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Transformed Beta and Gamma Distributions
and Aggregate Losses

For pricing aggregate covers it is useful on occasion to have a way to
estimate the distribution function for aggregate losses from the moments of
this distribution. The usual approximation methods are designed primarily
to calculate percentiles of the far right tail for mildly skewed distribu-
tions (e.g., see Pentikainen [9J ). The gamma distribution has been sugges-
ted for this purpose (e.g. Hewitt[7] ). However, the skewness of the gamma
is always twice the coefficient of variation (see Hastings & Peacock C6]).
Adding a third parameter to the gamma has been suggested by Seal [10_} , but
the parameter added shifts the origin, sometimes resulting in the possibility
of negative losses, which is often unsatisfactory, The transformed ganma
distribution offers an alternative third parameter that affects the shape of

the distribution but not its location.

The transformed beta and its special cases could be tried in this regard
also. However, 1its principal application herein is to deal with one kind of
parameter uncertainty in the transformed gamma., The distributions are intro-

duced below and then applications discussed for each.

Transforned Gamma

o0
The gamma function at r is defined as TI'(r) =‘{* t™le"tde, The percent~

age of this integral reached by integrating up to some point x defines a
probability distribituon, i.,e., the probability of being less than or equal

to X, The gamma distribution is usually given by adding a scalar transforma~

tion of the variable, 1.8, the probability of being less than or equal to x
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is given by the percentage of the integral that occurs up to Ax for some

positive number A, The transformed Gamma distribution adds a power trans-
formation, i.e., the cumulative probability G (x) is given by:

o
Glx3T,000) = Io(kx) (Il oot dt
T(r)

This distribution will be considered below as a model for aggregate losses
although it may be a reasonable candidate for severity distributions as well,
As it has three parameters it can match three moments of the distribution

being modelled.

The gamma and exponential distributions are special cases given by a=1
and a=r=]1 respectively. The Weibull distribution is also reached by taking
r=1, Thus the transformed gamma distribution provides a common generalization
of the gamma and Weibull distributions and offers the possibility of improved

fits whenever either have been found approximately suitable.

a r (r + ﬂ) and the moment distributions
J U P L
E(x) = A T

The moments are given by

a
n

{ ¥ 4do n

Fe are given by G (a; r + e a,A). The probability density function

EG™)

a
is g(xr,a,r) = ar (kx)ur'l e_(kx) . These formulas require n>-or but not
r(r) necessarily an integer.

Finding parameters r, a, and A from data involves the solution of non-linear
equations whether matching moments or maximum liklihood is used. These equa-

tions can be quite readily solved by numerical means, e.g. Newton-Raphson
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iteration, as discussed more fully in appendicies A and B,

To match moments it has proven quite practical to solve for o and r
using the known (e.g. known from sampling or calculated from frequency and
severity) coefficients of variation and skewness, which do not depend on ),
in a system of two equations in two unknmowns, and then solve for A using the

2
mean. Handy equations are CV_ + 1 = I'(r + 2/a) T(r) #+ I'(r + 1/a¥ and
(8K x CV3) +3CV +1 = I'(r + 3/a) 1'(1’)2 + I(r + 1/a)3 Ghere CV is the coeffi-

cient of variation and SK skewness., See Appendix A for a discussion of how to

solve this system.

Maximum liklihood techniques are discussed in Appendix B.

Once the parameters r,a, and A have been determined the expected losses,
higher moments, and percentiles of the aggregate layer from a to b can be read
off from the distribution. For example expected losses for the layer are ex-
pected losses excess of a less expected losses excess of b. Define R(a) to

be the ratio of expected losses excess of a to all expected losses, i.e.,

-
- - G
R(a) = [ (-a) d X It is not difficult to show

a EQX)
that R(a) = 1- § xdGy - a  (1-G(a)).
E(x) E(x)

So far this is valid for any positive distribution G. Now using the

moment ratio property of the transformed gamma:

R(a) = 1 - G(a;r+é, 0, ) =_aAl(r) (1- G(ajr,a,A))
T (r+l)

Thus if we knew how to compute the probability distribution function G the
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aggregate layer expected losses would drop right out. G can be calculated
using numerical integration, but there is a series expansion for the incomplete
gamma function that is also fairly quick to use. The incomplete gamma function

“ X"l et e s T (r). Then Glxir,a,)) = IG(0xd%:ir)

t ¢ e ¥ s hen

=)

s defined as IG(x;

From formula 6.5.29 page 262 of [13 the expansion IG(x;r) = e = xr—l b 4 ﬁ x
r (r) i=0 k=0 r+k

can be derived. From 30 to 200 terms of this sum generally give acceptable

accuracy. Exhibit 1 lists an APL program for IG,

For cases where the expected number of losses is low there is a non-
negligible probability that no losses will occur. The transformed gamma can
not account for this because it is an entirely positive distribution. An
alternative is a point mass at zero with the probability conditional on losses
being greater than zero modelled by a transformed gamma. The probability of
no losses can be computed from the frequency distribution. Formulas for com-
puting the moments of the positive (conditional) distribution from those of
the entire loss distribution and the probability of having a loss are given
in Appendix C, along with standard formulas for computing aggregate moments

from those for frequency and severity.

Example

Professional liability losses limited to $1 Million per occurrence for a
small group of hospitals are believed to have expected losses of $219,316 with
coefficients of variation and skewness of 1.550 and 2,510 respectively and
& probability of .123 of no losses. The aggregate expected losses excess

of $§1 million will be calculated by the above method.
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By the formulas in Appendix C the positive portion of the aggregate
distribution has expected losses of 250,000 and coefficients of variation and

skewness of 1.099 and 2.344, Using the method in Appendix A gives parameters
r= .2478, a= 1.470, and A = 1.144 x 10'6 for the positive portion. Thus the
entire distribution has the cumulative probability function Pr(Lﬁx) = ,123 +

