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Abstract: 

A considerable amount of  research in the development of  methods to evaluate the probability 
that an insurer will become insolvent has been performed by the British Solvency Working 
Party and the Finnish Working Patty on solvency. The result of  the work of each of  these 
two groups is a comprehensive model which simulates the future cash flows of an insurance 
company. Procedures to model the variability of  asset values and asset cash flows are an 
integral part of  these models. 

In this paper the models used by the British Working party and the Finnish Working Party 
to model asset values and asset cash flows will be introduced. The paper will describe how 
these models can be applied in the United States. Application of the models will be illustrated 
using historical stock and bond return data. 
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INTRODUCTION 

The British Solvency Working Party and the Finnish Working Party on solvency have 

pioneered the development of models for predicting the probability that an insurance 

company will become insolvent and for determining solvency margin requirements. The 

work of each of these groups has relied heavily on risk theory. 

In its simplest form, risk theory is used to evaluate the probability that insured losses will 

exceed beginning surplus plus premium income received during a specified time period. 

This is expressed as: 

where: 

= Pr {X,~U. + ( l+a )  P,}~ 

X, is the aggregate losses for the period 
Uo is the beginning surptus 
P, is the pure premium or expected losses for the period 

The factor a is a safety loading which contributes a cushion against adverse deviation to 

surplus. The quantity t is known as the probability of ruin. 

For this basic formulation of the risk theory model, a probability distribution for X can be 

derived and used to compute ruin probabilities. Risk theory models such as the one 

described above have been used to compute surplus requirements and risk margins. 

The simple one period model can be emended and to include multi year and multi variable 

risk processes. The variables which are added incorporate into the model as stochastic 
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components funds which flow into and out  o f  the company. Among these variables are 

premium income, expenses, and yield on investments, as well as aggregate losses. Multi 

year dependencies are incorporated into the model. The more general model is denoted by 

Pentikainen et. al. as foUows2: 

U, = U,., + P, + I, - X, - E, - D, + U, "~ 

where: P, = Premium Income at time t 
I~ = Investment income at time t 
X, = Aggregate Losses at time t 
E, = Administrative Expenses at time t 
D, -- Dividends paid to shareholders at time t 
U, s'~ = New capital from issue o f  new shares. 

A stochastic function is developed for each component o f  the general model. Because o f  

the complexity o f  the general model, simulation is used to derive a probability distribution 

o f  insolvency and determine appropriate solvency margins. 

The casualty actuarial literature contains a great deal more material about modelling the 

random loss process than about modelling any of  the other factors contributing to the 

variability o f  insurers' surplus. This paper will focus on only one aspect o f  the overall 

model which has not been addressed frequently in the actuarial literature in the United 

States: assets. A goal o f  this paper is to introduce procedures developed by European 

actuaries for modelling asset change and investment income. These procedures are viable 

tools for use in stochastic simulation. These techniques will then be applied to actual 

investment data to illustrate how such models are parameterized. The procedures for 

incorporating the models into simulation will then be presented and procedures for 
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assessing the reasonableness of  the models will be discussed. Finally, the application of  the 

model to the study o f  the impact asset variability on solvency will be presented. 

In the discussions which follow, two definitions of  returns are used. They are: 

A,., 

x, '  = in ( ~ )  
A,., 

where ~ is the value of  an asset at time t. 

When the absolute value of  returns is small, both definitions give similar return values. 

The second definition is convenient to work with when analyzing the product of  returns 

over a number o f  time periods. This is the definition which is used by the British 

Working Party. The first definition is used by the Finish Working Party. 
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INVESTMENT MODELS 

The WiUfie Model 

One of  the most widely used procedures for modelling investment returns in actuarial 

science is a series of  models developed by Wilkie ~. The Wiikie investment model was 

developed for use in simulation, and was incorporated by the British Working Party" into 

a comprehensive solvency monitoring model. The model was developed with a view 

towards capturing the long term behavior of  investments. Therefore the parameters 

selected do not always provide the most accurate short term predictions of  investment 

r e tu rns .  

The Wilkie model is composed of  four interrelated components: the Retail Price Index, an 

index of  gross equity dividends, the gross dividend yield and the gross yield on consoles. 

The retail price index is used as an input variable in predicting all the investment series. 

Wilkie's four models are: 

(1) Q(t):  Retail Price Index 

ln(QJ - P0 - ~ (4 ln(Q,_ 1) - ~o) + OO z, 

For this model and all subsequent models z is an independent normal (0,1) variable. The 

retail price index model can be reexpressed as a model o f  the inflation rate i,' where l+i , '  = 

Q/Q,.,. 
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o r  

i ,  - tt~ - 4, (i,_~ - ~ + o ,  z,  

This model, is an autoregressive model. Procedures for deriving the parameters of this 

model are described in Appendix I. 

(2) Y,: Stock Dividend Yield 

lntY,3 - vr  i, + m ' ,  

N r ,  - ~ ,  - 4,,6,vr',_~ - ~ p  + ~ ,  

~'Yt " 0,7 Zt 

The dividend yield can be viewed as the product of 2 factors. The first factor is an 

inflation dependant factor and the second factor is a random component which is 

independent of  inflation. This model, is a bivariate autoregressive model. Procedures for 

estimating the parameters of this model are discussed in Appendix II. 

3) D,: Index of gross equity dividends 
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The index o f  gross equity dividends corresponds approximately to the return on the stock 

market. The model for the index is 

A In(D,) a - v , g ( t _ ( l _ a ) ) B )  tL ha((?,) + ~ t,d 

+t* ~ + b ,  ey,.  I + ed, ÷ O ed,_ I 

~.dt= Od7 ~ 

In this model B is the backwards shift operator, and the term 

,z A ha(Q,) 
(l-(1-a)B) 

is an infinite sequence of  lagged inflation effects. The parameter a is the smoothing 

parameter used to compute an exponentially smoothed average o f  past inflation rates. 

Exponential smoothing is used by Wilkie to model expected inflation. This term can be 

denoted E(i,) or the expected inflation rate and the term AM(D,) can be denoted d,. Then 

the Wilkie model for equity dividends can be redefined as follows: 

a, - v., ~ ( 0 . o ~  i, • ~ .  8 ey,_, + ea,  + 0 ea,_~ 

Thus the dividend index depends on expected inflation, the current actual inflation rate, 

the lagged residual from the dividend yield model, and the lagged residual for the dividend 

index model. 
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(4) C,: Console yidd: 

C,  - v t g ( 0  ÷ NC, 

÷@30n(NCt-3-j* )+b, ey,+a, z, 

Console yields consist of  a factor related to inflation and a factor which is independent of  

inflation. The factor which is independent of  inflation is related to past values of  itself and 

the residual o f  the stock dividend yield series. 

Application o f  Wilkie's Model, 

The data on which the parameter estimates for the Wilkie model are based are from 

United Kingdom sources. In addition some of  the investments are different from those 

which are found in the United States. For instance, consoles which are non redeemable 

fixed income bonds, have no equivalent in the United States. For these reasons one would 

expect models built using data from United States sources to incorporate different financial 

series and to have different parameter estimates even when similar series are used. Despite 

these considerations, a model can be built to simulate the behavior o f  United States 

securities with a structure similar to the structure used by Wilkie. The following model is 

proposed: 

(1) i,: The inflation rate 
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For a model similar to Wilkie's, the returns for a security are related to inflation and 

possibly to the returns on other securities. The inflation series is modeled as a first order 

autoregressive process like the one used by Wilkie to forecast the Retail Price Index. 

Thus, the model for inflation is: 

i,  - ~ l  " ~ J  ( i , - i  - v,j) ÷ o~ z ,  

where i,, the inflation rate equals in(CPIJCPI,a) and CPL is the consumer price index at 

time t. 

The procedure used to derive ¢; is iUustrated in Appendix I. This procedure was applied 

to annual inflation rates from 1926 through 1987 and resulted in an estimate o f  .66. The 

estimate o f  ~, the mean o f  the series is .03 It  should be noted that if the inflation rate is 

modelled using only values from the past 20 years, ~, is approximately .05. 

A residual or error term is computed for each inflation rate using: 

e , -  i , -  ~ -  . 66  (i,_~ - ~,) 

The standard deviation o f  the residual is the estimate of  o~. For the inflation rate series an 

estimate of  .037 was obtained. 

(2) SI: Stock Market Dividend Income 
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The proposed model relates stock market dividend income to expected inflation and a 

random residual term which is independent o f  inflation. The model was derived using 

regression analysis. The regression analysis indicated that dividend income was related to 

expected inflation rather than actual inflation. An exponentially weighted average o f  past 

inflation rates is used to model expected inflation. This model is 

~(s 0 - - 3 . 6  ÷ 15 ~ i ~ _ , )  ÷ ~ ,  

e s  t - . 9  e s t _  1 + .01 z r 

(3)SCAP: Stock Market Capital Appreciation. 

