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Abstract: 

From a major worm event (such as a military action) to a seemingly minor detail (such 
as the use o f  a new plastic washer in a faucet design) change must be accounted for  when 
collecting, interpreting and analyzing data. Indeed the intervention itself may be the 
focus o f  the study. Theoretically, the best way to model some interventions, especially 
time-dependent ones, is via the hazard function. On the other hand, it may be necessary 
to translate into simpler concepts in order to answer practical questions. The average 
duration, for  example, may have well-understood relationships with costs, making it the 
best choice for  presenting the result. 

For example, Shuan Wang [3] discusses deforming the hazard function by a constant 
multiplicative factor--proportional hazard transform--as a way to price risk load, with 
the mean playing the role o f  the pure loss premium. 

This paper investigates how a shift in the hazard rate impacts the mean. The primary 
focus o f  the discussion is the case o f  bounded hazard rate functions o f  finite support. A 
formal framework is defined for that case and a practical calculation is described for  
measuring the impact on the mean duration o f  any deformation o f  the hazard function. 
The primary tool is the Cox Proportional Hazard model Several formal results are 
derived and concrete illustrations o f  the calculation are provided in an Appendix, using 
the SAS implementation. The paper establishes that the method can be applied in a very 
general context and, in particular, to deformations which are not globally proportional 
shifts. Indeed the method demands no assumed form for either the survival distribution 
or the deformation. The discussion begins with a case study that illustrates the 
application o f  these ideas to assess the cost impact o f  a TPA referral program. 
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Introduction 

Recall that the survival function, S(t), is just the probability of surviving to maturity time 
t and that the hazard function, h(0, is the rate of failure at time t. We assume some 
general familiarity with these concepts in this discussion--they are introduced formally 
in Section II. While both functions equally well determine a model of survivorship, the 
survival function is the more common and the hazard function the more arcane. Often 
though, the best way to model a change in circumstances, especially a time-dependent 
intervention, is via the hazard function. On the other hand, it may be necessary to 
translate into simpler concepts in order to answer practical questions. The average 
duration, for example, may have a well-understood relationship with costs which makes it 
the best choice for presenting the result. 

For example, Shuan Wang [3] discusses deforming the hazard function by a constant 
multiplicative factor--proportional hazard transform--as a way to price risk load, with 
the mean playing the role of the pure loss premium. 

This paper investigates how a shift in the hazard rate impacts the mean. The primary 
focus of the discussion is the case of bounded hazard rate functions of finite support. A 
formal framework is defined for that ease and a practical calculation is described for 
measuring the impact on the mean duration of any deformation of the hazard function. 
The primary tool is the Cox Proportional Hazard model (see [1]). Several formal results 
are derived and concrete illustrations of the calculation are provided in an Appendix, 
using the Statistical Analysis System [SAS] implementation (c.f. [1]) of the Cox model. 
The paper establishes that the method can be applied in a very general context and, in 
particular, to deformations which are not globally proportional shifts. Indeed, the method 
demands no assumed form for either the survival distribution or the deformation. 

The paper begins with a case study that illustrates how these ideas were used to assess the 
cost impact of a Third Party Administrator (TPA) referral program. While this paper has 
a distinctly theoretical focus, the best way to explain the basic concepts is through a real 
world example. Indeed, most of the ideas are a direct consequence of attempts to achieve 
a better understanding of the case study outlined in Section I. The study illustrates that 
for most practieal issues it is sufficient to determine the mean duration to failure via 
numerical integration. For many purposes, there is little need to invoke the more esoteric 
results developed in the subsequent sections. Still, the example illustrates the potential 
value of building a survivorship model whose hazard structure is designed to 
accommodate the issues under consideration. Among the technical results of the paper is 
a description of just such a survivorship model. While the discussion of the case study is 
largely self-contained for anyone generally familiar with the terminology of survivorship 
models, the discussion does make an occasional reference to the notation and 
observations developed in the subsequent sections. 

Section II introduces the notation and formal set-up. The language shifts from rather 
discursive to decidedly technical. Section III discusses some well known examples. The 
remainder of the paper is devoted to several technical findings on how duration is 
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impacted by a hazard shift. Specifically, Section IV discusses the case of  finite support 
that is the case of  primary interest. Section V considers how to combine ha7ards of  finite 
support into more complex models suited to empirical d~t~ and the kind of  investigation 
described in the case study. 
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Section I: A Case Study 

Consider the following situation (while the data is based on a real world study, some 
liberties are taken in this discussion; in particular, the thought process, as described, 
follows hindsight more than foresight). The context is workers compensation (WC) 
insurance. We are required to assess whether a third party claims administrator (TPA) is 
saving money for two of its clients that have been selectively referring a portion of their 
WC claims over to be managed by the TPA. These clients are both large multi-state 
employers that are "self-insured" inasmuch as they do not purchase a WC insurance 
policy. The medical bills and loss of wages benefits are the direct responsibility of the 
employers and each has built internal systems to process their WC claims. The data 
captured by these systems is designed for administering claims, however, rather than for 
analytical use. As such, the data is comparatively crude relative to claim data of  
insurance companies or TPA's. They do, however, capture the date and jurisdiction of 
the injury, a summary of payments made to date, as well as if and when the claim is 
settled. There are, however, no "case reserves" available nor are there sufficient details, 
such as impairment rating or diagnosis, to adequately assess the severity of the claim. 

