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Abstract

This paper presents a dynamic method to estimate fair value insur-
ance liabilities for the whole book (with separate but correlated lines )
of business. The model studies the aggregate liability without assum-
ing independence of individual losses. A non-traditional approach is
proposed which estimates the fair value liability based on a stochastic
meodel of individual losses. Using the contingent claim analysis, the
fair value liability are approximated by solving a partial differential
cquation. Parameters estimation, correlations measurement and ap-
plications of the model are also discussed in the study., Comparisons of
the proposed method to the existing methods are given for application
purpose.
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1. Introduction

This study addresses the evaluation of insurance liabilities on a fair value
basis. The fair value of liabilities is, as stated in the white paper by the Ca-
sualty Actuarial Society's Task Force on Fair Value Liabilities: “the fair value
of the market value, if a sufficiently active market exists, OR an estimated
market value, otherwise” (CAS 2000).

Fair value estimates of insurance liability reflect expected cash flows, the
time value of money and an adjustment for risk. Over last fifteen years,
many methods for estimating the fair value of property/casualty insurance
liabilities has been introduced. All of these methods have their own advan-
tages and disadvantages as summarized in the Casualty Actuarial Society’s
Task Force white paper (CAS 2000). Among various methods, there are two
major approaches used to compute risk loads for the fair value Hability that
are represented in the literatures: the finance approach and the actuarial ap-
proach. The classical finance approach, is used in such methods as CAPM (
D’Arcy and Doherty (1988), Fairley (1987), Feldblum (1990), Mahler (1998),
and Myers and Cohn (1987) ), the internal rate of return ( Cummins (1990) ),
the single-period risk-adjusted discount method ( Butsic (1988), and D’Arcy
(1988) ), the method based on underwriting data (Myers and Cohn (1987)),
and the direct estimation of market values method (Allen, Cummins and
Philips (1998), Ronn and Verma (1986) ). The finance approach evaluates
systematic risk by measuring the correlation between insurance companies
returns from underwriting and market returns on its shareholder’s equity.

The traditional actuarial approach is to use the aggregate probability
distribution-based risk loads for the market risk adjustment of the liabilities.
The actuarial based methods often explicitly incorporate process (diversi-
fiable) and parameter (nondiversifiable) risk components into the risk load
formulas. For a multiple line insurance company, liability (includes aggregate
claim and expenses, taxes, et.c.) analysis estimates the total random losses
for a book of insurance product line by studying possible aggregate claim
distributions. Such distributions are probability distributions of the total
dollar amount of loss under one or more insurance policies. They combine
the separate effects of the underlying frequency and severity distributions.
Assuming families of distributions (e.g. lognormals or shifted gammas) such
that if each separate distribution is a member of these families, a closed
form and elegant solution is possible. These methods can also be used to
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value unearned premium reserve and incurred but not reported reserves. (See
Beard, Pesonen and Pentikainen (1984), Bhlmann (1970), Embrechts (1995),
Hayne (1989), Heckman and Meyvers (1983), Heckman (1999), Kreps (1990
and 1998), Meyers and Nathaniel (1983), Meyers (1991, 1994 and 1998),
Panjer (1992), Philbrick (1994). Wang (1997) ).

Among all the existing methods, this approach is most widely used in
actuarial practice and it continues to develop. The method can be used with
company-specific data and can be used by lire to reflect unique line of busi-
ness risks. As indicated in the Casualty Actuarial Society’s Task Force white
paper, there are some unsolved problems associated with this approach such
as measuring correlations of lines or segments of the business with other seg-
ments, estimating/ calibrating model parameters, and establishing a guide-
line for the applications of available methods. This paper presents a dynamic
method to estimate the fair value of insurance liabilities for the whole book
{with separate but correlated multiple lines) of business. The model studies
the aggregate liability without assuming independent individual losses based
on a non-traditional version of the collective risk theory. A new approach
is proposed which estimates the fair value of insurer's liability based on a
stochastic model of individual losses. To reflect the changing of the aggre-
gate liability over time, a continuous model is presented using contingency
claim analysis. By using the contingent claim analysis, the fair value liablity
are approximated by solving a partial differential equation. Parameters es-
timation, correlations measurement and applications of the model are also
discussed in the study.