The change in an index of  stock equity shares such as the Dow Jones Average or the S&_P 

500 index can be used as a measure o f  stock capital appreciation. The correlation 

coefficients (or correlation function) between inflation rates and the stock market return 

can be used to study the relationship between these two series. Figure 1 presents the cross 

correlations between the stock series (the percentage change in the S&P 500 index) and 

the inflation series. Note that none of  the cross correlation coefficients are significant, 

indicating that inflation does not significantly affect stock market returns. This result is 

contrary' to the findings other researchers. 

The stock market series exhibited no significant autocorrelations as well as no significant 

cross correlation with inflation. The stock index series can therefore be modeled as a white 

noise series with mean of  .045 and standard deviation o f  .2. That is 
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S t o c k  C a p i t a l  A p p r e c i a t i o n  

Figure 1 
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S&P, = .045 + .2 7Z, 

(4) BCAd Long Term Government Bond Capital Appreciation 

A procedure for modelling the relationship between the change in asset values for 

government bond and the inflation rate is described in Appendix II. A model derived for 

long term government bond capital appreciation is 

BCA, = - .80, - .~ )+  NY, 

NY, = .07 z~ 

This model indicates that the market value of  bonds varies inversely with the inflation rate. 

(5)INC: Long Term Government Bond Income: 

The total return on government bonds is composed of  capital appreciation, investment 

income and reinvestment returns. For the purposes of  this analysis, reinvestrnent returns 

which are typically small will be ignored. I f  Y, is the return on bonds at time t then: 

(I + Y,') = (I + BCA,') (i + INC,') 

where exp(BC&) = (1 + BCA,'), BCA,' is the percentage change in market value of  the 

bond in year t and INC, is the income from coupons received during year t. These two 

items must be derived separately since they are treated differently for accounting and 

taxation purposes and involve different cash flows. The value for (1 + Y,') can be derived 

from the values for (1 + BCA,') and (1 + INC,'). 
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In developing an investment model, we have compared long term bond income to the 

console yield model developed by Wlkie. In Wilkie's model, console yields are related to 

the current inflation rate and the expected inflation rate, where the expected inflation rate 

is modelled as an exponentially smoothed average of  past inflation rates. 

The graph of  the correlations between long-term bond income and inflation is used to 

examine the relationship between bond income and inflation. Looking at the cross 

correlations on Figure 2 between LBI, and i,, the high correlations beginning at lag 1 

indicates that there is a significant relationship between long term bond income and a 

average o f  past inflation rates. This suggests that long term bond income is a fimction o f  

expected inflation. In the Wilkie model console yields were related to the residual o f  the 

stock dividend series as well. A model was investigated in which long term bond income 

was related to inflation, expected inflation, and the residual o f  the stock dividend series. 

The following model was fit to the bond income data: 

In(/NC~ - -3.7 + 10 E(i  r) + .05*eyf_ t + 1.13*it_ l +ein t 

e in  t - .94  eint_l + '095  z t 

Other Bond Series 

While the derivation o f  parameters for other bond series will not be illustrated in this 

paper, insurance companies hold significant proportions o f  their assets in bonds other than 
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In(Long Term Bond Income) 

Figure 2 
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long term government bonds. Among these are short term and intermediate term 

government bonds, municipal bonds and corporate bonds. Procedures similar to those 

presented above can be used to derive parameters for other bond series. 

The Finnish Workin~ Party Model and its Aoolication 
v . .  

A procedure for modelling asset variability was developed by the Finnish Working Party" ~ 

in conjunction with the development of  a comprehensive model for evaluating insurer's 

financial strength. 

Like Wilkie, the Finnish Working party first models the inflation rate. The return for each 

security is then a function of the inflation rate. The Finnish working party separately 

models variability in asset values and variability in income for each category of  assets that a 

company owns. Wilkie separately models asset values and income only for stocks. The 

Finnish Working Party describes a general model which can be applied to any kind of 

security. The model, therefore can potentially be used to model any kind of asset a 

company may own. Thus it is more general than the Wilkie procedure which models only 

stocks and government bonds (consoles). There are three components of  the general 

model which will be described: 1) the inflation rate, 2) the model for asset change and 3) 

the model for investment income. 

(1) i~ The inflation rate 

Like Wilkie, the Finnish Working Party models the inflation rate as a first order 

autoregressive process. The model for inflation is: 
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i , ' -  ~ = # ( i . ' -  ~,) + a~ t, 

where e, is an independent identically distributed random shock term. The term i,' is the 

change in the price index at time t (i.e. i~' = exp(i~)-l). 

The derivation of  the parameter ~ for this model is illustrated in Appendix 1. The 

estimated parameter value for ¢ using inflation rates from 1926-1987, .65, is very close to 

the parameter value of  .66 for i,. 

Figure 3 which displays the distribution of  the residual o f  the model fit to inflation 

indicates that the random shock term has significant positive skewness. This positive 

skewness was cited by Pentikainen et. al. as their reason for using the gamma distribution 

to model the shock term t,. The assumption used by Wilkie, and the usual assumption 

for time series analysis is that e, is normally distributed. 

The Finnish Working Party assumes that e + 2 is distributed gamma (4,2). This is 

equivalent to assuming t ,  follows a three parameter gamma distribution: 

1 . x  - s.o_ 1 exlg_(x-s)) 
~x)  - s r ( ~ ) t - - K  -~ 

where a=4 ,  B = 2  and s= -2. A procedure which can be used to derive the parameters of  

gamma distributed random variables is described in Appendix V. 
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Distribution of Inflation Rate Residuals 
Figure 3 
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2) Changes in asset value for the kth security. 

Define the change in asset value an 

a~ = A , . / & , ~  - 1 

where ~ is the asset value o f  the k ~ security at time t. 

The Finnish working party models the change in asset value as the product o f  a mean, an 

inflation effect and a residual effect which is the effect o f  all other economic variables. 

( l + a ~ ) = ( l + ~ ' ) ( l +  tn)(l+nn) 

where ~" is the sample mean of  changes in asset value for security k, ~, is inflation effects at 

time t which is modeled as 

i., - ~ a.(i,_, - b 
# x l  

is a residual effect net o f  inflation. The variable n~ follows an autoregressive process 

~/~ " E bs nt-s + ~t 

The random shock t e rm,  ~, is gamma distributed. For the examples presented by 

Pentikainen et. al . ,  the order o f  the autoregression never exceeded 2. 
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To illustrate the application o f  this model to actual asset return data, the parameters for 

long term bond capital appreciation are estimated. The example is shown on Exhibit 1. 

First, ~" is estimated as the average of  the percent change in long term bond capital 

appreciation. Then (1 + a~) is divided by (1 + ~') and 1 is subtracted from the result. 

Then the correlation function between this and the inflation rate series is analyzed. Figure 

4 presents the cross correlation function between the inflation and the long term bond 

series. This chart indicates that there is a significant negative correlation between long 

term bond capital appreciation and inflation at lag 0. Time series estimation procedures 

suggest that 6=-.81.  Once 6 has been estimated, it is used in the following formula to 

compute the residual term. 

(1 + n~) = (1 + a~) / [ (1  + a ) (1 + 6,(i~ - ~'))] 

Since this residual is assumed to follow an autoregressive process, ordinary least squares 

regression can be used to derive the residual parameters. 

3) Investment Income 

Investment income is frequently expressed as a percentage o f  the current value or market 

value of  an asset. Therefore, as prices increase on assets, income as a percent o f  current 

value may drop, even through the actual value o f  the coupon or dividend remains the 

same. Because of  the variability added to the calculation, the Finnish working party 

derives a value called stabilized current value d. 
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Exhibit 1 

Estimation of Asset Change Parameters Using Finnish Working Party Model 
for Long Term Govt Bonds Capital Appreciat ion 

(1) (2) (3) (4) (5) (6) 

Long Term Residual 
Bond 1 + Deviation Independent 

Capital Capital From Bond Of 
Appreciation Appreciation Mean Residual (1 +iota) Inflation 

0.1430 1.1430 0.0872 
0.0492 1.0492 -0.0019 -0.0586 0.9882 0.0100 

-0.1051 0.8949 -0.1488 -0.1475 0.9946 -0.1442 
0.1275 1.1275 0.0725 0.1692 0.9902 0.0831 
0.1250 1.1250 0 . 0 7 0 1  0.0230 0.9868 0.0844 
0.2188 1.2188 0.1594 0.1138 0.9905 0.1705 
0.1597 1.1597 0.1032 -0.0004 0.9846 0.1204 
0.11 04 1.11 04 0.0562 -0.0109 0.9732 0.0853 
0 P~'~I 1. P~'~I  0.1625 0.1260 0.9757 0.1915 
0.0115 1.0115 -0.0378 -0.1435 0.9622 -0.0001 
0.1313 1.1313 0.0761 0.1006 0.9511 0.1314 
0.1548 1.1548 0.0984 0.0490 0.9561 0.1489 

-0.0969 0.9031 -0.1409 -0.2049 0.9731 -0.1172 
0.0876 1.0876 0.0345 0.1261 0.9727 0.0636 
0.3261 1.3261 0.2614 0.2390 0.9296 0.3570 
0.0166 1.01 66 -0.0330 -0.2029 0.9024 0.0716 
0.2415 1.2415 0.1810 0.2024 0.9439 0.2512 
0.1225 1.1225 0.0677 -0.0499 0.9615 0.1104 

