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Abstract: 

Intuitively, life expectancy and hazard rate should be inversely related to each other. 
Whereas life expectancy, or mean time to failure, is determinable as a simple descriptive 
statistic, the concept o f  hazard is defined as an instantaneous failure rate and involves 
taking limits, This note investigates "inverting" life expectancy as a method for 
estimating the hazard rate. The main result is that given any finite collection o f  
(internally consistenO pairs o f  age and associated life expectancy values, there is a 
uniquely determined step function that determines a "gauntlet" survival model with the 
given life expectancies at their respective ages. The Appendix provides a simple 
computer algorithm for  implementing this model in practice. 
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1. Introduct ion 

In general, life expectancy is determinable as a simple descriptive statistic. It is both 
easier to interpret and to estimate than the hazard rate, which is defined as an 
instantaneous failure rate and involves taking limits. When working with insurance data, 
"claim life expectancy" is often available as a reserve (c.f. [3]). In practice, reserves may 
be related with claim survival data only to the extent that closed, i.e. "dead", cases are 
characterized by having no reserves. On the other hand, knowledge o f  the hazard rate 
function is useful for many insurance applications (c.f. [6]). It might be very useful, 
therefore, to be able to go directly from life expectancy to the hazard rate. 

In the exponential decay survival model, for example, life expectancy and hazard are 
both constant and inverse to each other. If  you were confronted with survival data, you 
might observe the expectation of  life early on to get an intuitive feel. If  the life 
expectation were fairly constant, you would naturally gravitate to the exponential decay 
model and you would already know to assign the reciprocal o f  the mean time to failure as 
the constant hazard. This note suggests a generalization o f  this simple approach, 
detailing how to approximate hazard with a step function directly from information on 
life expectancy. 

While this approach is just an alternative organization to the usual way o f  empirically 
calculating hazard, it has some technical and conceptual advantages. In particular, the 
approach is simple to explain and amenable to implementation on a computer. Censored 
observations are handled in a transparent fashion. Moreover, the technique can be 
extended to higher dimensions (c.f. [4]). As noted, in the case of  insurance applications, 
reserves can be regarded as life expectancies and so the method provides a direct way o f  
incorporating reserves into hazard models. 

!1. Notation and Background 

Let f ( t )  denote a continuous function on the nonnegative real numbers '.~+ = [0,~) 

satisfying: 
ao 

I f ( t )d t  = 1 
o 

Regard f ( t )as  a probability density o f  failure times and define the function: 
I oo 

S(t) = I -  f f ( s )d s  = ~f(s)ds 
o t 

As is customary, we refer to S(t) as the survival function, f ( t )  as the probability density 
fimction [PDF] and t as "time". We also let T denote the random variable for the 
distribution o f  survival times and It = E(T) the mean duration, which we assume 

throughout to be finite. Survival analysis refers to the following function: 
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h(t) = f ( t )  
S(t) 

as the hazard rate function or somet imes as the force o f  mortality. The hazard rate 
function measures  the instantaneous rate o f  failure at t ime t and can be expressed as a 
limit o f  conditional probabilities: 

Pr{t<T <t+At lT>t}  
h(t) = lim 

As ~0 At 

There are many  well-known relationships and interpretations o f  these func t ions- - re fe r  to 
All ison[l]  for a particularly succinct discussion;.  It is convenient to recall that setting 

I 

g(t)  = ~h(s)ds then S ( t ) = e  -g(O . 
o 

Fix t and restrict attention to values o f  time w > t. The conditional probability o f  survival 

to w, given survival to t, is S, (w) = S(w) .  In this context (see [3]), the expectation o f  life 
S(t) 

at time t, given survival to t ime t, is just:  

~(w - t ) f ( w ) d w  
o~ ~ S( W) dw p ( t ) =  t _ ~St(w),hv= 

oo  

~f(w)chv t t S(t)  
! 