The paper is organized as follows: The mathematical model for fair value
of liability is presented in the next section. Several applications of the model
and case studies are presented in Section 3. In the following section, the
comparison of the new method to the existing methods will be addressed.
Section 5 summarizes and concludes the paper.

2. Theory

This section presents the mathematical model for the valuation of fair value
liability. To reflect the changing of the aggregate liability over time, a con-
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tinuous model is presented using contingency claim analysis. We begin with
the simplest case, where it is assumed that correlation among the classes
of business are all a result of one underlying force (risk source) that affects
different classes.

2.1 Mono-line of Business

For a specific line of business and a specifific accident year t, we define
{X(t),t > 0}, as the instantaneous ulltimate loss (includes claim, expenses
and taxes) process, and {L(t),t > 0}, as the aggregate of fair value liability
process over the period of {0,¢] .

Assume the instantaneous loss amount X (¢)dt between time t and time ¢-+d¢t
is described by a general stochastic process of the form:

dX = p(t, X)dt + o(t, X)dW (2.1)

where p is the drift of X , W is a standard Brownian motion (Wiener pro-
cess),

and the local volatility ¢ is a deterministic function that may depend on both
the loss X and the time ¢.

Over the time period [0,T], the aggregate of fair value liability L(T") is de-
fined by the equation

LTy = [ X(©e g + PX(D)e,

where r is the discount rate (see Section 3.1 for the detail discussion), and F°
is assumed to be a continuous terminal function.

Remark: In many cases, there may be some delay in claims: information
might not be available until the end of the evaluation period (time T). There-
fore, in our definition, F is introduced, as a function of X (T'), to reflect situ-
ations like this. Notice that if F' is the zero function, the definition above is
the same as the conventional definition for the present value of the aggregate
loss. Notice also, that it is possible for X (t) to be negative, reflecting the

157



release of reserves upon deaths of annuitants. Similarly, the aggregate of fair
value liability over [0,t], L(t), is defined as

L{t) = /0' X (€)e"¢de + F(X(8)) e

Remark: The claim reserve process is R(t) = L(t) — C where C is either
the claims paid to date or the case incurred claims to date. Since C is a
known value, so we focus our analysis on L in this paper.

Next, we define the function u(t, z) as the expected present value of the
fair value liability over [0,t],

u(t,z) = E[L(t)] X(0) = 1] (2.2)
where z = X/(0).
Remark:  The function u(t,z) is the conditional expectational of the ag-

gragate of fair value liability, conditioned by X(0) = 2. When t = T, u(T, z)
is the expected present value of the fair value liability over [0, T}].

THEOREM 1 Suppose that o and u satisfy the linear growth condition

lu(t, ) + lo(t, 2)* < K*(1+ |2f?) (2.3)

forevery0<t<oo,z€ R,

|F(z)} < K*(1+ |2”)

for every z € R, where K is a positive constant; and

suppose that u(t, z) is continuous and is of class C12([0,T) x R). Then
the expected present value of the fair value liability u(t,z) can be calculated
by solving the following Cauchy problem

1
up = 502 Ugg + puz; —ru+2z;, n[0,T)x R (2.4)

and
u{0,z) = F(z); z€R (2.5)
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as well as the polynomial growth condition:
mazoe: |u(t,z)] < M(1+|zf); z€R (2.6)
for some M >0,1>1.

Proof This is a special case of Theorem 2, when d = 1. See the proof of
Theorem 2.

In the following examples, we consider several simple applications of The-
orem 1.

EXAMPLE 1

We first consider a mono-line liability reserve with the amount of cash flows
being certain: the instantaneous loss amount X (t)dt satisfy dX = poXdt,
where p is a constant.

Therefore p(t, X) = pgX, and ¢ = 0 in equation (2.1). We also ignore
the investment income, i.e. r = 0. Furthemore, we assume F(z) = 0.