-0.0175 0.9825 -0.0654 -0.1094 0.9456 -0.0119 
0.0838 1.0838 0.0309 0.0734 0.9278 0.1112 
0.1883 1.1 883 0.1303 0.1103 0.8935 0.2651 
0.1164 1.1164 0.0620 -0.0228 0.9,008 0.1789 

-0.0666 0.9334 -0 .1121  -0.1524 0.9285 -0.0438 
-0.0127 0.9873 -0.0609 0.0120 0.9690 -0.0309 
0.0039 1.0039 -0 .0451  -0.0055 0.9696 -0.0152 
0.0159 1.01 59 -0.0336 -0.0043 0.9684 -0.0021 
0.1577 1.1577 0.1012 0 . 1 2 3 1  0.9698 0.1355 
0.0239 1.0239 -0.0261 -0.0918 0.9910 -0.0172 

Notes: 
(1): Based on simulated data 
(3): (2)/(1 + mean of (1)) - 1 
(4): (4) - .65 * prior (3). Used to fit transfer function as described in Appendix I1. 
(5): -.81 * (inflation rate - mean inflation rate) + 1 
(6): (1 + (3))/(5) 
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L o n g  T e r m  B o n d  C a p i t a l  A p p r e c i a t i o n  
(Finnish Model) 

Figure 4 
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The formula is: 

where ~" is the average annual change in asset value for assets in category L 

The income for the series is 

y~ = _ I N F , , .  

where INCOME is the actual dollars o f  income and 

(1 + y~) = (1 + ~') (1 + t~) (1 + n~) 

where L~ and n~ are defined as for asset value changes. 

The procedure for estimating the parameters of  the income model is the same as for the 

asset model. 

Simulation o f  Asset Value Chan~e and Investment Income 

The models derived using an approach similar to Wilkie's all assume that the random 

shock variable for the model follows the normal distribution. Therefore for each 

component o f  the model, the only simulated item is a normal (0,1) random variable. 

Initial, or starting values are needed for all asset categories modelled. These may be based 

on the most recent actual observed values, or on some judgementally selected values. 
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Wilkie suggests running the simulation with several different initial values to test sensitivity 

of  results to initial conditions 7. 

Since inflation is a factor determining the values of  other investment categories it is 

simulated first. The procedure to simulate inflation is: 

1) Select an initial value for inflation at time 0, i0 and expected inflation E(i0). 

2) Generate a normal (0,1) random variable, z, 

3) Compute i, the simulated inflation rate for period t as 

i, = u.; + ¢ ( i , . ,  - ~ ; ) +  a; 

where Z;, a; and ¢ are the estimated parameters for the model 

4) Using this simulated inflation rate, expected inflation is updated as 

E(i~) = i,., + (1 - a) (i,., - E(i,.,)). 

where a is the smoothing parameter. 

Using the simulated expected inflation rate, simulate the stock dividend series. 

1) Select an initial value for es, the regression residual 

2) Generate a standard normal random variable, 

3) Compute es, = ¢. es,.~ + o h  

4) compute In(Sl 0 = a + b E(i,.,) + es, 

To  simulate stock capital appreciation: 

1) Generate a normal random variable, z~ 

2) Compute S, = U. + o.z~ 

where/~., and o. are parameter estimates 
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Long term bond capital appreciation is modelled as follows 

1) Select an initial value for NY0, the return series net o f  inflation 

2) Generate a normal random variable z, 

3) Calculate NY, = 0,  NY,., + o~ z, 

4) Compute Y, = ~, + vy E(i,.~) + NY, 

To  simulate long term bond income: 

1) Select an initial value for ei, the residual from the long term bond regression 

2) Generate a standard normal variable 

3) Compute ei, = ¢;. ei,., + a~. z, 

4) ln(INC,) = a + b, E(i,) + b, ey,, + b, i,a + el, 

Assets modelled using the procedures described by the Finnish Working Party are 

simulated in a very similar way. Instead of  a normal random variable, a random gamma 

variable is generated as the random component of  each equation. A procedure for 

generating a gamma variable is described by Presss et. al'. 

First inflation is simulated and then the other asset changes and returns which are 

dependent upon inflation are simulated. The following procedure would be used to model 

the change in asset value for a particular asset: 

1) Generate a random inflation shock term, e~ from a gamma distribution. 

2) Simulate a random inflation rate: 

i, = ~,  + ¢(i , . ,  - u ~ ) +  e,, 
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3) Generate a random inflation shock term ea from a gamma (a~,B,,,) distribution 

where ~ and ~ are the gamma parameters o f  the random shock term for asset 

category k 

4) Compute n~ = b~ n ~  + b~ n ~  +... b. n~,~ + e~ 

5) Compute t~ = ,S, ( i , , -  i') + ... 60 (i,.o - ~) 

6) Compute (1 + a~) = (1 + ~',) (1 + t~) (1 + n~) 

For each asset category compute 

D4 = &.~ (i + aa) 

A similar procedure is used to simulate the investment income for each of  the asset 

categories. 

Model Evaluation 

In this paper, several procedures for modeling investment series have been introduced. A 

summary of  some methods for evaluating the reasonableness of  the fitted models will be 

presented below. 

For the time series models presented in this paper, the residual or random shock term is 

assumed to be independent and identically distributed and uncorrelated with prior shock 

terms. A preliminary indication of  whether the residuals are random can be obtained from 

a graph of  the autocorrelation coefficients. The autocorrelation coefficients are compared 
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to ± An additional test for autocorrelafion is known as the Portmanteau test 9. 1.96 

The Portmanteau test assesses whether the pooled autocorrelation coefficients are 

significant. The statistic for this test is: 

/0 

t o l  

For this test h, the number o f  autocorrelations tested is selected judgementaUy, but is 

frequently equal to 20. The statistic Q has a Chi Square Distribution with h - p - q 

degrees o f  freedom, where p is the number o f  autoregressive parameters and q is the 

number o f  moving average parameters in the model. 

Figure 5 presents the autocorreladon coefficients for the residuals o f  the inflation rate 

model and Figure 6 presents the autocorrelation coefficients for the residuals o f  the stock 

market index model. These charts suggests that the residuals o f  the inflation rate may not 

be independent o f  prior residuals but the residual o f  the stock series appear to be random. 

The statistic Q computed from these residuals is not significant at the 95th percentile for 

the inflation or  stock series. Thus the Portmanteau test did not indicate that the inflation 

residual series was autocorrelated. 

Several other tests are often used to test the randomness of  the residuals. These are the 

turning points test, the difference sign test and the rank test. A turning point occurs when 

a sequence changes from an increasing series to a decreasing series or from a decreasing to 
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A u t o c o r r e l a t i o n s  
Inflation Residuals 
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A u t o c o r r e l a t i o n s  
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Figure 6 
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an increasing series ~°. The number o f  turning points T has an asymptotic normal 

distribution with a mean of  2 (n-2)/3 and a variance o f  (16n-29)/90", where n is the 

number o f  residuals in the sample. The difference sign test is a test o f  the first differences 

o f  the residuals, e, - ~ .  The statistic S is the number o f  times the differenced series is 

positive. This statistic is normally distributed with a mean of  .5(n-1) and a variance o f  

(n+ l ) /12  .2. The rank test is used to test for linear trends in the residuals. The rank test 

is based on examining pairs o f  residuals, g and e,÷, The statistic R is incremented by 1 if 

e,+, is greater than e,. R is asymptotically normal with a mean of  .25 n (n-l) and variance 

.125 n (n-I) (2n + 5). 

The turning point, difference sign and rank test were applied to the residuals o f  the 

inflation rate series and indicated that the residuals were not random. Thus, though the 

autoregressive model for inflation is used by both Wilkie and the Finnish working party, 

other models may provide a better fit to the inflation data. These tests were also applied 

to all the other models described in this paper. The tests gave no indication that residuals 

other than the inflation residual were not random. 

Since distributional assumptions are made concerning the residual o f  the investment 

models it is usefi.d to test the appropriateness o f  these assumptions. I f  a random variable 

follows the normal distribution, it has a coefficient skewness o f  zero and a kurtosis o f  

three. The residuals o f  all models presented in this paper had nonzero skewness and a 

kurtosis greater than or less than three. Wilkie also noted that the series he investigated 

had nonzero skewness and kurtosis greater than that o f  the normal distribution ~3. Wilkie 
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attributed the negative skewness and nonnormal kurtosis of  his data to unexpected changes 

in prices in 1920 and 1921. W'dlde concluded that it would be awkward to use a 

distribution other than the normal distribution for the investment model residuals. He 

suggested the departure of  the observed data from normality could be compensated for by 

selecting a standard deviation larger than the sample standard deviation. These nonnormal 

characteristics observed in the inflation rate series have been observed in many financial 

time series. 