877 G(x; .2478, 1.470,1.144 x10”°

). The excess ratio at a=$1,000,000 can
be calculated by the methods above to be .0728 for the conditional positive
distribution, so the excess expected losses are $18,200=.0728 x $250,000 for

this plece and .877 x 18,200 = $16,000 for the entire distribution,

Transformed Beta

The beta function B(r,s) may be defined as B(r,s) -~£ tr-l dt . This
(t+1)T+s

is a transformation of the more usual definition B(r,s) =5? urnl(l-u)s°1 du
N [0}

accomplished by taking t = u:{l~u) or u= t . The beta is related to the

t+l
gamma by B(r,s) = I'(r)I'(s). As in the gamma case a distribution function F
I'(r+s)
may be defined by the partial integral {1.e.,
(.(x/B)OL r-1
F(x;r,s,a,8) = O t dt  + B(r,s).
(t+1)TTs
This will be called the transformed beta distribution. Its density is
ar=-1

f(x;r,s,0,B8) = (a/B)(x/B) i
B(r,s) (1 + (x/8)%) TS

o -s
For r=l the closed form F(x;l,s,a,B) = 1-( (x/B) + 1) results. This

1s coming to be known as the Burr distribution, and in turn has two specilal
cases, namely a=]1 which is the Pareto, and s=1 which gives the log transform
of the logistic. As the logistic is like a heavy tailed normal the loglogistic
can be thought of as like a lognormal with heavier right and left tails. Its

distribution function F(x; 1,1, a, B) = 1 - Ba

1s of particularly
x* + g9

simple form.
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The case a=1l, i.e. F(x;r,s8,1,8) is a version of the transformed beta that
has been investigated for severity applications. This will be called the gen-
eralized-~ F as its special case a=1l, B= s/r gives the F distribution where
2r and 28 are integers. The Pareto is also a special case of the Generalized -
F given by r=1,

There is an interesting mixture property of the transformed gamma that
generates a transformed beta, namely that with a population of transformed
gamma random variables with fixedr and a and the transformed scale parameter
2% itself gamma distributed across the population, the compound process of
picking a variable from the population then taking a realization of that vari-
able 1s a transformed beta process, This is proved in Appendix D, Several
corollary statements follow by taking the special cases of the transformed
gamma (i.e. Weibull, gamma, and exponential) and mixing by a gamma,viz
(a) Weibull mixed by gamma yields Burr
(b) Gamma mixed by gamma yields generalized ~ F
{c) Exponentiasl mixed by gamma yields Pareto
(d) Weibull mixed by exponential yields loglogistic.

Exhibit two diagrams this situation.

Robert Hogg proved (a), (b), and (c) separately and Gary Patrik indepen-

dently proved (c). The transformed beta and gamma distributions were origin-

ally developed in order to unify these results, Robert Miccolis pointed
out that the generalized ~ F is a ratio of two gamma distributions. This
suggested the result, proved in Appendix E, that if X is transformed beta

with parameters r, s, o, B, then 1/X is also, with parameters s, r, o, R
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If X 1s transformed beta in r,s,a,f then E(X") = g™ B(r + n/a, s - n/a) +
B(r,s) if - ar < n < os and non-existent otherwise, This is an example of a
distribution with unbounded moments for n > &s which arises in a natural way
as a combination of distributions with all moments finite, For a =1
(generalized -F, Pareto) the moments simplify to

n

EGX® = (r) (r+l) ...(rtn-1) = 1 r+i-1 .
(s=1) (5-2)...(s-n) i=1 -1

This makes methods of moments parameter estimation quite simple for this
special case. Maximum liklihood parameter estimation for the transformed
beta is similar to that for the transformed gamma as covered in Appendix H.
Loss severity distributions have also been fit by the transformed beta and
garma distributions, by matching sample and formula values of the excess

ratio R(a) in a manner similar to that in [5],

As with the transformed gamma, the moment distributions are of the same
form as the original distribution, in fact\_;"axn dfy + E(X") = F(a;rin/a,
s-n/a,a,B). Thus as with the transformed g;mma a calculation of excess losses
can be made if the cumulative distribution can be calculated. This has proven
most practical through numerical integration. Appendix F discusses one method
of doing this, The moment distribution formulas for the transformed beta
and gamma show that the Burr and Weibull moment distributions do not maintain

the original form, i.e. r=1.

The mixture derivation of the transformed beta provides an interesting
way to deal with so called "parameter risk". It is fairly plausible that

aggregate losses for a given company (insured or insurer) are distributed
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transformed gamma and that the shape parameters r and o are fairly well known
and stable but because of uncertain trend, etc., there is a good deal of un-
certainity about the scale parameter A, which relates to the overall level of

expected results, If 2% s gamma distributed in s and y then the overall

aggregate distribution is transformed beta in r,s,o,B where B=Yl/“ . It is
also not difficult to show that A% is gamma in s, means that A 1s trans-
formed gamma in s,a,B. (See Appendix G). Thus it can be concluded that if
aggregate losses are transformed gamma in r,a,A where A is unknown but is
itself transformed gamma in s,x,B (same a) then the aggregate losses are trans-

formed beta in r,s,a,8.

In theory it would be a great coincidence if the uncertainty about A had
the same parameter o as did the aggregate losses themselves, As a practical
technique for quantifying this uncertainty, however, it should not be too

burdensome to use the a already in hand for aggregate losses. There will
still be two parameters, s and B, available to match to the uncertainty the

analyst feels is inherent,

There are several ways in which s and B could be arrived upon. Different
values could be tried and the 25th, 50th, and 75th percentile A calculated for
each, with the corresponding percentile of aggregate expected losses F(t+&) 3
A T(r) following. These can be compared with the uncertainty that seems in~
herent in the overall level of losses. The latter uncertainty can be estima-
ted by trying to combine the uncertainties in the trend and development fac-
tors and anything else used to estimate the overall level. The regression
statistics used in developing these factors may be useful if regression was

used.
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Another approach teo measuring the distribution of X is using industry loss

ratios,

Expected losses for an aggrepate loss distribution with cdf G(x;r,a,r)
are I'(r + éj $ AT (r). Thus for fixed r,a the reciprocal of the aggre-
gate losses and thus the reciprocal of the loss ratio is proportional to A.
Therefore 1f A is unknown but is a realization of a random variable A which
is transformed gamma in s,a,B, where a is fixed, the shape parameter s can
be estimated by looking at the historical distribution of loss ratio recipro-
cals. This would measure some of the variation that would occur even if A
were known, however. An alternative is to look at some broader base of com~
parable experience, such as the line for the industry or state or class in
question where the process variance is minimal and hence the principal source
of variation is the parameter uncertainty. Depending on the similarity
between the company in question and the broader base as to projection methods
for trend and loss development, the stability of the historical data base,

etc,, this may give a reasonable estimate of the parameter uncertainty,

Estimating f then could proceed by matching the formula E(1/%) for the
transformed gamma distribution to the expected value of 1/A calculated for
the year and company in question. For A with e¢df G();s,a,£) the E(1/1) is

B I'(s-1/a) ¢ T'(s) from the transformed gamma moment formula.