Observe that under our assumptions,  p(O) = / 1  and the function p ( t )  is well defined for 

all t>O.. Observe too that for any a<b with S(a) > 0 we have the relation: 

p ( a ) S ( a ) =  ~S(t)dt = iS( t )d t  + SS(t)dt  
o a b 

<_ jS(a)d t  + S(t)dt  = S(a)(b - a)+ p(b)S(b)  
a b 

~ a + p ( a ) < _ b + P ( b ) S ( b ) < _ b + p ( b )  
S(a)  

with strict inequality exactly when S(b) < S(a). 

This paper concerns i tself  with how the two functions h(t), p(t) relate to each other. 

While we might  expect an inverse relationship o f  some sort, note that the two are 
conceptually quite different: h is local while p is global. Still, it is reasonable to expect 

that the average values o f  h over an appropriate interval might relate with the values o f  
p over that interval. 
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Example: Suppose the expectation o f  life (mean time to failure) is constant on the 
interval [a,b), p(t)  = a ,  a < t < b , including the caseb  = ~ . Then 

o o  

c~S(t) = p ( t )S ( t )  = SS(w)chv 
I 

t 
dS 

c t - -  = - S ( t )  ~ S ( t ) = e  a 
dt 

~ g ( t ) = t  h ( t ) _ d g _  I a < t < b  
a dt ct 

The following proposition generalizes this: 

Proposition 1: For any real numbers  a<b with S(a)>O, there exists a ~- e [a,b] with: 

S(a)  - S(b)  
h(~) = 

S ( a ) p ( a )  - S ( b ) p ( b )  
b 

Proof'. Consider the integral SS(t)h(t)dt .  Because S(t) is nonnegative,  the intermediate 
a 

value theorem for integrals implies there is g- ~ [a,b] with: 

i S ( t ) h ( t ) d t  = h(G) S ( t ) d t  = S ( t )d t  - S ( t ) d t  = h ( ( ) ( S ( a ) p ( a ) - S ( b ) p ( b ) )  

t 

On the other hand, taking u(t) = - g ( t )  = - j'h(w)aSv, d u = - h ( t )  and we have: 
dt o 

b - g ( b )  

~ S ( , ) h ( t ) d t  = - ~e"du  = e -g(") - e  -e(h' = S ( a )  - S ( b )  
a -~(a' l  

and the result follows. 

Not surprisingly, there are formal relationships between hazard h(t)and life 

expectancy p(t),  as in: 

4 7 9  



Proposition 2: 

i) 1 + d p  = h( t )p ( t )  
dt 

1 d( lnp)  
ii) p ( t )  > 0 ~ h(t) = + - - -  

p ( t )  dt 

1 d ( l n  p S )  
i i i )  p ( t )  > 0 ~ - -  - 

p ( t )  d t  

1 
iv)  l i m p ( t )  = l i m - -  

. . . .  h ( t )  

Proof'. The verification is straightforward: from the definition of p(t) and the formula for 
differentiating a ratio: 

S ( t ) ( -  S ( t ) ) -  IS(w) f ( t )  I S (w )dw  - S( t )  2 
dR ~i _ t - -  t 

dt S( t )  2 S( t )  2 

_ f ( t )  t I : h ( t )p( t )  - I 
S ( t )  S( t )  

1 + d p  : h ( t ) p ( t )  
dt 

establishing i); ii) is immediate from i): 

1+ dp  
p( t )  > 0 ~ h(t) = h( t )p( t )  _ dt _ 1 

p ( t )  p ( t )  p ( t )  

ap 
dt 1 d In(p) 

p( t )  p ( t )  dt 

And iii) can be readily derived from ii): 

din(S) 1 din(p)  
p ( t ) > O ~  - - - h ( t ) =  + -  

dr p (  t ) dt 

1 din(S) d in(p)  _ dOn(S)+ln(p))  

p(  t ) dt dt tit 

d ln(pS) 

dt 

Finally iv) is a straightforward application of L'H6pital's rule (see [5] p.90): indeed, 
under our assumptions we have: 
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~ t 

g=!~(t)dt=lim!S(w)dw=lim~g(w)dw+~S(w)dw,_~ ,-~. 
0 t 

= SS(t)dt+limo ,-~. ~ S ( w ) d w  : ;  ~ +  lira ! S ( w ) d w  

~ 0 = lira ~S(w)dw = l i r aS ( t )  