Using the gamma approximation, the skewness of the fitted model exactly matches the 

sample skewness. However, the gamma approximation has a smaller kurtosis than the 

sample series had. In addition, the gamma approximation cannot be used to model 

residuals with negative skewness and alternative should be used when the residual is 

negatively skewed. 

Another test of  the reasonableness of  a fired model is to compare the distribution of 

simulated investment returns to actual returns. Simulation testing of several inflation 

models was performed. The inflation models tested were the Wilkie modeL, the Finnish 

Working Party model and an autoregressive model with the residual simulated using the 

Cornish-Fisher approximation. The simulated results were compared to the actual 

inflation rates from 1926 - 1987 using the Kolomogorov-Smimov test. This K-S statistic 

was not significant for any of  the simulated series, indicating that the hypothesis that 

inflation rates residuals were from the assumed distribution could not be rejected. It  

should be noted that if inflation rates are simulated using the parameters selected by the 
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Finnish Working Party (a=4 and B=2), the K-S statistic is significant. It should also be 

noted that the gamma distribution cannot be used to approximate a residual with negative 

skewness. Since the residual of  the stock market index series had negative skewness, it 

can't be modelled using the gamma distribution. Other residual series also had negative 

skewness. In the simulation testing of inflation rates all approximations had approximately 

the same K-S values, indicating that each performed equally well as an approximation to 

the inflation residual. 

Based on the evidence presented and the work of Wilkie and Pentikainen et. al., it appears 

that the distributions assumed for the investment models are useful for simulation 

purposes despite differences between the theoretical models and the actual data. However, 

further research is needed to fred models which provide a better approximation to the 

observed data. 

Since tests did not indicate that any model is clearly superior, models similar to those 

developed by Wilkie are used in the simulations described later in this paper. 

Simulation Studies of  Asset Variability and Solvency 

The purpose of this paper is to introduce techniques which can be used to simulate asset 

values and asset income as part of  a comprehensive simulation model of  variables 

influencing the solvency of  insurance companies. The simulation can then be used to 

study the impact of  asset variability on insurance company solvency. To illustrate the 

application of  the techniques described, several simulations were performed using very 
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simple scenarios. For these scenarios, the only stochastic variables were investment returns 

and asset value changes. Premiums, reserves and claim payments were assumed to be 

deterministic. Four categories o f  assets were simulated: short term investments, 

intermediate government bonds, long term government bonds and large company stocks. 

The simulation used a going concern basis, rather than a runoff basis to simulate the 

future surplus o f  a property casualty company. That is, the simulated company was 

assumed to continue writing future business. Taxes were not taken into consideration in 

the simulations. Outstanding losses and claim payments were assumed to vary with 

inflation. The simulated company wrote long tail business and had an initial surplus ratio 

to written premium of  two to one. For each iteration o f  the simulation, surplus at the 

end of  each year is calculated as the market value o f  assets minus the present value o f  

outstanding losses. Present values were calculated using the simulated intermediate bond 

interest rate. 

Exhibits 2 through 5 present the results of  the simulation for four different asset 

distribution scenarios. These exhibits present the distribution o f  surplus for the simulated 

insurance company. The proportion o f  simulations for which surplus is negative represents 

the probability o f  ruin. For the first two scenarios where the proportion o f  assets invested 

in stocks is very low (0% and 10%) and the investment in long term bonds was moderate, 

insolvencies occurred at the rate of  less than 1% per year. When the percentage o f  assets 

invested in stocks and long term bonds is increased, the percentage o f  insolvencies 

increases. It  should be noted that the simulated scenarios made no attempt to consider 
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Exhibit 2 

Cumulative Distribution 
of Surplus (O00's) 

Time Penod (in Years) 
Percentile 3 4 

0.1% 
0.5% 

1% 
5% 

10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

20 
1,133 
1,892 
3,851 
4,699 
5,801 
6,708 
7,460 
8,016 
8,794 
9,625 

10,426 
11,687 

(3,148) 
(186) 

318 
2,781 
3,908 
5,648 
6,625 
7,688 
8,649 
9,687 

10,930 
12,242 
13,883 

(4,006) 
(2,197) 
(1,823) 

1,596 
3,305 
5,508 
7,040 
8,296 
9,577 

11,142 
12,413 
14,237 
16,248 

(5,784) 
(2,532) 
(1,428) 

1,537 
3,632 
5,595 
7,288 
9,138 

10,768 
12,336 
14,245 
16,059 
19,152 

(I 4~074) 
(5,426) 
(4,264) 

572 
3,009 
6,169 
8,361 

10,477 
12,360 
14,012 
15,877 
18,456 
22,168 

(15,207) 
(9,207) 
(7,305) 

(522) 
2,728 
6,483 
8,964 

11,466 
13,690 
15,716 
18,232 
21,265 
25,473 

(17,110) 
(11,441) 
(8,366) 
(I ,498) 

2,759 
7,082 

10,645 
13,204 
16,070 
18,205 
21,271 
24,361 
29,472 

Initial Surplus = 8,700 

Asset Mix: 
Stocks 
Long Term Bonds 
Intermediate Bonds 
Short Term Investments 

0% 
40% 
45% 
15% 
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Exhibit 3 

Cumulative Distribution 
of Surplus (000'a) 

Time Period (in Years) 
Percentile 1 2 3 4 5 6 7 

0.1% 
0.5% 

1% 
5% 

10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

(2) 
1,140 
2,043 
3,815 
4,901 
6,035 
6,965 
7,749 
8,601 
9,339 
9,962 

10,883 
12,236 

(1,352) 
(340) 
359 

2,728 
4,376 
6,024 
7,338 
8,496 
9,666 

10,795 
11 ;931 
13,284 
15,053 

(6,119) 
(2,248) 

(496) 
2,124 
3,907 
6,427 
8,044 
9,593 

10,895 
• 12,189 

13,914 
15,907 
18,465 

(5,833) 
(3,749) 
(1,550) 
2,365 
4,296 
7,139 
9,116 

10,843 
12,299 
14,591 
16,335 
18,561 
22,409 

(16,238) 
(3,959) 
(2,499) 
1,563 
4,647 
8,078 

10,450 
12,710 
14,648 
16,730 
19,204 
21,961 
27,1 64 

(17,909) 
(8,9o0) 
(6,119) 

981 
4,767 
8,848 

11,801 
14,507 
17,159 
20,022. 
23,084 
26,800 
32,072 

(18,87o) 
(9,005) 
(7,891) 
1,104 
4,771 

10,542 
14,038 
17,395 
19,983 
23,281 
26,550 
31,293 
37,671 

Initial Surplus = 8,700 

Asset Mix: 
Stocks 
Long Term Bonds 
Intermediate Bonds 
Short Term Investments 

10% 
40% 
35% 
15% 

618 



Exhibit 4 

Cumulative Distribution 
of Surplus (O00's) 

Time Period (in Years) 
Percentile 1 2 3 4 5 6 7 

0.1% 
0.5% 

1% 
5% 

10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

(2,692) 
(727) 
158 

2,350 
3,391 
4,999 
6,056 
6,940 
7,762 
8,693 
9,808 

11,003 
12,993 

(6.391) 
(5,119) 
(3,592) 

6 
1,352 
3,678 
5,445 
6,833 
8,373 
9,925 

11,502 
13,172 
15,673 

(11,975) 
(8,248) 
(6,791) 
(2,516) 

(241) 
2,727 
5,123 
7,095 
8,981 

11,010 
13,515 
15.719 
19,384 

(14.840) 
(lO,565) 
(7,750) 
(3.847) 
(1,265) 
2,201 
5,221 
7,409 
9,681 

12,708 
15,354 
18,469 
23.177 

(20,775) 
(14,692) 
(11,419) 

(6.387) 
(2,933) 
1,638 
4,591 
7,954 

11,174 
14,541 
18,300 
21,765 
27,459 

(27,652) 
(20,734) 
(18,170) 
(9,638) 
(4,801) 

788 
4,790 
8,687 

12,670 
16,380 
20,402 
25,387 
33,063 

(30,232] 
(25,281; 
(22,9551 
(12,196; 
(5,714; 

985 
5,305 

10,431 
14,797 
18,690 
23,760 
30,580 
38,574 

Initial Surplus = 8,700 

Asset Mix: 
Stocks 
Long Term Bonds 
Intermediate Bonds 
Short Term Investments 

0% 
75% 
10% 
15% 
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Exhibit 5 

Cumulative Distribution 
of Surplus (O00's) 

Time Period (in Years) 
Percentile 1 2 3 4 5 6 7 

0.1% 
0.5% 

1% 
5% 

10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

(6,166) 
(4,565) 
(3,728) 

12 
1,678 
4,035 
6,309 
8,238 
9,757 

11,652 
13,486 
15,654 
19,032 

(13,123) 
(7,343) 
(6,730) 
(2,482) 

480 
3,748 
6,854 
9,297 

12,039 
14,633 
17,602 
21,963 
27,452 

(15,562) 
(11,762) 
(10,616) 

(4,316) 
(467) 

3,874 
7,561 

10,967 
14,476 
18,009 
21,809 
28,142 
37,760 

(22,555) 
(14,125) 
(11,939) 

(5,69o) 
(1,437) 
4,853 
9,096 

13,610 
18,208 
22,927 
28,796 
34,385 
47,040 

(23,364) 
(18,273) 
(14,703) 

(6,156) 
(1,198) 
5,494 

11,474 
16,790 
23,232 
29,656 
35,673 
44,039 
58,714 

(29,1 o9) 
(23,118) 
(2o,029) 

(7,890) 
(1,737) 
6.846 

14,803 
21,548 
27,91 4 
34,590 
44,856 
56,122 
75,267 

(32,492 ~, 
(23,908; 
(21,146; 

(9,363; 
(I ,562: 
9,706 

17,979 
25,414 
34,169 
43,221 
51,998 
65,373 
89,424 

Initial Surplus = 8,700 

Asset Mix: 
Stocks 
Long Term Bonds 
Intermediate Bonds 
Short Term Investments 

50% 
20% 
15% 
15% 
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asset liability management. I f  a company attempts to match assets and liabi/ities, it should 

be less subject to risk resulting from the variability of  the market value of  assets. 