Borrowing loosely from our earlier example, suppose a malpractice risk
has aggrepgate losses transformed gamma distributed with r=.2478, x=1.470 and

-6
E(1/A)=1 + (1.144 x 10 ),where A is transformed gamma in s, 1.470, B.
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Suppose the previous four years of industry malpractice experience showed
loss ratios of .505, .750, 1.001, and 1,357, i.e,. reciprocals 1.980, 1.333,
.999, and ,737. The reciprocals have average 1.262 and an unbiased sample

standard deviation estimate of .5370 for an estimated CV of .4255. The

formula 1 + CV2 = DP(s+2/a) T(s) * I{e+1/a)? then becomes 1,181 = I'(s+1.36)
r(s) + T(s + .68)2, which can be solved numerically by computer
or KP - 34c calculator to find s=2.597. Then 1 + 1.144 x 10”6 = E(1/A) =

BT(s -~ 1/a) + I'(s) = B8 T(2.597 - .68) + T'(2.579) can be solved directly to
vield 8 = 1,288,500, From the transformed beta in r=.2478, s=2.597, o=1.470,
£=1,288,500 expected losses of

g T(r + 1/a) T'(s - 1/a) = 250,000
r{r) I'(s)

can be calculated, confirming the calculation of B,

The expected losses excess of $1 million in the aggregate increase

10 PO

substantially when this additional umcertainty is inecluded, For this
transformed beta an excess ratio of ,1348 can be computed at $1,000,000 which
vields excess expected losses of $33,700 compared to ,0728 and $18,200 for

the transformed gamnma,

The great disparity between these figures comes from the wide divergence
in loss ratios in the period studied. If the uncertainty in A is really so
great that next year's ratic for the whole industry can come out anywhere in
the range 507 to 135%, then there is a much greater chance that total losses

for a small segment of the industry will exceed the target $1 million,

For other more stable lines a similar analysis would show a much smaller

difference. In those cases there is a danger that the potential variation
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in level would be understated by looking at industry loss ratios. For one
thing, the swings in calendar year ratios may be dampened by reserve changes.
Also a particular sector of the industry would probably have wider variation
in the degree to which the proper level could be projected. This would be
important if the company under study were concentrated in one area, The
selection of the parameter s should probably be made with a good deal of

judgement because of the above.

Summary and Extensions

The above gives a method for approximating the distribution function
of aggregate losses from the moments of that distribution, based on the
transformed beta and gamma distributions., Since a distributional assump-
tion is involved the method is likely to be less precise than the exact
methods of Adelson [11], Panjer [12] and Heckman and Mevers [13]. Those
methods do, however, require more input information, namely the underlying
frequency and severity distribution functions, and they also require
substantially more computation. As computing becomes faster and less
expensive and good parameterized frequency and severity distributions be-
come avallable those methods become increasingly viable, and the assumption
of a distributional form for aggregate losses becomes more avoidable.
Methods based on moments only are nonetheless of definite value at present.

The transformed beta distribution is a good candidate for casualty
loss severity distributions, because it gemeralizes the Pareto and Burr

which have been used with moderate success, The problems of trend and
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development by layer of loss have yet to be entirely settled in casualty
lines, however, especlally with regard to having factors that are inde~
pendent of distributional assumptions. Thus there is currently a fair
amount of uncertainty as to casualty severity distributions.

The transformed gamma may be useful in property loss severity where
the tail may be lighter., Also the inverse transformed gamma, i.e., the
distribution of Y when X = 1 ¢+ Y is transformed gamma, is a heavy tailed
distribution which may have application to casualty loss severity. This
has distribution function

o
(y/2) ~r-1 -1:t
/ t e
0 I(r)

G'(y) = dt

and E(Xn) _—t I'(r-n/a) = I'(r) for n<ra.

A problem that sometimes arises with maximum likelihood estimation
with these distributions is that no maximum exists,. Usually this happens
because the maximum likelihood, given o increases as o decreases. After
some point the increase becomes negligible however. One alternative in
this case is to pick a "low enough" value of a and maximize the likelihood
fixing that value. This usually gives much better fits than the Weibull,
Gamma, Burr, etc. in the;e cases,

Another alternative is that there may be other functions that are
© 1limiting values of these distributions. For instance, in the Burr case,
F(x) =1 - ((x/B)u + 1)-S , small o often leads to large B but with (x|g)®

a
near zero for the range of interest, so 1 + (x/B)a is close to e(X/B) and

-S a
F(x) 1s approximately 1 - e (x/8) which is a Weibull. Conversely, small
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o
g and large o make (x/B) very close to (x/£) + 1, relatively speaking, so
-aS
F(x) is approximately 1 - (x/R) , which is a non-shifted Pareto.

Similar relationships may occur for the general cases.

A limitation of the above methods is that the transformed gamma does
not seem able to take on any combination of moments. In particular, it
appears that the coefficient of skewness must be greater than the coeffi-
cient of variation (CV) to match moments. In the gamma case the coeffi-
cient of skewness is always twice the CV., Thus, the transformed gamma
allows a fair amount of departure from gamma-ness but not complete
latitude,

Much of the interest in the gamma stems from a 1940 theorem of Lundberg[
which shows that under certain conditions the negative binomial frequency
leads to an approximately gamma agpregate distribution. Since aggregate
distributions seem to be positively skewed for the most part, but do not
always have the skewness double the CV, gamma—-like distributions allowing
some deviation from the gamma are thus appealing candidates for this
purpose,

Exhibit 3 gives the results of a test of the transformed gamma against
ar exact calculation of an aggregate distribution provided by Glenn Meyers
using the characteristic function method. The severity distribution is
plecewise linear., Approximating the severity by a discrete distribution
also permits a comparison to the recursive method of Adelson and Panjer.
$500 intervals were chosen for this discrete approximation. Details are
on the exhibit. The results show that the two exact methods are extremely

similar, indicating that not much is lost by the discrete approximation to
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severity. The transformed gamma is also reasonably close over a wide
range of loss sizes, confirming, at least in this one case, the useful-

ness of this simpiifying approximation.
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Appendix A

Solving Two Equations

Many systems of two equations in two unknowns, including the trans-
formed gamma moment system in the text, can be solved by Newton-Raphson
iteration, with the partial derivatives taken numerically. The numerical
partial derivative of £(x,y) with respect to y, for example, 1s{f(x,y(1+5))~
f(x,y)) + yb, where 4 is a small number, e.g. 10_7. Because of machine accu-~

racy A should not be too small, e.g. A= 10-50 would be too small for most

installations. This method is quite useful when the partials are not avail-

able in closed form or are excessively intricate.