So invoking L 'H~pi tars  rule: 

~S(w)dw 
- s ( t )  l 

. . . . . . .  ' - l i m - -  = l im l i m p ( t ) = l i m  S( t )  . . . .  f (t) . . . .  h(t)  

completing the proof. 

It is easy to see that the expectation of  life function uniquely determines the survwal 
model. !ndeed, Proposition 2 shows that the function p(t) determines the hazard 
functionh(t)and whence specifies the complete survivorship model. Proposition 2 also 
generalizes the inverse relationship between survival and hazard noted for the 
exponential decay model. Indeed, it shows that in general hazard and life expectancy do 
not follow a simple inverse relationship. Indeed, h(t) is the sum of  two components,  one 
inversely related and the other directly related to p(t). More precisely, hazard consists of  

a "first order" component in fact being the inverse ofp( t )  and a "second order" 
component responding to the proportional change in p(t) as captured by the latter 's 
logarithmic derivative. 

Our interest is in finding a more "elementary" relationship between h(t)and p(t) -- 
preferably one amenable to calculation from empirical discrete data and, in particular, 
one that avoids derivatives. 

The following technical lemma is the key result needed to invert life expectancy to 
hazard and its proof  blueprints an algorithm for the calculation. 

Lemma:  For any triplet of  positive real numbers ct,fl, y > 0 with y > 1 ---fl  , there exists 

a unique '7 > 0 such that: 

e p~ - 1 

a q  = ep ~ _ ~" 
Proof'. Consider the function 
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e ~' - 1  
gt(x)=~(a,fl, y ;x)=~ e~, y 

the l emma asserts that ~ ( x )  has exactly 1 positive real root. Define 

~(x) = d~, 
dx 

- 

(e  ~' _ ),)(fie/~' ) - (e l" _ l)(fle/~' ) 

(e f" _y)~  

We consider  three cases: 

1 
C a s e y  = 1 : Here ~ ( x )  = ox  - 1 clearly has unique positive root - - .  

Gf 

Case y < 1 : In this case, we first verify that ~o(x) has a unique positive root. Indeed, 

not ing that for x>O, e a' > 1 > y ~ e t~ - y > O, we find that: 

~o(x) = 0 

a ( e  ~ _ y)2 = f le~(1 _ y )  

<=:,e~,_y=~flea'(_~l-Y' _~e~_f l ( I -y )  

Letting y = e - ~  this equation becomes:  

v 2 - ~ 1 ~ 7 )  Y 

which has roots: 

+ / 3 0 -  r )  
V 4a Y 

only one o f  which is >0, and so 
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" V 4 a  + 7 

=> eft'= .v2 = y + y~fl(~Y) 

: Y t Y ~ - ~  v~Y-~ +r ~r> 

2a ~ 2a \ 2a 

It follows that setting 

,r3(l-r) I / 3 ( l - r ) ( f l ( l - r )  . ")] 
In y +  2a +1] 2a ~ 2a + z y ) )  