More comprehensive studies of  the impact of  asset variability on insurance company 

solvency were performed by the Finnish Working Party and the British Working Party. In 

the research performed by the Finnish Working Par t f f ,  asset variability was studied by 

allowing investment variables to be vary while all other variables were treated as 

deterministic. Pentakainen et. al. concluded that the impact o f  investment variability on 

solvency was approximately equal to that o f  claim variability. To  study the effect o f  asset 

mix on insolvency, all variables were simulated stochastically, and the mix of  assets was 

changed while the parameters for the other variables remained constant. Pentakainen et. 

al. observed that insolvencies increased from .5% per year to 1% per year when the 

percentage of  assets invested in equities was raised from 30% to 50%. 

The British Working Party study evaluated insurer financial strength on an "emerging cost" 

basis. That is, the cash flow of  a company is modelled and a company is considered 

insolvent only if the income from premium and investments is less than the amount 

needed to pay losses and expenses. Thus, asset variability will not affect the company's 

claims paying ability as long as assets are not sold at a loss before maturity in order to 

meet loss and expense payments. 

In the British Working Party study 's , the number of  insolvencies due to different asset 

mixes varied between 7 per 1000 simulations and 45 per 1000 simulations when the 
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analysis was performed on a runoff basis. Insolvencies ranged between 30 per 1000 

simulations and 76 per 1000 simulations when future business was incorporated into the 

analysis. A low percentage of insolvencies was associated with a low percentage 

investment in stocks. The high percentage of insolvencies occurred when 10096 of assets 

were invested in stocks. 

The simulation results seem to indicate that companies which invest conservatively, i.e. in 

high quality bonds and stocks, with a relatively low percentage of company assets invested 

in equities and a moderate percentage invested in long term bonds, face a small but 

significant probability of  insolvency due to asset variability. Increasing investments in risky 

assets increases the probability of  insolvency. 

Contemporary insurance company managements invest in many assets besides the 

conventional kinds of assets modeUed in this and other studies. 'The risks associated with 

these assets merit evaluation in future studies of  the impact of asset risk on insurance 

company solvency. The highly publicized insolvency of Executive Life and the 

downgrading of Prudential Insurance Company's Moody's ratings illustrate that asset risk 

is a serious risk to insurance companies. In these two cases investments in junk bonds and 

real estate exposed the companies to significant decline in asset values. While the 

published research has not examined the impact of  junk bond and real estate variability on 

insurance company financial strength, techniques such as those described in this paper 

could be used for such an investigation. 
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The National Association of Insurance Commissioners is drafting reguladom which will 

replace current capital requirements for property and casualty insurance companies which 

are based on ratios of premium to surplus with capital requirements based on the 

underwriting and investment risks of each company. A significant percentage of  the new 

capital requirements will be allocated to investment risk. 

For purposes of determining the new capital requirements, the assets are classified into 

different categories depending on the kind of investment and the riskiness of each 

investment. The new capital requirement will be a percentage of the value of assets in 

each category. Capital will be required for all asset categories, including cash. For low 

risk assets such as high quality bonds, the proposed capital requirement is small (.396). 

For high risk assets such as common stocks, the proposed capital requirement is 

large(30%). 

While the proposed requirements appear to be an improvement over capital requirements 

based on ad hoc rules, the capital requirements for each asset category were arrived at 

judgementaily. Simulation studies such as those describes in this paper could be used to 

evaluate the proposed regulations and determine appropriate capital requirements for each 

asset. This could be accomplished by finding the amount of surplus for each asset required 

to reduce the probability of ruin to a very low level. In addition, the proposed 

regulations ignore asset liability management in the determination of capital requirements. 
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A surplus requirement for the risk of asset liability mismatch seems appropriate and could 

be determined through simulation research. 
/ 
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CONCLUSION 

Procedures have been presented in this paper which can be used to model changes in the 

values of assets and in the yield of investments. Wilkie developed a group of interrelated 

models for approximating bond and stock market performance. The Finnish Working 

Party developed a more general model which relates the returns of a given asset category 

to inflation and to a random component independent of inflation. Using procedures 

similar to those of the British Working Party and the Finnish Working Party, asset models 

can be incorporated into a more comprehensive model of insurance company income 

flows, to quantify probabilities of insolvency and risk margins needed to prevent 

insolvency. 

The models presented in this paper appear to violate some of the technical assumptions of 

the underlying assumed theoretical distributions. However, these models are intended to 

provide a reasonable approximation of asset variability in a simulation and are not 

intended for use in forecasting. The British Working Party and the Finnish Working Party 

have found models similar to those presented in this paper to be useful for simulation. 

The simulation models discussed in this paper indicate that asset risk is a significant risk to 

insurance companies and that the mix of assets affects the company's probability of  ruin. 

Thus, a company which invests in risky assets requires a larger amount of surplus to avoid 

insolvency. The risk based capital regulations proposed by the NAIC would relate the 
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capital requirements of  property and casualty insurance companies to the riskiness of assets 

purchased by the company. Simulation models such as those described in this paper could 

be used to quantify surplus requirements for different classes of assets. 

Future research in the evaluation of the impact of investment risk on insurance company 

solvency should incorporate an analysis of a broader spectrum of assets, including junk 

bonds and real estate. In addition, a more complete model, in which premiums, loss~s and 

expenses are modelled stochastically, along with investment variables, would be a useful 

tool in the evaluation of investment risk. 
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APPENDIX I - Time Series Models 

The techniques which are used to derive parameters for the models describe.d in this paper 

are presented in this appendix. 

Univariate ARMA Models 

ARMA (Auto Regressive Moving Average) models have been applied perhaps more 

frequently than any other procedure to the modelling of  investment returns. 

The ARMA model is denoted: 

(x ,  - u ) -  ~, (x,.~ -~) - ... ~. ( ~ .  -~) = o, I,., + ...co I,.; + L 

Where X, represents an investment return at time t. The ARMA models are linear models 

which relate the investment return at time t to the investment return for prior time periods 

plus random shock terms for prior time periods. The random shock terms are assumed to 

be independent and identically distribut~ed. The investment return series is also assumed to 

be stationary. A stationary series is series for which the first two moments are constant 

over all time periods. That is, neither the mean nor the variance of  the series changes over 

time. 

Series for which the mean value shifts over time can frequently be transformed into 

stationary series by differencing. ARMA modelling procedures can then be applied to the 
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differenced series. For the remainder of  this discussion, it will be assumed that all data has 

been suitably differenced. 

One of  the most tractable of  the ARMA models is the autoregressive model. For this 

model the returns at time t are dependant upon the returns at prior time periods. The 

AR(n) model is denoted as follows: 

x, -u = ¢,, ( x , . , -u )  + ~, (x , . , -u )  / +...  ¢. (x , . - t~)  + e, 

The parameter ~ is the mean of  the series and is usually estimated by the mean of  the 

sample. 

O' 1-1 

n 

The simplest autoregressive model is an AR(1) model or an autoregressive model o f  order 

1. The value of  the variable at time t depends only on its value for the prior period. This 

model is denoted: 

x , -  ~ = ¢(X,., -u) + e, 

The parameter ¢ for the AR(1) model is most readily estimated using the autocorrelation 

coefficient. That is'*: 
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N-I  

~. ( x , -  ¢)(x,_, - ~) 
I - I  

/¢-! 

t-I  

where 0, the autocorrelation coe~cient measures the linear correlation between X, and X,.i. 

This estimate of  ~ is known as the conditional least squares estimate. It  can also be 

obtained by regressing (X, - IX ) on (X,., - IX ). 

A sLightly different estimate for ¢ is obtained using the unconditional.least squares 

estimate~r: 

N-I 

(x,- , . ) ( x ._~  - , . )  
. t - I  

N - I  

( x ,  - .)2 
t-2 

An illustration o f  both estimation procedures is displayed on Exhibit A-1. The parameter 

is estimated both for inflation rates and the log of  (1 + inflation rate). 