Given f(x,y) and g(x,y), initial estimates X, and Yo and derivatives fx,
fy, 2x, gy the iteration procedes by setting
X+l = *§ - (fgy - gfy) + (f g, -
(fgy - gfy) + (f gy 8, fy)
Vi+l = ¥i - (gf : _
gt - fe) (fxgy gxfy)'
where the functions and derivatives are evaluated at (xi,y1 Y See{:3] page 8

for details.

Exhibit Al gives an APL system for this procedure. The user interactivel
defines the equations to be solved. Any user defined functions may be called

in this process, A sample run of the system is shown in Exhibit A2.
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Appendix B

Maximum Liklihood for the Transformed Gamma

Maximum liklihood in the case where there are no problems of truncation
or censorship of the sample reduces to one non-linear equation to solve for
o then linear equations for r and . The o equation is somewhat intricate
but solves easily numerically. Given a sample yi i=1 to n, the liklihood
function is L(r,a,A) -iﬁl an®F yiur-l e-(kyi)a # I'(r) and 1ln L(r,a,r) = n lna+

n
anarln)k-nlnl() + (or-1) ¢ lnyy - Aaizl

Setting the partial derivatives of this to zero, and denoting the derivative of

o
Yy .

In T'(r) by Y(r) yields the 1liklihood equations:

(a) Wr) ~InreaTny-1In ;E
(®) r=y Y 4" Iny-y Iny)
) A= % or)te

Substituting for r in (a) via (b) gives a single equation for a which
when solved allows r and A to be calculated from (b) and (¢). This is a

generalization of the method found in E4J for the gamma distribution. Note

by i1 o . 1 n n
that to solve (a),y” = = 3 yi,Iny =5 I lny, and y° In y = % izly? in y

must be calculated from the sample at each iteration.

As suggested on page 152 ofI:Zj , differentiating formula 6.1.34 page

26
256 of [i] gives the series approximation ¥ (z) = I (z) kzl key 2 1, where ¢

1

to cyp are as shown in Exhibit Bl. This expansion gives more than 13 place
1

accuracy on{il,i] and the recursive relation y(1+z) = y(2) + 7 can be used

outside of this interval.
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To salve equation (a) with (b) substituted for r we have an equation
f(a) = O where £ 1s calculable by computer or calculator. This can be

solved iteratively by numerical Newton-Raphson:

Start with a guess a,, Then let a4 4= a4 fla)
flog (L +4)) - £(oy)

%y

1 -

f ey (A+4a))
f(ui)

i.e.

3%

where A is small, e.g. 10--7 .

A reasonable starting value a, is usually given by calculating the sample

o]

ratio of the coefficient of variation over half the coefficient of skewness,

as this is greater, less than, or equal to 1l when « is,

As an alternative the secant method agy) = oy = (o) (of - 04-1) can
: £(ai) - f(ai-1)
be used to solve for a. This involves only one computation of f each itera-

tion, so may be faster than Newton-Raphson,
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=

WooNU W

Series Expansion for y(z)

26 -
V(z) = T(2) I, ket

%x

-1.00000
-0.57721
0.65587
0.04200
-0.16653
0.04219
0.00962
-0.00721
0.00116
0.00021
-0.00012
0.00002
0.00000
-0.00000
0.00000
~-0.00000
~0.00000
0.00000
-0.00000
-0.00000
0.00000
-0.00000
0.00000
0.00000
-0.00000
-0.00000
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00000
56649
80715
26350
86113
77345
19715
89432
51675
52416
80502
01348
12504
11330
02056

00061 -

00050
00011
00001
00000
00000
00000
00000
00000
00000
00000

000000
015329
202538
340952
822915
555443
278770
466630
918591
741149
823882
547807
934821
272320
338417
160950
020075
812746
043427
077823
036968
005100
000206
000054
000014
000001
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Agpgregate Moments

Appendix C

In terms of frequenc& and severity moments, assuming individual claim

sizes are independent, identically distributed, and independent from

the number of claims,

Let N denote number of claims, X claim size, L aggregate losses, p the

mean, ¢ the standard deviation,y the coefficient of skewness, ¢ the co-

efficient of variation, and Ny = E (N-HN)i

Uy
Then

H = UH u

L X N

2 2 2

o =¥y % + Gx )

Yy O 3 YO 34 3,y zc 2 + M 3y o 3
LL " My XX X'X Un X 'NN

2 2 2 X
op" = wg Myl *+ 7

Z 3
Y . (Yxcx3 + 3cX2 Ng + N3) t Yug (g +N2)

2= 2
a (e +Np) o ¥y
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1 -p a=0
B. TF(a) = P. (L <a) =0 a<0
(1-p)+p G (a) a>0

Then 4 = p“c
F
Hg = Wp ¥ P
cg? = P cp? + p-1

2
Ye = PzYF ¢F3 + (p-1) (3pcp + p-2)

3
el
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Exhibit C1

VCONDITMOLIIV

V XeP CONDITMO Q;TERML; TERHZ COEFVAR; GAMMA
T11  aWRITTEN BY VICTOR PUGLISI
n THIS PROGRAM CALCULATES CONNITIONAL MOMENTS IN THE FORM OF THE COEFFICIENT OF VARIATION (CV) AND THE SKELNESS
a (GAMMA) RASED UPON RISKMODEL OUTPUT FOR THE PARYT OF THE DISTRIERUTION GREATER THAN 0.
n IT TAKES AS LEFT-HANI ARGUMENT THE PROBARILITY NF @ CLAIMIRETING LLARGER THAN 0, CURRENTLY FOUND AT THE TOP OF THE
a RISKMODEL OUTPUT FOR EACH LAYER DENOTED BY “PROBABILITY OF LOSS' AND FOR RIGHT-HAND ARGUMENT REQUIRES A& TWO
o FLEMENT VECTOR CONSTISTING OF THE COEFFICIENT OF VARTATION ANIC THF COEFFICIENT OF SKEWNESS FOR EACH MAJOR GROUP,
a THESE ARE FOUND IN COLUMNS 8 & 9 RESPECTIVELY OF THL RISKMOTDEL OUWTPUT.
COEFVARCC(PxQULG%2)+P-1)%0. 5
TERMLI¢ (P2 xQE2AI<B0 L T%3
TERM2¢ (P-1)x (3xPxQUAITRD)+P-2
11 GAMMAC CTERMT+TE RMD) +COEFVARX3
C120 XeCOEFVAR, GAMMA

v
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Appendix D

Transformed Beta is Transformed
Gamma Mixed by a Gamma

1 & a
The transformed gamma density function g(x;r,a,A) = ad®F 42T 1 e x
T (r)
can also be parameterized as a 8 x%F le ~Oxa r(r), taking 6 = 2*. Given

a family of such random varlables with o and r fixed and © itself gawma dis-
tributed with parameters s and vy, i.e. having density v% es‘l e‘Ye + I(s), ther

the compound process is transformed beta,

To see this the density for the compound distribution will be calculated,
This is the probability weighted average of the densities of the family, that

is at x equals:

- el - e
%f a OF,OF 1 & _y8gS 1 RCPT
T (r) r(s)
= ay® xor-1 eﬁs_l e_e (x*+y) &
Ir'(r) I'(s) :;

which after the change of variable ¢ = ©O(x* + y) becomes

s _ar-1 2 | rts- -
ay xr jv'¢ r+s-1 e¢ d¢

I'(r) I'(s) Tty @ty
a g yS xar—'l f ¢r+s~l e~%  do
T(r) T(s) (x* + y)rts S

- -Ys xo.r-l

by
FO T G | o)
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= oy xur—l Now defining 8 b 5“ ives for the
. e =
B(r,s) (x¥ + y)T¥S EEY &

compound density

o g%8 xar-1 - B—u(r+s) o a%8 yor-1
B(r,8) &G + BE)ITS B(r,s) ( (x/B)® 4+1)T'S
= (a/8) WD L e ( (/B)® + 1)TFS

which is the transformed beta density,
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Appendix E

Reciprocal of Transformed Beta Varilate 1s Transformed Beta

Let Y = 1 where X has cdf F(x;r,s,a,B)
X -

{(ag) r-1
Now Y < a ® X > ‘

1
a

so Pr (Y <a) = 1-Pr (X <1) =1- 1 _
- 2 B(r,s) 0

L
o) T+s

Let u=1 t =1 dt = -du/u?

t u
(a8)*  1-r L l4s=2
Then Pr(Y<a) = 1 + 1 S u du ,=1-_1 ! u du
B(r,s) A+ y B(r,s) [(aB)® (u+l) T'8
u
(a8)® g-1
= 1 i u du
B(r,&) °  (wD"'®

Therefore Y has cdf f(y;s,r,d,1/8).
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Appendix F

Numerical Integration By Gaussian Quadrature

Gaussian quadrature is a method of numerical integration that estimates

the integral by taking a weighted sum of the value of the functien being in-
n

b
tegrated at several points. In general‘/ﬂ £(y)dy & b-a L Wif(y;), where
a 2 i=1

2y1 = (b“a)xi + bt+a and Wy and %; are somewhat complex to calculate, Exhibits

Fl and F2 give W, and % for a few values of n. See [l] pages 916-919 for

others. [ 8] discusses the mathematical background.

This approach works best for functions that can be closely approximated

by polynomials of degree n,

The Integration of the transformed beta distribution function is more

accurate if two transformations arc made, First the mapping u =_t trans-

x8 e+l
L2 EU —
forms the integral to F(x;r,s,c,f) =lgx u (1_u)s'1 du * B(r,s)
. ’
o
= IB X ; r,8), which can be taken
x* + B

as the definition of the function IB. However, the approximation of this in-
tegral by the above quadrature formula is not close for small values of r and
s, €.g8. below 1. A recurrence relation was derived to express IB(x;r,s) as

a function of IB (x3r+l,s+l), putting the integral to be solved in a more
satisfactory area. This relationship is rsIB(x;r,s) = x¥ (1-x)5 (s-(r+s)x)+
(r+s+1) (r+s) IB(x;r+l,s+l), and was derived by George Phillips from formulas

26.,5.2 and 26.5.16 of page 944 of [d:] . In practice this formuld is applied
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thrice to get to the r+3, s+3 level., Exhibit F3 gives a series of APL

programs which performs the calculation of F(x;r,s,a,R).
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1+i+]+

I+ [+1+1++

R R R R B Y PN TP

0.23861
0.66120
0.93246

0.14887
0.43339
0,67940
0.86506
0.97390

0.06405
0.19111
0.31504
0.43379
0.54542
0.64809
0.74012
{.82000
0,88641
0.93827
0.87472
0.99518

x1
91860
93864
95142

43389
53941
95682
33666
65285

68928
BB674
26796
35076
14713
36519
41915
19859
35270
45520
85550
72199

Abscissas and Weights for n Point

83197
66265
03152

81631
29247
99024
88985
17172

62606
73616
90163
26045
88840
36976
78554
73903
04401
02733
71309
97021

Gaussian Quadrature

n=6

n=10

n=24
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0.46791
0.36076
0,17132

0.29552
0.26926
0.21908
0.14945
0.06667

0.12793
0.12583
0.12167
0.11550
0,10744
0.09761
0.08619
0.07334
0.05829
0.04427
0.02853
0.0123¢4

Exhibit F1

wi

39345
15730
44923

42247
67193
63625
13491
13443

81953
74563
04729
56680
42701
86521
01615
64814
85849
74388
13886
12297

72691
48139
79170

14753
09996
15982
50581
08688

46752
46828
27803
53726
15966
04114
31953
11080
15437
17420
28934
99987
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UFE it~

b

10
11
12
13
14
15
14

18
19
20
22
23
2
28
26
27
28
29
30
31
32
33
34
359
346
37
38
39
40
41
42
u3
Ly

w6
47
48

'.98U0441£6.