/ - =  

P 

de/ 
then r is the unique positive root o f  ~p(x) = ~ - .  Note that 

y > l - ~ f l > l - r > 0 ~  fl  > a  
a a l - y  

f l ( r  - i) f l  ~ ~p(O) = a + - - - a -  < 0  
(r-O ~ l - r  

and it follows that ~/(x) is decreasing on (0, r ) .  The next claim is that ~u(x) < 0 for x 

positive and near O. To verify this, consider: 

o~e /~  - ayx 
,~(x) - 

e /~  - 1  

Combining  the assumption that Y > 1 - fl  with L 'Hospi ta l ' s  rule, we find that: 

a f i r e / ~  +ore ¢k - a y  a 
l i m A ( x ) = l i m  = ( l - y ) < l  

This means  there ex is t sc  > 0 such that 2(x)  < 1 forO < x < c .  Since e # '  > 1 > y ,  we 

have that 
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~ e  ~ - a N  
l > 2 ( x ) =  

e N -1  

~ e  N - 1 >  ~ e  ~ - a ~ = ~ ( e  ~ - y ) > 0  

e ~ - 1  e N -1  
~ ~ > ~ e  - y  ~ ( x ) = ~  e ~ _ y < O  

proving the claim. It follows that ~,(x), which is negative near O, remains negative and 

can have no root in (0, r) since ~(x) is decreasing over that interval. On the other hand, 
observe that 

l > y ~ O < e  a - l < e  a - y  

P 

(1)__ a e a - 1  e a - 1  
~ = - - - l - - -  

a a ~ 

e a  - 7  e a - 7  

>0 

Which means that ~(x) increases from negative to positive with a unique root on [r, 1 ]  a 

and remains positive and increasing on ( 1 , ~ ) .  In particular, ~,(x)has a unique positive 
6f 

root and the lemma is established for the case y < 1. This leaves only the remaining: 

Case y > 1 :In this casey - I > 0 clearly implies that: 

q~(x) d~/ f le~(7 - 1) 
= - - = a ' +  > 0  

and so ~u(x) is monotonic increasing and can therefore have at most one root in any 
interval in its domain. We therefore need to investigate the behavior of ~u(x) at 0 and 

b" = In(y). We evidently have the following one-sided limits: 
P 

e x - 1 0 
lira ~ ( x ) =  l i m  ~ -  = 0 -  = o  

x > O , x ~ O  x>O,x-*O e x _ 7 1 - y 

Pain(Y) tz" l X lim ~ ) : ~ - ( + ~ I : - - ~  lim ~,(x)  = - - - : - - - -  - l 
x > ~ , x - - * ~  ~ e ' > y , t - - ~ t n ( y )  e --  y j 
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l im V ( x ) = a ' n ( Y ' - ( r - t ~  l im ~ - ~ 7 L - - l = ~ - ( - o o )  =+oo 
x<eJ.x-~e; ,6' "ke'<x,t~ln(z) e - y ) 

2~ In(co) > In(y) 
Let co = 3y + e ~ and g = = 6 ,  the claim is that ~ ( c )  > 0.  To verify this, 

P P 
note that 

co > 3y ~ m -  y > 2y > 2 y - 2  

:~. c°'-Y >,v_ 1 > 0 
2 

1 y - I  
~ - >  > 0  

2 ,-o-y 
Similarly: 

~P 2f l  
c o > e  ~ :::~ In(co) > - -  

3 y - I  
~>-a  In(co) > 2 > - > I ÷ 

f l  2 co - Y 

co-1 

co--y 

From the definitions we find that: 

__ co-___j_t > 0 ' 
~ ' ( c ) =  In(co) c o - Y  

which establishes the claim. We have shown that ~u(x) is positive, in thct is monotonic 

increasing from 0 upward on (0,6),  that ~ (x )  increases monotonically from negative to 

positive with a unique root in (6, c], and q/(x) is positive and monotonic  increasing on 

(c, oo). This proves the assertion in the case y > I and completes the p roof  o f  the lemma. 