The parameters of  higher order autoregressive models can be estimated using linear 

regression. This is accomplished by regressing (X,-~. ) on (X,~ - 0. ), (X,.2 - IX ) etc. The 

number of  Lagged values of  X to include in the model can be determined by evaluating the 

standard error o f  the regression (or alternatively the R2). When the decrease in the error 

(or increase in R 2) which occurs after adding an additional term is not significant, no 

further additional autoregressive parameters are added. 
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Estimation of Autoregressive Parameter 
Exhibit A-1 

Condit ional Least Squares 
Phi (i) = 0,7347 

Phi (In(1 +i)) = 0.7373 

Uncondit ional Least Squares 
Phi (i) = 0.7626 

Phi (In(l+i)) = 0.7662 

Inflation (i(t)-mu)* 
Year Rate (i(t)-mu) ^ 2 (i(t+ 1 )-mu) 

Natural 
Log 

(1 + infl rate) (i(t)-mu) ^ 2 
(i(t)-mu)* 

(i(t+ 1)-mu) 
1960 0.0148 0.0013 0.0015 0.0147 0.0011 
1961 0.0367 0.0019 0.0017 0.0067 0.0018 
1962 0.0122 0.0014 0.0013 0.0121 0.0013 
1963 0,0165 0.0011 0.0013 0.0164 O.0010 
1964 0.0119 0.0015 0.0012 0.0118 0.0013 
1965 0.0192 0.0010 0.0005 0.0190 0.0009 
1966 0.0335 0.0003 0.0003 0.0330 0.0002 
1967 0.0304 0.0004 0.0001 0.0299 0.0003 
1968 0.0472 0.0000 -0.0000 0.04.61 0.0000 
1969 0.0611 0.0001 0.0001 0.0593 0.0001 
1970 0.0549 0.0000 -0.0001 0.0534 0.0003 
1971 0.0336 0.0003 0.0003 0.0330 0.0002 
1972 0.0341 0.0003 -0.0006 0.0335 0.0002 
1973 0.0880 0.0014 0.0027 0.0843 0.0013 
1974 0.1220 0.0051 0.0014 0.1151 0.0044 
1975 0.0701 0.0004 -0.0000 0.0678 0.0004 
1976 0.0481 0.0000 -0.0000 0.0470 0.0000 
1977 0.0677 0.0003 0.0007 0.0655 0.0003 
1978 0.09,03 0.0016 0.0033 0.0865 0.0014 
1979 O. 1331 0.0069 0.0061 O. 1250 0.0058 
1980 O. 1240 0.0054 0.0029 O. 1169 0.0047 
1981 0.0894 0.0015 -0.0005 0.0856 0.0014 
1982 0.0387 0.0001 0.0001 0.0380 0.0001 
1983 0.0380 0.0002 0.0001 0.0373 0.0001 
1984 0.0395 0.0001 0.0001 0.0387 0.0001 
1985 0.0377 0.0002 0.0005 0.0370 0.0001 
1986 0.0113 0.(X)I 5 0.0002 0.0112 0.0014 
1987 0.0441 0.0(XX) 0.0001 0.0432 0.0000 
1988 0.0414 0.0001 0.0000 0.0406 0.0001 
1989 0.0482 0.0471 

0.0014 
0.0015 
0.0012 
0.0012 
0.0011 
0.0005 
0.0003 
0.0000 

-0.0000 
0.0001 

o0.0001 
0.0002 

-0.0005 
0.OO24 
0.0013 

-0.0000 
-0.0000 
0.0006 
0.0029 
0.0052 
0.0025 

-0.0004 
0.0001 
0.0001 
0.0001 
0.0004 
0.0002 
0.0030 
0.0030 

Sum 1.5077 0.0344 0.0253 

Sum* 0.0332 

Note: 
Inflation rates from Federal Reserve Bulletin 
*Summation is for uncomditional Least Squares Estimate 

1.4557 0.0303 

0.0292 

0.0~4  
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An tkRM A processes with no autoregressive terms is a MA (Moving Average) process. 

This process is denoted. 

X,-/~ = e,- o~ e,. I ... -one,~ 

Investment returns are from a moving average process if returns at time t are related to 

unexpected changes in returns during prior periods. The estimation of the parameters of  a 

moving average process requires the use of  iterative techniques. Appendix III describes a 

straightforward procedure for estimating the parameters of  an MA(1) model. The 

procedure illustrated uses a grid search technique to find the value of  the parameter o 

which minimizes the deviation between the sample and fitted values. 

Iterative techniques must also be used to estimate the parameters of  ARMA models which 

include both autoregressive and moving average terms. In Appendix III the use of  a grid 

search procedure to estimate the parameters of  an ARMA(1,1) model is illustrated. 

Although a grid search procedure can be used to estimate the values of  ARMA parameters, 

such an approach becomes cumbersome and time consuming as the number of  parameters 

increases. When performing time series analyses it is customary to use specialized statistical 

software to identi~ appropriate models and compute the estimates of  the ARMA 

parameters. The software uses numerical techniques which derive parameter estimates 

much more quickly than grid search techniques do. Although investment models more 

complicated than the ARMA(1,1) model are rarely used, specialized time series software 

incorporates procedures for model testing and identification. Since this software is widely 
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available and inexpensive, it is assumed that individuals wishing to use ARMA models will 

purchase the appropriate software. 

Another procedure which has been found useful in modelling time series data is 

exponential smoothing. This model is denoted: 

X, = a X,,  + a ( 1 - a )  X,.2 + . .  a ( 1 - a )  "* X,.. *' 

To be modeaed by exponential smoothing, the forecast, or expected value of  a variable at 

time t is an average of  all prior observations of  the variable, with the weight assigned to 

prior observations decaying exponentially as the distance (in time) between the forecast 

value and the observation increases. Thus more recent observations are given more 

weight. The exponential smoothing model can also be expressed as a time series model 

given by: 

X t -  ~ = a ' E e  i + e ,  t9 

i< t  

This model is an infinite moving average model which is nonstationary. If the series is 

differenced, the resulting stationary series follows MA(1) process: 

Z, = (a- l )  e,~ + e~ 

where Z, = X,- X,.l 

In this paper, models are presented in which exponential smoothing is applied to the 

inflation rate. Many financial investigations use the expected inflation rate, rather than the 
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actual inflation rate, as an explanatory variable in a model. The expected inflation rate 

might reasonably be assumed to be an exponentially smoothed average of  past inflation 

rates. 

The exponential smoothing parameter is derived using a procedure similar to the 

derivation of  the MA(1) parameter. The procedure is illustrated in Appendix IV. 
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APPENDIX II - Multivariate Time Series 

Multivariate ARMA Models 

The multivariate/iRMA model is an extension of  the univariate ARMA model to an array 

of  time series variables. This model can be denoted 

X , -  ~ = #,(X,. ,  - u )  ... + #.  (X,~, -~)  + V,-  e ,  V,., - e .  V,~ 

Where X is a vector o f  variables observed over a number o f  time periods, # and e are 

arrays o f  parameters and V is a matrix o f  variances and covariances. 

Because o f  the complexity involved in the estimation o f  multivariate ARMA parameters, 

only special cases will be considered. The first special case to be considered will be that o f  

the bivariate ARMA model which is denoted. 

Y,- u,-¢~ (Y,., - U,) -... ¢.  (Y,.. - U,) = 

v, ( ~ , -  ~.) +.. .  vo ( x , , .  - ~,.) 

+ Ol~.l + ..O.~.. + 

The random variable Y (known as the output series) is related to prior values o f  itself, 

prior values o f  another independent variable, X (also known as the input series) and prior 

shock terms. The parameter p determines the lag between Y, and the impact o f  X. 
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Two statistical tools have been found to be usefial in the preliminary estimation of  

parameter values of  a bivafiate ARMA model. These are the cross correlation function and 

the transfer fi.mction. 

The cross covariance between t w o  variables Y and X at lag t is given bya*: 

y~ (k) = E(Y,-/.I.,) (X,÷~ - V.) and 

v .  (k) = E(X:  ~.) (Y,.~ - ~,) = E(Y, . , -~ )  (X,-  ~) = v . ( - k )  

The cross covariance function is not symmetric, since 'r,. (k) is not equal to ? . (k)  but to 

? .(-k) .  The cross correlation function between Y and X at lag k is defined as: 

p~k) 
O.y 01 

An estimate of  P,~ can be derived using the sample cross correlation for lag k, C .  whereat: 

CFX " 

R-k 

t - I  

Values of  o. and o r can be estimated using the sample standard deviations. 

Although the cross correlation function may give an indication of  the relationship between 

Y and X, it is not typically used directly to estimate the parameters o f  coefficients relating 

635 



X,, X,,, etc. to Y,. Because o f  autocorrelations between Y, and its prior values and between 

X, and prior values o f  X, the properties o f  the cross correlation fi.mction are complex and 

difficult to determine. Therefore a process oi led "prewhitening" is performed on both 

series to remove the effect o f  the correlation between the variables and their prior values. 