According to equation (2.2), given that z = X(0), the expected present
value of the fair value liability is

ult,z) = B[ X(€)dg|X(0) =] = [ (zer)de = (e - 1),

The following figure (Figure 1) provides a graphic view of X (t) and u(t, x)
in this example.

159



10000 T T T T T T T T T

0 2 4 6 8 10 12 14 16 18
x-axis: time
Figure 1. The expected fair value liability u(t,x) (‘*+++") v.s. the

individual claims X{t) (‘—,).
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u(t, z) satisfies

u, = xert,
t
Uy = —eH®
Ho
Upr =0

It follows that

1

502uu+pu,—ru+1:0+u0qu—0+$:,uorux+z=u,,

and
u(0,z) =0 = F(z).

Therefore, Equation (2.4) and (2.5) hold.
Accoording to Theorem 1, the fair value liability can be estimated by
solving the partial differential equations:

U = poTUs + I,
and
u(0,z) = 0.
EXAMPLE 2

Consider a mono line liability reserve with uncertain cash flows:

u=0,0 =1 in Equation (2.1).

In this case, we have dX = dW.

Furthemore, ignore investment income (r = 0) and assume F(z) = F, a
constant function.

According to Equation (2.2),

u(t.z) = E{/Ot W(E)de + Fy |X(0) = 1] = xt + Fy.

It is easy to see that
u =, Uz = 0, and u(0,7) = F.
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Therefore, u(t,z) satisfies u; = %u” + z and u{0,z) = F, which are
Equations (2.4) and (2.5) when r = u=0,0 = 1.

Accoording to Theorem 1, the fair value liabilitv can be estimated by
solving the partial differential equations:

Uy = —Ugp + I,

2
and
U(O,l‘) = 1:10‘

EXAMPLE 3

Consider a monoline liability reserve with uncertain cash flows, when
pu=0,0=1and r=0.

Let F(z) be a bounded and continuous function, and consider a special
case of Equation (2.2):

u(t 1) = E[/(: W(E)dE + F(W (1) [X(0) = 2] = xt + E[F(z + W(t))]

First,
00
utx) = ot + [~ Fly)pttz,ydy,
—00
where
(tix,y) = L e i
bl T,y \/2—71'15

is the transition density of the one-dimensional Brownian family.
Then u(t, x) satisfies Equations (2.5):

uw(0,2) = lm ult,y) = Flz).

t—0y—or
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Next, one can varifies that

u,—:c+/ y)petzy)dy—1+/°°F(y)pu(t;z,y)dy-
Therefore

1
u =2z + 5“"’

which is Equation (2.4) when u(t,z) = zt + [, F(y) p(t; z, y)dy (see the
proof of Theorem 2 as to why (2.4) reduces to u, = %un + z in this case).

Accoording to Theorem 1, the fair value liability can be estimated by
solving the partial differential equations:

1
U = iun + z,

and
u(0,z) = z—»loiT—»x u(t,y) = F(z).

2.2 Multi-line of Business

In general, the correlation among the lines of business might be a result of
several underlying forces that affect different classes in different ways. For
example, risk sources might include economic inflation, judicial climate, tort
reform, property catastrophes, health of the economy, and rate levels.

We now discuss multiple line business with correlated risk by generalizing
the results in Sectin 2.1.

For a class of business consisting of n lines, we define

M (t)
X(t) = (z0@), @), -, z™ENT = | ()

x(”)(t)
as the instantaneous loss process at time ¢,t > 0.

Assume the loss amount X (t) at time t is described by a n-dimensional
stochastic process of the form:

d
dz¥ = pi(t, X)dt + Y 0i5(¢, X)dW; (2.7)

j=1
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fori =1,2,---,n, where

b= (/‘Ll(ta X)!I“’?(tix)l e nun(th))
is the drift of X,

W is a d-dimensional Wiener process,

and the local volatility o = (0;;(t, X)) is a n-by-d matrix that may de-
pend on both the claim X and the time ¢.