Now consider a positive interval [a,b) on which the hazard is flat: 

h(t)=q,  a ~ t < b  
b 

~ g ( b ) -  g(a)= ~h(t)dt= q(b - a) 
0 

: : :S(a)  = eq(b_a) 
S(b) 

Clearly tt = 0 ~ S(a) = S(b) so consider the case r/> 0 .  Proposition 1 implies that: 
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S ( a ) -  S ( b )  
q = 

S ( a ) p ( a ) -  S ( b ) p ( b )  

S ( a )  - S ( b )  
p (  a )t l  

s(~) - S(b)( p(b) ] 
~ p ( a ) )  

S ( a )  
- I  

S ( b )  e 'M'-~') - I 

S ( b )  p l a J )  ~ p ( a ) )  

p(b) 
c z > ~ ( p ( a ) , b -  a,  :q) = 0 

p ( a )  

Note too that since tl > o : 

a + p ( a )  < b + p ( b )  ¢:> 1 - 
b - a p ( b )  

< 
p ( a )  p l a )  

In [2], a survivorship model whose hazard is a step function is quite naturally described 
as a g a u n t l e t  survivorship model. The main result o f  this note is that any collection o f  life 
expectations that is finite and satisfies the above inequality can be approximated by a 
gauntlet survivorship model. In fact, the associated gauntlet is essentially a canonical 
form hazard approximation and the Appendix provides a computer algorithm for 
determining it. 

T h e o r e m :  Given an ordered sequence o f  pairs o f  real numbers  {(a, .¢~i ) i l  < i <_ n} such 

that: 

i) 0 = a  I < . . . < a  i <oi+ 1 < . . . < a  n 

ii) a i > 0 , 1 _ < i _ < n  

al+l - a i  ~ ~ i + l l  1 < i < n iii) i 
C~1 O' i 

And with the function gt as in the lemma, define the step function h : 91 + ~ 9~ + as 

follows: 
1 

h(t) = - - - .  t>_a n 
an 

f 

h( t )  = t 

0 

I 
I O'/+1 

q t (~X t , ai+ 1 - a i , : {0} ) 
t~ t 

a~+lat- ai a~+l~'za / 

¢Tt+l~t- ul < (Xl*lo'l I 
~ i < n  

Then the survivorship model determined by the hazard fimction hltJ has expectatton o f  

life function p ( t )  satisfying p ( a  i ) = ot i , [ < i <_ n . 

P r o o f  T h e  lemma guarantees that the function h : :ll + --> 91 + is well defined and tile 

above example  shows that: 
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1 
p ( t ) = - f - = a  n, t > a  n 

~n 

The proof  is by contradiction. Assuming the result false means that there is an i<n such 
that: 

Set 

p ( a j )  = a ' j , i + l  <- j < n p ( a  i)  ~ a i 

f l = a i + l - a i ,  y - a i + l  _ p ( a i + l ) ,  
O{i ~i  

Suppose first that 

l Qi+l - -  a1 O~t+l < - -  

O~ i t2" i 

By definition of  h, this implies that 

h(t)  =- r 1 on [ai,ai+ 1 ) 

~, (a , , f l ,  r ; q )  = o 

e p" - 1  
:::> r]ct~ e/j, J _ Y 

The comments just proceeding the statement of  the theorem applied to the hazard 
function h(t) ~ r l on [a,,a,+l) show that: 

g t ( P ( a , ) , f l , ~  ;rl) = O 

e p'7 - 1 e p~ - 1 
qp(a ,  ) - 

It follows that: 

r lp (a ' ) Ie#q-Y(~  p(a,Ct _ ] ]  = e~,~- 1 = )  ) )  rlct,(e/jq - g)  

p (  a, )e p'~ - ct,y = a ,e/~ - ct ,7 

p(a ,  )e #q =- a , e  ~" ~ p ( a  ) = ct, 

which contradicts the choice of i .  We must therefore have: 
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I •1+1 - -  ~rt - -  Oet+l 

<::z> ct - ( a . i  - a,  ) = a,+. 