Over the past few years, the employers have selectively farmed out the more complex 
claims to the TPA. The TPA has its own claim data on the cases referred to it and there 
is sufficient overlap to identify common claims within the TPA and the employer files. 
Moreover, the TPA files are more like insurance carrier data files and contain 
considerably more information, including the date of the referral, impairment ratings, 
claimant demographics and other claim characteristics. 

A major problem is referral selection bias. The selection process itself is not well defined, 
even within an employer. Also, when the TPA first entered the picture, a greater 
percentage of  referred claims were older, outstanding cases. Simply comparing the 
average cost per case of referred versus retained cases would not yield any meaningful 
information. Indeed, the selection process refers claims that are more expensive. Not 
only does this result in a higher severity for the referred cases, it renders the retained 
cases less severe over time. In such a circumstance, no matter how successful the TPA is 
in reducing costs, its mean cost per case will be comparatively high. 

One fact that stood out for both employers is that the percentage of cases that closed 
within one year had more than doubled since the TPA became involved. Also, the 
referral rate shot up dramatically, suggesting that the TPA is, at some pragmatic level, 
viewed as being effective. Of course, that could also be the effect of imposed cost 
reductions on the staffthe employer is now willing to maintain for WC claims handling, 
given the money spent on the TPA. 

Another complicating issue is that the benefits that will be paid on some WC claims are 
paid out over many years. Without any consistent reserves it is very problematic to fred 
comparable data. The challenge here is to make an assessment using the currently 
available payment data. 
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Without the presence of case reserves or enough claim characteristics to grade the 
severity of the claims, conventional actuarial approaches do not work well. As noted, the 
employer data, being collected largely for administrative purposes, did include the key 
dates of  injury and settlement. This, combined with what was noted in regard to claim 
closure rates, suggested an approach based on survival analysis. In this context, a "life" 
corresponds with a claim, beginning at the date of injury and "failing" at claim 
settlement. Information on unsettled (open) claims is then "right censored". It was 
hoped that the survival analysis models would enable us to deal with censored data, since 
there were no ease reserves available for that purpose. 

Merging the TPA data together with the employer claim data, we built a data set that 
included an indicator of referral and, where so indicated, the date of referral. Other 
covariates captured are: 

Explanatory Variables Used in the Proportional Hazard Duration Models 
Description Variable Name(s) 

Indicator of  which of the two employers the EMPL2 
claimant worked for 
Indicators of the year of the injury (year 1992 as AY93,AY94 
base) 
Indicator whether a medical fee schedule applies in i MF01 
the state of jurisdiction 
Indicator whether employer choice of physician EC01 
applies in the state of jurisdiction 
Indicator whether the nature of the injury is a sprain 1 NOI_SPR 
or strain (subjective) J 
Indicator whether the nature of the injury is a cut or NOI_CUT 
laceration (objective) 
Indicator whether the claim was referred to the TPA TPA 
Time dependent indicator whether the claim was 
referred to the TPA 

TxTPA = 0 prior to TPA referral 
TxTPA =1 after TPA referral. 

The x refers to 3 time frames of 
referral from date of injury: 

x=l within ]st 6 months 
x=2 within 2 "0 6 months 
x=3 after 1 year 

A claim survivorship model was constructed from this data. As defined in later sections 
in a formal way, the conceptual base of the model is a "hazard" function. The model 
assumes that the various explanatory variables impact the hazard function as a 
proportional shift, i.e., multiplication by a constant proportionality factor. Such 
survivorship models are referred to as proportional hazard models. Referral to the TPA is 
an exception in as much as it is captured as a so-called "time-dependent" intervention. 
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Instead of a constant value for the explanatory variable, the TPA referral indicator is 
allowed to take on two values so as to be able to capture into the model the time frame of  
referral (=0 prior to referral, =1 afterward). The proportional adjustment factor 
associated with TPA referral confirmed the expectation that referral was associated with a 
greater hazard, i.e., shortened claim duration. While the effect on the hazard was 
measured, the assignment demanded that it be translated into savings. In order to do that, 
it was necessary to convert the result back into factors related to claim costs. Whence the 
basic question of this paper: how to translate a change in hazard into a change in (mean) 
duration. 

The task is to assess the cost impact of the TPA program, but that is not clearly defined. 
Due to the limited time frame of the data, the lack of case reserves or multiple loss 
valuations, it was clear that the "ultimate" cost impact could not be assessed using the 
available data, at least not directly. Also, ''ultimate cost impact" is a more complicated 
notion than what the clients were after. We interpreted the task more simply: since we 
had the actual payments made on TPA referred cases, what we needed to measure is 
hypothetical: what would the payments on those claims have been without use of the 
TPA? 