Next, let L(t),t > 0, be the present value of aggregate fair value liability
over the period of [0, ], defined as

L) = [ (O e + P 20
and let u(t,X) = EX[L] be the expected value of the fair value liability
given that X = X (0).
As a general case of one risk source (equation (2.2)), u(t, X) is defined as

ult, X) = E| / S 20 (€))eE de + F(z 29(t))e~t | X = X(0)] (2.8)

where X = (z(V(0), 29(0), - - -, z(™(0)) is the vector of losses at time 0 from
the n risk sources.

Let a(t, X) = (a:;(t, X)) be a n x n matrix defined as a(t, X) = oo™

d
a;;(t, X) = Ea,lk(t.X)ak‘J(t,X),

k=1

(X) =3 «9(0),
i=1
and -
552 tX)ux,n+Z wi(t, X) ug, (2.9)
1,k=1

i=1
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THEOREM 2 Suppose that o and p satisfy the linear growth condition

(e, XOIE + llot, X)IIP < K21+ ]1X)1%) (2.10)

for every 0 <t < o0, Tz € R™,

[F(X)] < K21+ ||X]1%)
for every x € R,

where K is a positwe constant; and assume that u(t, X) is continuous, and
is of class C2([0, T} x R™).

Then

u(t, X} satisfies the Cauchy problem

w = Au—ru+g(X); n[0,T)xR" (2.11)
and
u(0,X) = F(g(X)); XeRr" (2.12)

as well as the polynomial growth condition:
mazog [u(t, X)| < M(1+|IX|*"); X € R (2.13)
for some M > 0,n > 1.

The proof of the Theorem 2 is given in Appendix 1.
Theorem 2 indicates that an estimate for the fair value insurance liability
could be obtained by solving a partial differential equation (2.11)-(2.12).

The mode] presented here is a dynamic model: the fair value liability
can be evaluated in a multi-period setting. Consider a sequence of time
periods: [0,Ty],[T1, T3], .. -, [Tk-1, Tk] and apply our model in every one of
the k periods, a system of partial differential equations like (2.11) — (2.12)
can be solved sequentially for the valuation of the fair value liability over the
k periods.

Finally to conclude the section, we present a mathematical formula for
the solution of partial differential equation (2.11)-(2.12).
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2.3 Theoretical solution
To derive a closed-form solution, several conditions are introduced.

First, let us define
(i)  Uniform ellipticity: There exists a positive constant ¢ such that

n

S auk(t, ) mame > 6linlf® (2.14)
k=1

holds for every n € R* and (t,z) € [0, 00) x R%.

(i1}  Boundedness:
The functions a; x(t,z) and u(t, z) are bounded in [0, T] x R¢.

(iii)  Hélder continuity:

The functions a;x(t, ) and py(t, z) are Holder-continuous in [0,T] x R%.

THEOREM 3 Under the conditions (1)-(1ii) and (2.10), v, = Au—ru has
¢ unique fundamental solution G(t,z;1,£);
the solution of equations (2.11)-(2.12) is

u(t, X) = [ G(4,X:0,6)F(g(X)) d
e
t
+ [ [, 6 X o(X) dear (2.15)
0
The proof of the Theorem 3 is given in Appendix 2. Theorem 3 provides
a theoretical basis for the solution of equations (2.11)-(2.12). In practice,

however, numerical solution of equations (2.11)-{2.12) should be seeked for
any fair value liability valuation.
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3. Applications

In this section, we consider the implementation issues of the model presented
in previous section and its applications.

3.1 Discount Rate

We start with discussion on the discount rate, 7, used in defining fair value
liability process

L= [[(3 20t + P aOm)e 31

=1
The discount rate is the interest rate at which the investment funds earn
interest. The simplest way to implement the model is to use the risk-free
interest rate as the discount rate r. Although the risk-adjusted rate is not
used directly, the estimated fair value liability u(¢, X) is risk adjusted. The
equation (2.11) is risk adjusted since its coefficients includes the covariance
matrix a(t, X) (see the definition of A in equation (2.9)).