X

L999687503883231
9983643 T75BA3182
99'991““’987’09

P25439003237463
294624

TL982517263063015
TL9759391 74585136
T.968326828463264
T.95946882921448743

9500327177844 389

© . 939370339752755

LPATT712UN6722309
.9215071423120898
L901460635315852

7. 8868245174024 20
©.871388505909297
T.8549590334344601
T.837623511228187
T.819400310737932
. 800308744139141
T.7B0367043867433

TG59602341176647

TL.738030643744400
TL7156768123489468
T 69256453664 2172
T.6468718310043916
T, oML 1634037849467
T, 61892GB401254469
TL.593032364777S72
T.566510418561397
T.539388108324357
T.G11694177154668
TL4E3457973920596
TouSH709422167743

425478988407301

'.39 7976498289209
'.36q696861k7231h

35208522892625

".30“36“9“435““96
T.273198812591049

24174 3156163840

T.210031310460547
TL178096882367619
TLAKSPT7ATIHETHERT
TL113695850110666
TL081297H95H6UU2S

. 0u8a12985134050

TL01627567448U9603

Wi

LG00796792065552
L 00185392460788947
L0029107331817935
0039464554 338445
LO0S01U202 7Y Y28

L 004058545504

236
00709647079115

. B081248749204698
L 009148671230783
,01014077053%5008

011162102097638
012151604671088
0313128229566962
Q1Y 090941772315
0150387210626995

15970562902562

. 016880477864 245

017782502314045
018660677627411
019519081140145
020356797154333

.0211729398921%1
L 021966644438 74
N227370694658329

023483399085926

02420484 17923465
L02u90063322248Y
L025%570036005349

026212340735672
026826866725592

L0274129462726029

027970007616848
0:18497411065085

L028924614150059

0294461089958168
029896344136378

L030299915420808
.030671376123669
.03101033258631Y
L031316425596861
.031589330770727
.031828758894411

.03

032034456231993
032206204794030
32343822568576
H47163714064
032516118713869
032550614490363

n = 96

L4
)

1
02
23
Ok
1]
S6
N7
o8
4

60
61
67
63
a4
659
b6
&7
48
&9
70
71
72
73

T4
I
78
9
80
81
a2
83
24
85
86
87
a8
89
20
?1
?2
?3
4
?S
P4

Xy

LB1E6276 744849603

,0n8B12985135050
L08129749Nu64246
L113495850110666
CAUST7IT7IN6EHEPT
.178096882367619
L210031310460567
LML AH6163840
L 273198812591049
.JOH36U9HH35MH96
. 335208520287262
.36569686147“31“
L 3957974649828909
LH254789088407301
LB5HT709422167743
4a3NG7PTIR20596
S1167%177154668
.539388108324357
.566510418561397
L593032364777572
. 61892584 0125469
LAUN163403784967
.6687168310043916
.69" H6HTI36642172
. 7156768123u89468
.7380306%37““900
59602341176647
L 780367043867433
L800308744139141
.B19400310737932
LB37623511228187
SHPUP0334344601
.871388505909297
8868745174024 20
. 9014460635315852
\215071423120898
L927712486722309
L939370339752755
P50032717784438
,9594688271448743
.96832682844632464
L 975939174585136
. 982517263563015
.9880T4126329624
LPP254 3900323763
LP95931842987209
.P28364375843182
.999539503883231

Wy

L032550614492363

032516118713869
L0324471463714064
L0323438225685746
L032206204794030
,032034456231993
.03182875889u411
L 031589330770727
.031316U25596861
.031010332586314
.0306713761236469
L 030299915420828
L 029896344136328
. 0294610899581468
L 028994614150555
L028497411065085
L0279700076516848
L027412962726029
L0268268646725592
L026212340735672
L025570036005349
L024900633222484
L024204841792365
L 0234833990859246
L022737069658329
. 0219666443874
.021172939892191
L020356797154333
.0195192081140145
.018660679627411
L017782502316045
,016885479864245
015970562902562
.0150387210246995
0140909417 72315
L01312822956696%
012151604471088
01116210.099838
L010160770535008
.009148671230783
,0081268746925698
L007096470791154
.006058345504236
005014202742928
003764554 338BU4S
,00291073181793%5
. 0018539607884 7
L000796792065552
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22

£1]
ra

[3]
Cuj
£51
(63
€7y
£81
£91

£11
£231

[ ]
L2

£33
[ A]

VTRXRIDIV

V YeX TEXR AGDIE;A;G;D .
ATRANSFORMED BETA XS RATIO AT X TIMES MEAN Exhibit F3
ACAGIL 1]
GrABDE 2
DeAGEL3]

Be(G CRETA IN+(G++A) CHETA D-+A
YeX THETAXR ALR,G, D
v
VTBETAXRLIV
V YeX THETAXR ARGEH:A;E;G; D H; L.
ATRANSFORMED BETA XS RATI0O PARAMS A K G I
AREARGDC1]
BCARGIE 2]
G+ARGDL3]
ne-ARGDICY]
LeL+14Le(X+R) #A

Ye(He(G++AY CRETA D-+A)~L IB(G+-A),l-=A
YeY-Xn (+B)x(G CRETA D;-L IB G.,D
YeY+H
v
VCBETALDIY

Vv YeV CBETA U

ACOMPLETE BETA OF V AND W
Ye-{VIVH) xVall-V+l

v
VINLNIY

V ReX TR ABIYL Y2, Y3, Y4 Y5 AR
AURITTEN BY GEORGE PHILLIPS
AtARL1dx1 {ICC 0
BeARL2]
Yie 1t x\(X, 1-X)*AR
Y26 ((B=1) 41 3)~Xx (A+B=-2)+2x\ 3
Y3e(Xx1-X)* 0 1 2
Yhel, x\N{(A+R-1)+1 6
YHExN (1, CA+1) A+ x], (Re1) , B4 2
Re(CANEY R (Y1 x+/Y2xY3IxYULL 3 S1=YS)+(YUT7I=YSL3IIx(X INCRETA(A+3), H+3)
v
VINCRETAL[ IV
¥ RST¢A INCEETA VU

AURITTEN RY GREGG EVANS

RETen GSOD " (X¥VULL1I-1)x(1-X)#VUL2I~1/DX"
v

vGsaQnenav

¥ RSTeX 650D Y;A;B;C:DGEF
AWRITTEN BY GREGE EVANS ~

Fe(Eer, (220 1 0ONCO 1104011 0)40,81.5] D+ (10%10) x~DeCETIIYINCE(ANY R /") /Y
CoUx+ayw JF, 04FEDI6Colie, CTL4D0; 1) I (F, (oI =Be(+7~E)210) pB€ (0=E) /10, E) p’ (0. SxXxA+1) "
RETe+/ (24 /BSADVARL2: 2T xGSBOVARL 2 1x1C, D1a«BSAIVARTLT D B - -

v



Appendix G

a
To show: A 1is gamma in s, Yif and only if A is transformed gamma in

s,a,B where B = Yl/“.