¢:> a,  = a,+ I - a, + O(t+ I 

However, from our earlier observations on the hazard function h ( t )  ==- 0 on [ a  ,a,., ),  in 

this event: 

S ( a ,  ) = S(a ,+ I ) 

~ a ,  + p ( a , ) = a , .  I + p ( a , + l ) = a , ,  t +a,÷~ 

p ( a ,  ) = a,÷ I + or,.. I - a,  = ct, 

This contradiction completes the proof  o f  the theorem. 

Re m a r k :  Compare the definition 

1 
h( t )  = - - ,  t > a ,  

o' n 
of  the Theorem with Proposition 2 (iv). 

Remark :  The discussion in [5; pp148-156] points out some shortcomings in the state of  
the art as regards the application o f  bivariate loss distributions. In [4] the survival model 
structure is generalized to higher dimensions using the concept o f  a hazard vector field 
r/: ~3 -a, 3 and its associated survival vector field p : ~ --~ 3 ,  using the notation of  that 

paper. Among the observations in that paper is the relationship: 

b ~ . ~ .  ~ b +  p ( b ) ~  :3 i,t. ~ 

Given any assignment o f  survival vectors to a finite discrete rectangular lattice L ~ 3 
that satisfies this consistency condition, the methods derived here can be applied to 
determine a "gauntlet" hazard vector field whose associated survival vector field 
coincides with the original assignment o f  survival vectors on L. Indeed. the primary 
motivation for this note was to seek a way o f  determining hazard that was amenable to 
vector arithmetic. 
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A P P E N D I X  

The SAS LOG includes both source code and annotations of  a sample run whose output 
is in the SAS LISTING that follows the log. The SAS syntax is readily adapted to any 
programming context that supports conditional loop processing. 

SAS LOG: 

NOTE: The 
1 

2 
3 
4 

5 
6 
7 

8 

NOTE: The 
NOTE: The 

16 
17 

i n i t i a l i z a t i o n  phase used 0 . 0 7  CPU seconds and 6068K. 

* * *  INVERSTING MEAN FAILURE TIME * * * * * * * * * * * * * * * * * * * * * * * * *  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

OPTIONS MPRINT LS=131 PS=59 NOCENTER; 

TITLE ' INVERTING MEAN FALURE T I M E ' ;  
DATA ONE; 

INPUT A ALPHA; 
CARDS; 

d a t a  s e t  WORK.ONE has 6 o b s e r v a t i o n s  and 2 v a r i a b l e s .  
DATA s t a t e m e n t  used 0 , 0 1 C P U  seconds and 6952K. 

PROC SORT DATA=ONE; 
BY DESCENDING A; 

NOTE: HOST sort chosen, but SAS sort recommended. 

NOTE: There were S observations read from the dataset WORK.ONE. 

NOTE: The data set WORK.ONE has 6 observations and 2 variabies. 

NOTE: The PROCEDURE SORT used 0.11CPU seconds and 7044K. 

18 DATA ONE; 

19 SET ONE; 

20 KEEP A ALPHA BETA GAMMA ERROR; 

21 BETA = LAG(A) - A; 

22 GAMMA = LAG(ALPHA) IALPHA; 
23 IF GAMMA < 1 - (ALPHA/BETA) THEN ERROR = 1; 

24 ELSE ERROR = 0 ;  

NOTE: M i s s i n g  v a i u e s  were g e n e r a t e d  as a r e s u l t  o f  p e r f o r m i n g  an o p e r a t i o n  On m i s s i n g  
v a l u e s .  

Each place is given by: (Number of times) at (Lzne):(Column), 
1 a t  21 :15  1 a t  2 2 : 1 9  1 a t  23 :14  1 a t  2 3 : 2 2  

NOTE: There  were 6 o b s e r v a t i o n s  read f r o m  t h e  d a t a s e t  WORK.ONE. 
NOTE: The d a t a  s e t  WORK.ONE has 6 o b s e r v a t i o n s  and 5 v a r i a b l e s ,  

NOTE: The DATA s t a t e m e n t  used 0 . 0 1 C P U  seconds and 7044K. 