The discount rate r can also be risk-adjusted as
r=rf+ 7
by assuming that the short rate R(t) follows process
dR(t) = rR(t)dt + og(t, R)dW

where 7 is the market risk premium and oy is the local volatility of R(t).
There are many literatures in finance and economics on valuation and hedge
of interest rate risk. Examples inlcude Duffie (1992), Hull (2000), Heath,
Jarrow and Morton (1992).

3.2 Parameter Estimation

In order to solve equations (2.11) — (2.12), the parameters {g;,i=1,...,n; }
and {a;x, 1,k = 1,...,n} in Equation {2.11) need to be selected first. Simula-
tion techenique are the methods most widely used today by actuaries to solve
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this problem. Recent advance in computing technology has significantly in-
creased the accuracy and reduced the cost of the simulation. Pate]l and Raws
(1999) presented a simulation approach in reserve valuation. As far as the
data used for the simulation, we recommend a weighted average of simulation
base on public data and company-specific data.

3.3 Case Studies

We now show some numerical examples of estimating fair value liability by
solving equation (2,11} — (2.12) in case studies.

Case Study of Mono-line Business

We first consider a mono-line liability reserve with uncertain cash flows: as-
suming the instantaneous loss amount X (¢)dt satisfy

dX = 0.08dt + 2dW.

Assume that the investment return is 4% (r = 4%) and F(X) = X!5.
Using Theorem 1, we calculated the fair value liability by solving Equation
(2.4) and (2.5). We used finite differences method to solve (2.4)and(2.5) nu-
merically. The estimated fair value liability with different initial individual
loss levels are given in Figure 2.

Next, we consider a mono-line liability paid out over a longer period of time
has higher uncertainty:

instead of constant volatility, we consider varying volatility:
assuming the instantaneous loss amount X (¢)dt satisfy

dX = 0.08dt + o(t) = 2v/T + tdW’

with all the other parameters remaining unchanged.
Figure 3 presents the computed values of fair value liability in this case.
Our estimates show that the fiar value liability with nonconstant volatil-

ity is more sensitive to the initial claim levels. Figure 4 makes a comparison
of the two situations.
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Case Study of Multi-line Business

Assume an insurer writes two lines of business with uncertain cashflows.
Let the loss process be:

X = (xW), x? @),

Assume X (1)(t) represent a property reserve with drift 4 = 0.08 and local
volatility of ¢ = 2. Assume X®(t) represent a lability reserve with drift
u = 0.1 and local volatility of o = 5. Assume the correlation between the
property reserve and the liability reserve he 1.5.

Therefore the drift ¢ and the covarance matrix o(t, X'} are

ut,x) = %)
U(tﬁ“() =( 12r 155 )

Let the discount rate remain at 4% and the function F be defined as

F(X) = ((I(l))S + (1(2))1‘5)2.

Using Theorem 2 in Section 2.2, we calculated the fair value liability by
solving Equations (2.11), (2.12).

Again, we used a finite difference method to calculate the estimated fair
value liability. Figure 5 shows the computed values of the fair value liability.
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Next, we checked how different levels of the correlation affect the es-
timated liabilities. As indicated in Table 1 , our estimates show that, in
majority of cases, the fair value liability are lower when the loss claims be-
tween the lines of business are less correlated.

Table 1. Expected Fair Value Liability

(Il,Ig) 0’1220 (712=0‘5 012=1.5

(5, 5) 290.8 291.4 303.0
(5,10)  330.4 332.7 372.9
(5,15) 4045 409.1 463.5
(5,18) 4346 434.4 427.6
(10,5) 19569 19274  1657.5
(10,10) 19087 19931  1565.11
(10,15) 21717 22055 24381
(10,18) 22838 23461  2902.2
(15,5) 6687.2 66752  6583.5
(15,10) 71348  7179.2 75408
(15,15) 69037  6904.1  6947.6
(15,18) 68457 68352 67596

Table 1 also shows that, for a fixed level of covariance, the calculated fair
value liability increase as the initial loss amounts increase.

Finally, we considered the case when volatility varied with time. Assume
all the other parameters remain the same and let

08v1 4+t 5

d6X) =0 sy )

The estimated liabilities are shown in Figure 6.