« o a qu s-1 -t
Note that Pr(A < A\) = Pr (A < X § = G(A ;s,1,Y) =0t e de
a
{(8Xx) s-1 =t

= £ t e dt = G(A;s,a,B).
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Appendix H

Maximum Likelihood Estimators for
Transformed Beta Parameters

Given a sample %3, . . ., X,, fitting the parameters r, s, a, and g

of the transformed beta by maximum likelihood involves finding the maximum

of the log=-likelihood function

n
1n L{(r, s, a, BY = n InT(r+s) + n lne + (ar-1) Z Inxy
i=1
n a
- (nar 1nB + n 1ol(r) + n InT(8) + (r+s) ) in 1454
i=1 [ .

As with the transformed gamma let the derivative of InT(x) be denoted

Y(x). Dividing the partials of 1nL by n and setting to zero gives the

following 4 equations:

(r): v(r+s) = 4(r) + In(l + 8/x1)%)
(s): V(r+s) = 4(s) + In(l + x,/B)%)
(a):

-1
1/a + r In(xg/8) = (r+8) (Inxg/8)) (8/xg) + 1)

®): T = (rts) (1 + (B/xi)a)_l

where the bar denotes the average over the sample of the barred function.
The (o) and (B) equations are linear in r and s, so can be solved to
vield r and s as functions of o and 8. These can be substituted into the
(r) and (8) equations to give two non-linear equations in two unknowns
(o, 8) which can be solved by the methods of Appendix A,
An APL system for solving these equations is ghown in Exhibit H1 and

a run with sample data in Exhibit H2,
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£11
£21
C31
[}
L5l
41
£71
£gl
C?2
£163
£111
£121
£131]
L1y]
£181
L1621
L1731
£183
L1913
L2031

L1
£23
L31
Cul
(RN
L63
L71
83
{91
£103
L1131
£121
£133
£143
18]
L1461

APL Programs for Transformed Beta MLE

VHNRFNLIV
V Altl«V NRFN AE,;YA,YE;.4,Z
AWRITTEN RY GARY VENTER
ANEWTON RAPHSON ITERATION FOR TREET PARAMS. SAMPLE IN V
ARLEAR
ZelE™7?
TOP: AReARL
Y&V FN AR
YaeV FN(ARL11x1+2Z),ARC2]D
YReV FN ARCL), ABL23x1+27
YAac{YA-Y)+ZxARC1]
YRe(YR-Y) +ZXARE2T
JECYADLIXYRE2D) ~YAL2IXYREL]D
ARTEARCLD-CCYDLIxYRE2D) ~YL2IXYREL D) +d

AR1EARL, ABRC2I-((YE2IXYADLIT)~YL1IxYAL21)+)
‘2 0LD TOLERANCES 2 NEW®
AR, Y., AR1

‘R.S:";R,8

H(RETT44/ 1 TLHARLEARY /TOP

leYeV FN ARL

"Ry G, ALPHA, RETA

R, S, AR

v
VENLIIV
V Y&V FN AE;IGF G, H;N; PS; PR; PRS; DL L.

AR ANI! § ARE GLORALS
aY A VECTOR OF ORSERVATIONS,AR IS ALPHA,RETA
aY IS A 2 VECTOR TRYING TO GET TO 0,8 FOR TRET MLE
Ne+pV

GeV+ARL2]

He®

De1+Gr-ARTLD

FeNX+/H+D

HeARLLIIXNX+/H

NN+ /41

Re-+H~-ARCIIXF+D

SERX~1~-+]t

GENX+/81+6%ARCT D

PSeSI S

YeH+PS-PReGT R

Y&Y, G+PS—-PRS¢S] R+S

Exhibit H1



¥ OrDLATIL AL POLL; VM N ;;;e 2
[13  aPST FUNCTION IE DERIVATIVE LOG GAMMA FUNCTION
£231  aWRITTEN BY HARRY SOUL
€31 ZeX-L X
(AL L1, L2Y0142Z=010
[51 L1:PSIZe—-{1-1-2)X+/ (28} XCEEXZ%"1+126
L4l Yel0001H] X
£?3 Neg
£al MeLX+1000
£91 POIXEPSIZ4++/+2+7 1Y
L1012 (M=0)/0
110 LT:MeN+t
L1201  PEIXEPSIX4+/+Z+(1000XN-1)4+Y+T1411000
C133 A (N<M)/LT
L1410
C15] L2:PSYIZe—(1Z)x+/ (1 246)ACEEX(Z+1) % "1+ 24
L1461 PSIXEPGIZ++/ -1 X~1

v
. CEE
£ 1 0.57721%46649015329 70.46558780715202538 "0, 02002435034 0952 0.,1465386113822915
= TOL0U219T77INSEESUZ U0, 0096219718527877 0.0072189U324464663 T0.00116514675918591
1 “0.0002152416741149 0.0001280502823802 "2, 0134854 7H07ETE "1, 2504934821 74

1,133027232E746 "2.05433ABKITVETT 4. 116095E79 S, 0020075E79 T1.1812746E79
1, 043427E710 7.7823E712 T3,86988E712 GLO1ETIS T2,08E714 TS, 4ETLS
1.4E715 1E716
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Sample Run of Transformed Beta MLE
with Good Starting Estimates

v
2.201825487277711 1.,747790990989603 1, 55561945647 1727 1.434261861491408

1.345098293935564 1, 2746532762732432 1, 2190724979257046 1,1710096533353539
1.,1280782128847488 1.,091598560297855 1. 058149146996054 1, 0277973754655264
0.999999999999999% 0.9703034501284376 0. 95050569224135983 0,9282311847924588
§.92073138148639067 0.,8375842650558145 0.,84390494641059015 0.85115468358547295
0.83420164346253031 0.8180749244609125 0.802581905289312 0,78770640464383325
0.7733867467937893 0, 739577086746095318 oL
8.7208063846790024 0.70846564061646645
0.674145835167939 0.663214TH832457466 0.6

2 0uLn

1.521

0.63188033374678372 0.6218702024548765 0.6 0.602421308796u627
0, 3929590571538267 0,5836S72881149439 ¢, 57 0. 5604964138531555
0.35661940665224674 0.,.54784669593658831 0, 313 0.53070528199689

0.5222817966889831 0,51395428254661741 GB1TR087162 0.4975621441012036

0. 4894856364454 348
0.4578475082673738
0.4270314517386136
0.,39467253263281841
0.3646188506509329
0.,3343789340936847
0., 3054615997826835

0.273829231162048

0.2403024809791267 0,2315282633825993% 0.2

0.4814812781759202
0.4500788567894164
0.41P4120942972299
0,38919239278309074
0,3590853152547595
0.32875433833034611
0.297783455%141212
0.2656457900782352