25 PROC SORT DATA-ONE; 
26 BY A; 

NOTE: HOST s o r t  chosen ,  b u t  SAS s o r t  recommended. 
NOTE: There  were 6 o b s e r v a t i o n s  read f rom t h e  d a t a s e t  WORK.ONE. 

NOTE: The d a t a  s e t  WORK.ONE has 6 o b s e r v a t i o n s  and 5 v a r i a b l e s .  
NOTE: The PROCEDURE SORT used 0 . 0 2  CPU seconds and 7044K. 
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27 DATA ONE;SET ONE; 

28 KEEP A ALPHA ETA ERROR; 

29 IF  BETA = . THEN DO; 

30 ETA = I /ALPHA;  

31 END; 
32 ELSE IF  (ABS(GAMMA - 1 + (ALPHA/BETA))  < 0 . 0 0 0 0 5 )  THEN DO;*TOLERANCE; 

33 ETA = O; 

34 END; 

35 ELSE DO; 

36 IF  (ABS(GAMMA + 1) < 0 . 0 0 0 0 5 )  THEN DO;*TOLERANCE; 

37 ETA = 1/ALPHA; 

38 END; 

39 ELSE DO; 

40 IF  GAMMA < I THEN DO; 

41 TEMP = (BETA*(1 - GAMMA) ) / ( 2 *ALPHA) ;  

42 LHS = LOG(GAMMA + TEMP + SQRT(TEMP*(rEMP + 2*GAMMA)) ) /BETA;  

43  RHS = 1/ALPHA; 

44 END; 

45 ELSE DO; 

46 LHS = LOG(GAMMA)/BETA; 

47 TEMP = 3*GAMMA + E X P ( ( 2 * B E T A ) / A L P H A ) ;  

48 RHS = LOG(TEMP)/BETA; 

a9  END; 

50 ETA = (RHS + L H S ) / 2 ;  

51 DO WHII.E (RHS - LHS > O .O0005 ) ; *ADJUST  TO DESIRED TOLERANCE; 

52 TEMP = EXP(BETA*ETA);  

53 PSI ETA = ALPHA*ETA - ( T E M P  - 1 ) / ( T E M P  - GAMMA); 

54 IF  PSI_ETA > 0 THEN RHS = ETA; 

55 ELSE LHS = ETA; 

56 ETA = (RHS + L H S ) / 2 ;  

57 END; 

58 END; 

59 END; 

NOTE: T h e r e  w e r e  6 o b s e r v a t i o n s  r e a d  f r o m  t h e  d a t a s e t  WORK.ONE. 

NOTE: The d a t a  s e t  WORK.ONE has  6 o b s e r v a t i o n s  and  4 v a r i a b l e s .  

NOTE: The DATA s t a t e m e n t  used  0 . 0 3  CPU s e c o n d s  and  7054K.  

60  PROC PRINT DATA=ONE; 

NOTE: T h e r e  w e r e  6 o b s e r v a t i o n s  r e a d  f r o m  t h e  d a t a s e t  WORK.ONE. 

NOTE: The PROCEDURE PRINT p r i n t e d  page 1.  

NOTE: The PROCEDURE PRINT used  0 . 0 2  CPU s e c o n d s  ana 8062K.  

NOTE: The SAS s e s s i o n  used  0 . 3 0  CPU s e c o n d s  and 8062K.  

NOTE: SAS I n s t i t u t e  I n c . ,  SAS Campus D r i v e ,  C a r y ,  NC USA 2 7 5 1 3 - 2 4 1 4  
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SAS LISTING: 

INVERTING MEAN FALURE TIME 

Obs A ALPHA ERROR ETA 

1 0 9 . 0  0 O. 16227 
2 1 9 . 5  0 O. 05405 
3 2 9 . 0  0 0 .05712  
4 3 8 . 5  0 O. 06059 
5 4 R.0 0 0 .06451 
6 5 7 . 5  0 O. 13333 
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