZC X: ) is unbiased and has minimum

1=

variance.

"
So minimize \’ar(ic )(;) subject to E c X:] "

Yo z
e —l<“'f—£-:o =ty m
by > ¢ 2 )\
= g =
So ¢ TZagt ot FZ.ZqL‘U'["
N z
= 7
5 -Zj’,“;lﬂl
, i
So = = 2
“STaut Toargt
J=l 4 +

Now consider various possibilities for g¢- %
i

1. Let X-Lqi:luf e where Var(e;)=f'L Ve

. . e. F | -
This means that €= 35 S TERT g oc:a:

v e

Therefore /C\I , is the BLUE

2. Let Vr.r(*)_k Y.

E[x'.]
So
TL g""q T
B A T TR

31. The approach of calculating the B.L.U.E. was suggested by Aaron
Tenenbein, Associate Professor, Statisics and Actuarial Science.
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This means that ¢; = ! Zx
i <

Therefore »:,_ is the BLUE

. . . , A\ i
As was discussed in the results section, .‘)‘z performed better than M, A0 the

simulation.
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