436331413868
2356532429431
6.41183381998707u%
0.3814646708538456948
0.351530810120789%6
0.32109084

0,257, §
5894

0. 4454674240 0346885
0.434475669228307
C.404270839030415
0.3714430964502311
0.3439713566152265

43uL104 0,.3133808334572376
2EEICPUGIN 0, 281905910010 9433

L2H8899725301121
0,2133445971882582

0.2038702484700424 0,194 0859297219838 0.1 393@0&5%539229 0.,1733084487947235
0.1622584092414313 ,15051825939463702 0.1379499889521555

0.1023001477080087 0.09205965646857105 0.07106750819518526 0, 0408393077089136%34

¥V NRFN 1.%21 1,553
TOLERANCES

2 NEW

0.12u34638394796979

1.553 1., 4546996024050208E76 1,0880125939867189E77 1,520915599542439

1.593092179774157

R.G:1 HL1G4997S7E9713 6. 476705211843293

oaLn

2
1.52091%9

TOLERANCES
P95

$2439 1 .5530

2 NEW
21797VHIHT? 2,31443

1, 5600222739 1,553092175281845
R.6:1,4414 BR1BYANT &.477401387277938

4. 44089209
R, S, ALPHA R
1. U4B14699410

0U&28ET16 2,
TA

TIGELTEO1062891E 716

1939436064E 711

2.418509835843441E712

SO0499 &, 4TTUNDELTETIRT?D 1, 520915600822739 1,553092175281865
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VIGLQAV
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aINCOMPLETE GAMMA FCT @ TO X, PARAM R; T IS PRECISION SUGGEST~35 TO 350
XeVL1]

ReVIE2

ARSIV L PG vX>TET7S%-R+1) /BIG

De( (X (R-1) )% (=X))+"'"(R-1)

+ENT

ARIG:IREIET1I2x] 0, 5+R=x10000000CG0000

ASOMETIMES AROVE LINE NEEDED TO AVOID TRUNCATION PROBLEMS
BIG i DE(X®L IR x (o / X+ ( %X+ R=1)xR- | R~1)='1IR
ENDEelx+ /2 \X+R+"1+ 1



Transformed Gamma Mixed By Gamma
with Special Cases

ox Ox
1 j tr—l e-t dt 1 j tr—]_ -t
—_ e~ dt
T Jo $ T Jo

(Transformed Gamma) (Gamma )

1- o ::g;é::::£5 1 -0
(Weibull)

(Exponential)

If @ is distributed Gamma in s, y:

x/8) (x/B)
1 -1 dt 5 tr-l
B(r,s) Jo (t+1) =%- B(r 8) (:«»1)&s

(Transformed Beta) (Generalized - F)

lr.l | | l -

Lo (/) + )7° s 1- /B + 1)

(Burr) a=1 (Pareto)

where 8*71/0
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Exhibit 3

Page 1
Aggregate Loss Distributions
Comparative Summary
Aggregate Characteristic Recursive Transformed
Loss Function Method Method Gamma

(000) Cum. Prob. Excess Ratio Cum. Prob, Excess Ratio Cum. Prob, Excess Ratio

25 0508 L9016 .0516 .9016 L0621 . 9031

50 L1201 .8107 .1298 L8107 .1260 .8125

75 . 2009 7273 .2015 L7272 .1895 .7283
100 .2676 . 6507 .2683 . 6507 L2520 .6503
125 .3289 . 5806 L3295 «5806 .312% .5786
150 L3843 L5163 .3848 .5163 L3717 .5129
175 4341 L4573 L4346 L4573 .4280 L4529
200 L4788 L4030 L4793 . 4029 4817 23984
225 .5189 .3529 .5193 .3529 .5324 +3491
250 .5548 .3066 + 5552 .3066 . 5801 + 3047
275 6034 L2642 .6040 2642 .6245 .2650
300 .6556 .2273 .6561 .2273 .6658 L2295
325 .7008 .1951 L7013 .1951 .7039 .1981
350 7405 L1672 L7408 .1672 .7388 L1702
375 L7749 ,1431 L7752 L1431 L7707 .1457
400 .8047 Jd221 .8049 .1221 »7995 ,1243
425 .8303 .1039 .8305 .1039 .8255 .1055
450 8524 .0880 .8526 . 0880 .8488 .0893
475 8714 L0742 .8716 L0742 L3696 .0752
500 .8878 L0622 .8879 L0622 .8881 L0631
525 . 9045 L0518 .9047 .0518 .9043 .0528
550 9201 .0430 .9203 .0430 .9186 .043%
575 29332 .0357 .9333 .0357 <9310 . 0364
600 9442 .0296 9443 .0296 +9418 .0301
625 . 9534 .0245 .9535 0245 L9511 .0247
650 W9611 .0202 .9611 .0202 L9592 .0203
675 29675 .0167 L9675 L0167 9660 .0165
700 .9728 .0137 .9729 .0137 .9718 .0134
725 W9773 .0112 L9773 .0112 .9768 .0109
750 L9810 .0091 : .9810 .0091 .9809 .0088
775 . 9844 .0074 <9844 0074 9844 .0070
800 +9873 .0060 9873 0060 L9873 .0056
825 .9897 .0048 . 9897 0048 .9897 .0045
850 .9916 .0039 .9916 .0039 .9917 .0035
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Exhibit 3

page 2
Aggregate Loss Distributions
Comparative Assumptions
Frequency:Poisson A = 13,7376
Piecewigse Linear CDF
Limit (000): 1 5 6 7 8 3
Cumulative prob.: .38935 .77870 .78438 .78981 «79498 .79993
10 12.5 15 17.5 20 25 35 50
.80466 81564 82553 .83449 84264 .85690 .B7927 .90280
i35 100 125 150 175 200 225 250
.92739 294256 «95277 .96009 .96556 .96979 .97316 .97590
Discrete PDF
Amount  : 500 1000 1500 to 4000
Probabllity: .38326640625 .03041796875 .04866875 each 500
4500 5000 5500 to 249,000 at each N = 500k
.054731628 .019691497 Piecewise linear probability from K-250 to N+250

249, 500 250,000

. 0000685 .0241137
Moments
Coefficient of
Mean Coefficient of Variation Skewness
Severity 18,198 2,6600 3.6746
Aggregate 250,000 7667 1,0744

Transformed Gamma Parameters

r

a
H
»
H
2
.

a
A

.5613125
1.8300318
1+417896.414
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