This procedure was applied to all series used to develop the models in this paper. The 

"prewhitening" process is performed as follows2~: 

1) Fit a univariate ARMA model to the input series X. 

2) Using the estimated ARMA parameters, compute the residuals o f  the input series. 

Denote the residual series as r. 

3) Using the same ARMA parameters as used in step 2) compute the residuals for the 

output  series Y. Denote this residual series as z. 

Then the coefficients o f  the fimction 

7~ t -- Vor t + y I rt_ 1 [ +.. .  V j  rt_ 1 

are calculated. The coefficients relating the series r to ~ are known as the transfer 

function. 

The transfer filnction coefficients are related to the cross correlation coefficient between z 

and r. This relationship is expressed asS: 
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,t ~ , (k)  o ,  
a - - -  p ~ ( k )  

Oy Oy 

The sample standard deviations and cross correlations can be used as estimates o f  a,, or and 

p= (k) to derive the v~. 

To illustrate the transfer fi.mction approach, the relationship between inflation and the 

change in market value (capital appreciation) on long term government bonds is modelled. 

First, both series are prewhitened. To prewhiten these series, an ARMA model is fit to 

annual inflation rates from 1926 through 1987. The model fit is the AR(1) model. 

X,- ~,, = .66 (~ . , -  li,) + 

The residual, or, prewhitened inflation series is computed using: 

e,  = ( Y h -  ~.,) - . 6 6  (X~., - ~. ,) 

Residuals for the long term bond series are also calculated using the same formula for e, as 

is used for the inflation series. The cross correlations between these two residual series is 

then calculated. 

Figure 7 presents the cross correlation fimction or the cross correlation coefficients, C .  (k) 

for the first 15 lags for the prewhitened long term bond and inflation series. The 

comparison of  C,~(k) to - -  
1 . 9 6  gives an indication of  whether the correlation at a given lag 
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Long Term Bond Capital Appreciation 

Figure 7 
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Exhibit A-2 

Transfer Function 
Long Term Bond Capital Appreciation 

Lag 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Transfer 
Function 

Coefficients 
-0.7947 
0.1025 
0.0772 
0.3369 

-0.2277 
-0.1616 
0.0953 
0,1054 
0.1284 

-0.1963 
-0.3143 
0.2149 
0.1281 

-0.1453 
0.0165 

-0.0997 
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is significant. Note that only the lag 0 coefficient appears to be significant. The result is 

not surprising, since an increase in inflation will cause the market value o f  bonds to drop. 

The transfer fianction coefficients relating bond capital appreciation to inflation are shown 

on Exhibit A-2. Based on the observed coefficients it is hypothesized that the transfer 

function is v0 = -.8. or 

Y,-/~y -~ -.8 (X,-/~,) +N, 

N, is a residual series independent of  inflation which can be modeled as an ARMA process. 

Using the model above, a residual series is computed for the long term bond returns, by 

adding .8 o f  X, - O., to each Y, - nCey. The following white noise model was fit to the 

residual series: 

N, = .07z~ 

where z is a standard normal variable and the quantity .07z, is the random shock which for 

each period. 

Multivariate Autoregression 

An alternative to the transfer fimction procedure for modeling multivariate time series 

processes is multiple regression. For many time series processes, the usual assumptions for 

multiple regression are violated. In particular, the assumption that the error at time t is 
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uncorrelated with the error o f  any prior time period is frequently violated. The Durbin 

Watson statistic is commonly employed to test for the violation o f  this assumption. 

If  the errors follow a first order autoregressive process, there are established procedures for 

estimating the regression parameters. One of  these procedures is the Cochrane-Orcutt 

procedure:'. 

Suppose: Y, = a + b, X1, + b, X2, + e, 

e, = Pe, q + n, 

Where n is an independent identically distributed noise term. The Cochrane-Orcutt 

procedure applies a transformation to the variables which eliminates the serial correlation. 

The procedure is performed as follows: 

(1) Use multiple regression to derive a preliminary estimate of  a, bl and b2 

(2) Compute e, = Y,- 1~, = Y,- (a+blXl,+b:X2,) 

(3) Use the sample autocorrelation coefficient o f  ee, at lag 1 as a preliminary estimate of  p 

a- I  

- r - E e~ et+l 
t°| 

(4) Compute 

(5) 

Y,' = Y, - rY,., 
XI, '  = X1, - rX1,.l 
X2,' = X2, - rX2,  

Using multiple regression, regress Y' on Xi '  and X2'. The new estimated 
parameters are a', b,' and bz'. 
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(6) Recompute g using a" = a'/(1-r), bl' and b:' instead of  a, bl and b2. That is 
e ~  = Y,- (a" + b,'X1, + b~'X2,) 

(7) Perform steps (2) - (6) until the parameter estimates converge. 

To  illustrate an application of  the Cochrane-Orcutt procedure, stock dividend income is 

regressed on expected inflation. Figure 8 shows the cross correlation fimction between the 

log of  stock dividend income and inflation. Beginning at lag 1 the cross correlations are 

relatively large and seem to persist, suggesting that dividend income may be related to a 

weighted average of' past inflation rates. If  expected inflation is modelled as an 

exponentially smoothed average of  past inflation, then stock income may be related to 

expected inflation. Because of  the random variability of' the cross-correlation coefficients, it 

is difficult to determine appropriate smoothing parameters using the transfer function 

approach. An alternative approach is to perform a regression in which expected inflation is 

an independent variable. 

The following regression was fit to stock and inflation data. 

In (SI,) = a + b, E(i,.,) 

where SI is stock dividend income at time t, and E(i,) is the expected inflation rate at time 

t. Several values of  expected inflation are computed using different values for the 

smoothing parameter. It was found that In(SI) was most strongly correlated with a 

lagged value of  expected inflation computed using a smoothing parameter o f  .05. The 

Durbin Watson statistic o f .175  gave evidence of  significant positive autocorrelation, 

therefore the Cochrane-Orcutt procedure was used to estimate the parameters of  the 

model. 
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In(Stock Dividend Income) 

Figure 8 
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Exhibit A-3 compares the initial fitted parameters and the parameters fit after the 

Cochrane-Orcutt procedure was applied. 
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Exhibit A-3 

R e g r e s s i o n  Resul ts  
Stock Div idend INcome 

Oriqinal Regression 
Variable Coefficient T Statistic 

Constant -0.187 -0.263 

E(inflation(t-1 )) 25.133 8.388 

Cochrane-Orcutt Results 
Variable Coefficient T Statistic 

Constant -3.630 -9.804 

E(inflation(t-1 )) 22.869 2.378 

R ̂  2 = 0.536 

Significance 0.001 

R ^ 2 = 0.088 

Significance 0.021 
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APPENDIX III:  Estimation o f  Parameters o f  ARMA Models 

The procedure for o f  estimating parameters for a moving average process is illustrated for 

the MA(1) model: 

X~- ~ = e,- e e,. l 

Exhibit A-4 presents the derivation o f  Moving Average parameters for the inflation rate 

series zs. First, the sample mean is used as the estimate o f  u. An initial estimate o f  e 

between 0 an 1 is selected. Then, assuming e,, the shock term for the first inflation rate in 

the series to be 0, an estimate of, el, the shock term for the second term in the series is 

derived using: 

el = Xl -V, + eeo = Xl -V, 

Subsequent residuals are estimated using the recursive equation: 

---- X~ "/J + e e,.t ~ 

The square of  each residuaL is calculated and then the sum of  the squared residuals is 

calculated. A grid search technique is used to find the value o f  e which minimizes the sum 

of  the squared errors (SSE). The result o f  such a grid search is presented on Exhibit A-4. 

The Lotus data table command was used to compute the SSE for various values of  o. 

The minimum SSE occurs when a value of - .735  is used for e. 

646 



Exhibit A-4 

Derivation of Movinq Averaqe Parameters 

Squared 
Inflation Residual Residual 

Year Rate e e ^ 2 
1960 0.0147 -0.0338 0.0011 
1961 0.0067 -0.0170 0.0003 
1962 0.0121 -0.0239 0.0006 
1963 0.0164 -0,0146 0.0002 
1964 0.0118 -0,0260 0.0007 
1965 0.0190 -0.0104 0,0001 
1966 0.0330 -0.0079 0.0001 
1967 0.0299 -0.0128 0.0002 
1968 0.0461 0,0070 0.0000 
1969 0.0593 0.0057 0.0000 
1970 0.0534 0.0008 0.0000 
1971 0.0330 -0,0160 0.0003 
1972 0.0335 -0.0032 0.0000 
1973 .0.0843 0.0382 0.0015 
1974 0.1151 0.0385 0.0015 
1975 0.0678 -0.0091 0.0001 
1976 0.0470 0.0051 0.0000 
1977 0.0655 0.0132 0.0002 
1978 0.0865 0.0282 0.0008 
1979 O. 1250 0.0557 0.0031 
1980 O. 1169 0.0274 0.0008 
1981 0.0856 0.0169 0.0003 
1982 0.0380 -0.0230 0.0005 
1983 0.0373 0.0057 0.0000 
1984 0.0387 -0.0140 0.0002 
1985 0.0370 -0.0013 0.0000 
1986 0.0112 -0.0364 0.0013 
1987 0.0432 0,0214 0.0005 
1988 0.0406 -0.0237 0.0006 
1989 0.0471 0.0159 0,0003 

Mean 0.0485 0.0002 
S.D. 0.0318 0.0224 

Note: 
Inflation rates from Federal Reserve Bulletin 

Data Table 
I Selected Theta: -0.7351 

Theta SSE 

-0.740 0.0150917 
-0.739 0.0150907 
-0.738 0.0150897 
-0.737 0.0150889 
-0.736 0.0150882 

- 0 . 7 3 5  0 . 0 1 5 0 8 7 5  ! 
-0.734 0.0150870; 
-0.733 0.0150865 
-0.732 0.0150862 
-0.731 0.0150859 
-0.730 0.0150857 

Minimum SSE 0.0150857 

64? 