The comparision of the estimated fair value liability (when the initial
risk 1 claim level is x=9) between the constant volatility and non-constant
volatility is shown in Figure 7.
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3.4 Applications in Reinsurance

In Section 2, a new method is provided for the estimation of the expected
fair value liability without assuming independence of the individual losses.
There are a number of applications of the method other than estimating fair
value insurance liability. In the following. we discuss the applications of our
method in reinsurance.

First we consider the problem of calculating stop-loss premiums.

Let p be the stop-loss premium, K be the cap. and L the fair value lia-
bility as defined in section 2.1:

Lty = [ X(© e + FX (e
Assume L follows
dL(t) = p(t, L)dt + v(t, L)dW (3.2)
At time T, the benefit is maz{0, L(T) - K} = (L - K)*.

Define v(t, L) = E[e”" "~ (L — K)*|L{0) = L],
where r is the risk-free interest rate.

Then the fair value of the stop-loss premium should be p = ©(0,L). Using
the analogue of Theorem 2 in Section 2, v(t, L) is solved from the following:

1
v = ‘2‘V21'LL + pup — TV, (3.3)
v(0,L) = (L - K)*. (3.4)
Remark: Note that the above. partial differential equation is different from
the Black-Scholes’ partial differential equation or its type. Since L is not

tradable. there is no risk neutral measure. Therefore p can’t be replaced by
a riskfree rate in equation (3.3).
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Remark: In theory, p can be calculated from equations (3.3)—(3.4). However,
there is no explicit formula to estimate p and v without assuming the inde-
pendence or some specific form of the dependence of the individual claims.
One can, however, use the solution of {2.11)-(2.12) as an estimate of p.

In the following, we show a numerical example of calculating the stop-loss
premiums, p = U/(0, S), and assume there is one risk source.

Recall that in the Case Study of Mono-line Business, where we consider
a mono-line liability reserve with uncertain cash flows: assuming the instax-
taneous loss amount X (¢)dt satisfy

dX = 0.08dt+ 2d1}"

Assume that the investment return is 4% (r = 4%) and F(X) = X3,

Assume the initial individual claim is 1o = 30.8. Using the estimates
calculated in Section 3.3 as an approximation for p: p = 1784952, We
solved Equations (3.3) and (3.4) numerically. For the stop-loss cap K = 160,
the stop-loss premiums calculated based on different aggregate claim levels
are given in Figure 8.

We again looked at the case that the liability cash flows are more uncer-
tian. Figure 9 compares the stop-loss premiums with constant volatility and
varying volatility. ‘

Finally, we tested how much change in stop-loss premium is due to the
change of the value of p which is presented in Figure 10.
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Another application in reinsurance is the valuation of CATS index op-
tions. The price of a Catastrophe Insurance Futures and options (CATS)

could be estimated using this approach. For a detailed discussion, see Guo
(2000).

4. Discussion of the Method

In this section, we provide our view on the comparision between our method
and the existing methods.

Our method provides a direct estimation of fair value liability. It used
a combination of the financial approach and the actuarial approach. Unlike
the method of Allen, Cummins and Phillips (1998), our method considers
the impact of a particular company at issue or even specific lines of busi-
ness of the company. It doesn’t rely on the CAPM model, which may not
accurately predict returns for insurance firms and no need to estimate the
underwriting betas. There is a component of risk-adjusted discount method
in our approach when the discount rate » in Equation (2.11) is risk-adjusted.
The derivation of our method start with study individual loss risk process
like actuarial distribution-based risk loads methods. Instead of calculating
the risk loadhowever, our method estimate the risk-loaded fair value liability
directly using the contigent-claim analysis in modern financial theory. Fi-
nally, the application of our method in valuation of stop-loss premium and
CATS premium might provide some connection to the method of using the
reinsurance market to estimate the fair value of liabilities.

5. Summary

This study provided a new dynamic method to estimate E[L(T)], the ex-
pected fair value liability for a multiple line business.

The paper adopted the contingent claim analysis in modern finance theory
to model the aggregate fair value liability for multiple lines of business. An
important feature of the method is to concentrate on calculating the risk-
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loaded expectation of the aggregate liability instead of attempting to find
the actual liability distribution in a complicated economic environment. The
fair value liability was derived by solving a partial differential equation. Fi-
nite difference method was used to obtain the numerical solution as shown
in the examples. The dynamic feature of the method make it possible to
evaluate the fair value liability over the multiple periods by solving a sys-
tem of partial differential equations sequentially. The effects of non-constant
variance matrix on the liability estimate were discussed in the numerical ex-
amples. The paper also addressed some applications of the method including
the evaluation of stop-loss premiums among others. The paper presents only
the preliminary result of our study. A case study for the implementation of
the new method and the comparison of other existing methods is under the
way. Future research areas include creating a highly efficient and flexible sim-
ulation algorithm for the parameter estimation; deriving more accurate and
stable numerical method for the partial differential equation; estimating the
fair value liability with a stochastic interest rate process {r(¢),0 <t < T},
and extending the loss process to a more general risk process including a
jump process, etc.
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6. Appendix 1

This appendix presents the proof for the Theorem 2 in Sectin 2.

Theorem 2
Suppose that ¢ and p satisfv the linear growth condition
(e, XU+ o (8, O < K21+ 1X|17) (6.1)
for every 0 <t < o, z € R,

IF(X)| < K21+ 1XP)
for every = € R,

where K is a positive constant; and assume that u(¢, X) is continuous, and
is of class C'?([0,T] x R™).

Then

u{t, X) satisfies the Cauchy problem

u = Au—ru+g(X); im0, T)x R" (6.2)
and
u(0,X) = F(g(X)); X eR® (6.3)
as well as the polynomial growth condition:
matoc Jult, X)| < M(1+ | X|]*"); X € B® (6.4)
for some M > 0,7 > 1.

PROOF

Suppose v is a solution of (6.2) — {6.3). We apply the Ité6 lemma and
integration by parts to the process

v(t — € Xe)e ™€ € 10,1, in conjunction with (2.11):

d
dlv(t — & Xee ™) = e ¢~ g(X¢)dE + S v (t = £ Xe)odWir)).

=1
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Let 7, = inf{€ 2 0; | X¢}| > n};
we obtain

(1, X) = BIF(9(X))e™ Lo | X (0) = XI+EL[ (X (€))e™de1X(0) = X]
BT, X )™ Lry0 X (0) = X] (65)
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7. Appendix 2

This appendix presents the proof for the Theorem 3 in Sectin 2.

Theorem 3 Under the conditions (i)-(iii) and (2.10), v, = Au ~ ru has
a unique fundamental solution G(t, z; 7, £);
the solution of equation (2.11)-(2.12) is

ult, X) :/ Gt, X;0,6)F(g(X))de
+/ / (t, X7, €) g(X) dédr (7.1)

PROOF

Under the conditions (i)-(iii), there is a fundamental solution G(t,z : 7, &) of
u = Au—ry; (0, T)x R” (7.2)

and
u(0,X) = F(X); XeR" (7.3)

(see Friedman (1975, ppl41, 148 and Friedman (1964) Chapter I). For fixed
(7,6) € (0,T) x R4, the function G(t,z : 7,£) is of class C}?((0, T} x RY) and

w(t, X) = [ G(t,X;0,0F(X)dt

satisfies (7.2) — (7.3). We recall from Theorem 2 that the solution of (7.2) —
(7.3), with r = 0, is given by

u(t, X) = E[F(X(¢)|X(0) ==]

This leads to the conclusion that any fundamental solution G(t,z : 7,€) is
also the transition probability density for the process X; i.e.,

PIX(1)|X(t) =z € 4] = /A Glt.z:76)dE0<t<7<T
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In particular, under the condition (2.10), this fundamental solution is unique,
and

u(t, X) / Z 2 (E)eEde + F(S 2W(1))e™ | X = X(0)],
1
the solution to equation (2.11} and (2.12) now takes the form

u(t,X):/Rd Glt, X;0.6)F( g(X) d§+// G, X7, €) g(X) dedr.
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