In Exhibits A-5 and A-6 the estimation of the parameters of an ARMA (1,1) model is 

illustrated using the inflation rate data. The following recursive equation was used to 

compute the values of e,. 

e, = (X,  -u )  - ~ ( X , ,  -u )  + o e,,, 

A grid search is used to find the value of ¢ and e which minimize the SSE. 
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Exhibit A-5 

Derivation of ARMA (1,1) Parameters 

Residual 
Inflation Residual Squared 

Year Rate e e ̂  2 
1960 0.0147 
1961 0.0067 -0.0215 0.0005 
1962 0.0121 -0.0018 0.0000 
1963 0.0164 -0.0095 0.0001 
1964 0.0118 -0.0132 0.0002 
1965 0.0190 -0.0017 0.0000 
1966 0.0330 0.0029 0.0000 
1967 0.0299 -0.0105 0.0001 
1968 0.0461 0.0134 0.0002 
1969 0.0593 0.0063 0.0000 
1970 0.0534 -0.0043 0.0000 
1971 0.0330 -0.0165 0.0003 
1972 0.0335 0.0016 0.0000 
1973 0.0843 0.0441 0.0019 
1974 O. 1151 0.0257 0.0007 
1975 0.0678 -0.0320 0.0010 
1976 0.0470 0.0010 0.0000 
1977 0.0655 0.0175 0.0003 
1978 0.0865 0.0201 0.0004 
1979 O. 1250 0.0449 0.0020 
1980 O. 1169 0.0028 0.0000 
1981 0.0856 -0.0051 0.0000 
1982 0.0380 -0.0306 0.0009 
1983 0,0373 0.0085 0.0001 
1984 0.0387 -0.0068 0.0000 
1985 0.0370 -0.0027 0.0000 
1986 0.0112 -0.0292 0.0009 
1987 0.0432 0.0299 0.0009 
1988 0.0406 -0.0179 0.0003 
1989 0.0471 0.0112 0.0001 

Mean 0.0485 0.0009 
S.D. 0.0318 0.0195 
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D e r i v a t i o n  o f  A R M A  (1,1) P a r a m e t e r s  
Exhibit A-6 

Data Table 

Theta: 

Phi Theta Minimum 
-0.48 -0.46 -0.44 -0.42 -0.4 -0.38 SSE 

0.500 
0.520 
0.540 
0.560 
0.580 
0.600 
0.620 
0.640 
0.660 
0.680 

0.011162 0.011159 0.011192275 0.0112561 0.0113481 0.0114660 
0.011118 0.011104 0.011125906 0.0111786 0.0112596 0.0113662 
0.011088 0.011063 0.011073755 0.0111158 0.0111861 0.0112820 
0.011071 0.011036 0.011035823 0.0110677 0.0111278 0.0112133 
0.011067 0.011021 0.011012109 0.0110342 0.0110845 0.0111602 
0.011077 0.011021 0.011002613 0.0110153 0.0110563 0.0111227 
0.011101 0.011035 0.011007336 0.0110110 0.0110432 0.0111007 
0.011138 0.011063 0.011026276 0.0110214 0.0110452 0.0110943 
0.011188 0.011105 0.011059436 0.0110464 0.0110622 0.0111035 
0.011252 0.011160 0.011106813 0.0110861 0.0110944 0.0111282 

0.0111598 
0.0111045 
0.0110631 
0.0110355 
0.0110121 
0.0110026 
0.0110073 
0.0110214 
0.0110464 
0.0110861 

Minimum SSE 
I 0.011067 0.011021 0.011002613 0.0110110 0.0110432 0.0110943 0.01100261 
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APPENDIX IV: D E R I V A T I O N  OF EXPONENTIAL S M O O T H I N G  PARAMETER 

The exponential smoothing parameter is derived using a procedure similar to the 

derivation of  the MA(1) parameter. First, an initial estimate for the forecast value for the 

first observation is needed. In the example shown on Exhibit A-7, the average of  the first 

five observations is use for X,. Next, recursively compute the forecast value for all 

subsequent observations using the following formula. 

e ,_ ,  - x , _ ,  - e , _ ,  

Compute e~ ~ for each observation and sum the result. Then use a grid search procedure to 

find the value of  X which minimizes the sum of  the squared errors. As seen on Exhibit A- 

4, this procedure produces an estimate of  a o f  .92 for the inflation series. 
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O~ 

Exponent ia l  S m o o t h i n g  of Inflation Rate 

Inflation Forecast Error 
Rate Value Error Squared 

0.006877 0.0132 -0.0065 0.03004 
0.012126 0.0072 0.0049 0.03002 
0.016365 0.0117 0.0346 0.00002 
0.011829 0.0160 -0.0042 0.00002 
0.019018 0.0122 0.0069 0.00005 
0.032951 0.0185 0.0145 0.00021 
0.029947 0.0318 -0.0318 0.00000 
0.046119 0.0301 0.0160 0.00026 
0.059306 0.0448 0.0145 0.00021 
0.053445 0,0581 -0.0047 0.00002 
0.033047 0.0538 -0.0208 0.00043 
0.033531 0.0347 -0.0012 0.00000 
0.084341 0.0336 0.0507 0.03257 
0.115112 0.0803 0.0348 0.00121 
0.067752 0.1123 -0.0446 0.00199 
0.046979 0.0713 -0.0243 0.00059 
0.065506 0.0489 0.0166 0.00027 
0.086452 0.0642 0.0223 0.03050 
0.124957 0.0847 0.0403 0.00162 
0.116893 0.1217 -0.0048 0.00002 
0.085827 0.1173 -0.0317 0.00100 
0.037969 0.0882 .,0.0502 0.03252 
0.037295 0.0420 -0.0047 0,00002 
0.038739 0.0377 0.0011 0.03000 
0.037006 0.0387 -0.0016 0.00000 
0.011236 0.0371 -0,0259 0.00067 
0.043155 0.0133 0.0298 0.0(X)89 
0.042336 0,0408 0.0016 0,03000 
0.044423 0 . 0 4 2 . 2  0.0022 0.03000 
0.051903 0.0442 0.0077 0.00006 

Data Table 
I Selected Alpha: 0.921 

Alpha SSE 

0.85 0.09098520 
0.86 0.09097036 
0.87 0.09095715 
0.88 0.09094589 
0.89 0.09093690 
0.90 0.09093052 
0.91 0,09092711 
0.92 0.09092704 
0.93 0.09093070 
0.94 0.09093848 
0.95 0.09095082 
0.96 0.09096812 
0.97 0.09099085 
0.98 0.09101947 
0.99 0.09105445 
1,00 0.09109630 

Minimum SSE 0.09092704 

Mean 0.0497 0.0484 0.0014 0.0005 

S.D. 0.0312 0.0313 0.0225 
Notes: 

Inflation rates from Federal Reserve Bulletin and Bureau of Labor Statistics 
Parameter Fit shown is for inflation rates from 1926 - 1990 
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APPENDIX V: ESTIMATION OF GAMMA PARAMETERS 

When using a three parameter gamma to model the random shock term of  a financial 

series, the method of  moments can be used to derive parameters. The moments of  the 

three paramrter gamma are: 

E(x) - s + .E. 
B 

Vat(X) - ..E. 
B2 

coefficient o/slww,,ness F_.,(X- i~) 3) 2 
3 I 

, , u x )  ~'-"x" i a "~ 

The coefficient o f  skewness can be used to determine a. Then, B can be determined by 

equating the sample variance and the theoretical variance. Finally the sample mean is used 

to derive s. The coefficient of  skewness of  the residual o f  the inflation rate data used in 

this study was 1.246, therefore the fitted a was 2.576. Using the mean and variance o f  0 

and .0013, B and s were estimated to be 1981 and -.001. I t  should be noted that the 
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three parameter gamma random variable has positive probability only for values greater 

than s. Values lcss than the fitted s did occur in the actual data. 

As an alternative to the method of  moments, s can be set equal to the minimum observed 

residual with the parameter a estimated from the coefficient of  skewness. Then B is 

estimated by equating the theoretical and sample mean. 
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