There is a catch, however. Consider a simplified case: the "original" payout pattern is $1 
per day for 100 days on all claims. Assume that the referral to the TPA results in a single 
$100 payment on the first day. A little thought will convince the reader that at any point 
in time, ignoring discounting and the prospect that the business fails, the TPA will appear 
more costly. The comparison will not be fair unless it takes into account the unpaid 
balance: no matter how simply you frame the issue, reserves cannot be completely 
ignored. 

The data included payment and duration, so there were ways available to translate a 
change in mean duration to dollars. Our choice was to use the non-referred claims to 
build a regression model in which the dependent variable is (log of) the benefits paid to 
date. The explanatory variables would include available claim characteristics together 
with the (log of) the payment duration. The characteristics (such as employer, accident 
year, jurisdiction or nature of injury, as above, together with perhaps additional 
covariates if  available like age, wage, gender, part of body) are assumed independent of 
TPA referral and their mean values over the TPA-referred claims are readily determined. 
The only missing piece is the duration variable. Again, the question reduces to the topic 
of this paper: determining the impact on the mean duration. 

The Cox proportional hazard model is well suited to this context. The model was run on 
pooled TPA-referred and non-referred data, with TPA-referral included among the 
explanatory variables in the model. This captures TPA-referral as a deformation of  the 
hazard function and the methods of the paper can be applied to finish the job. Appendix 2 
provides output that details the calculations. 

The case study, however, illustrates an additional complexity. More precisely, the TPA- 
referral was incorporated into the Cox proportional hazard model as a time-dependent 
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intervention (both the date of injury and date of referral being available). Also, as in the 
paper, the deformation of the hazard function was modeled as a combination of 
proportional shifts over three time intervals, as shown in the following table (refer to 
Appendix 2, page 5 of  the listing): 

Time Period I 

1 ~ 6 months 
2 r~ 6 months 

Hazard Ratio ~o, 

1.424 
1.203 

After 1 year 1.122 

The pattern of the hazard ratios supports the TPA's contention that its early intervention 
is more cost effective. Indeed, TPA intervention has its greatest, and most statistically 
significant, impact during the first six months. Although not critical to this context, that 
was an important finding of the study. 

The difference in the values of  the hazard ratios suggests that not only is it appropriate to 
model TPA referral as a time-dependent intervention, it is also appropriate to mitigate the 
global proportional hazard assumption by specializing to several time intervals. This is a 
very direct approach to that issue; the technical discussion of the subsequent sections 
follows that approach. An alternative way to mitigate that assumption--the one in fact 
used in the study report--is to group the TPA intervention by the lag time to referral. 
That formulation produces similar results and more directly supports the greater impact 
of early intervention. Conceptually, it is easy to regard TPA-referral within a few days of 
the injury as being an essentially different intervention than referral after several months. 

The remainder of this discussion is somewhat more technical and makes reference to 
some of the notation and results presented in the subsequent sections of the paper. 

The SAS PHREG procedure is used not only to estimate the three proportional hazard 
ratios ~0,. It optionally outputs paired values (t,S(t))ofa "baseline" survival function 

S(t) at time t as well. We chose to determine a baseline survival function, S(t), 
corresponding to the value of 0 for all eovariates in the model. In particular, it applies to 
the ease of non-referral as defined by the vanishing of the TPA-referral indicator variable. 
Observe that for the purpose of determining the baseline survival, only the non-time 
dependent TPA-referral indicator is used, since the baseline option is not available in the 
presence of time-dependent interventions. 

This baseline survival function provides the expected duration distribution for the non- 
referred claims at the formal value 0 for the other explanatory variables in the model. 
Because referral is captured as a time dependent intervention, the deformation of the 
hazard function is itself dependent on the lag time to referral of the individual claims. 
Consequently, no single survival function of the form Sa(t) (see Section II) can suffice to 
measure the impact on mean duration. This presents a somewhat more complicated 
situation than that considered in this paper. 
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To deal with this, let x represent a TPA-referred claim and f l  = fl(x) be the proportional 
~azurd ratio associated to x by the model, which therefore includes the factor ~ = ¢~(x) 
for the TPA-referral as a time-dependent intervention. Let D(x) represent the claim 

duration function; recall that we seek a hypothetical alternative/)(x) which associates 

what the duration would have been had x not been referred. Letting S, ,S ,  denote, 

respectively, the survival curves for x with and without referral, and a = a(x)the lag time 
to TPA-referral, we have the following picture: 

a D(x) b(x) 

The idea is adjust duration so as to hold "maturity" constant. It follows from 
observations in Section II that: 

-P I s~(o t < a ~;,(t)~s(t)" and S~(t)=[~,(t),~(~t),_, t>_at 

It follows, taking the ( ~ / ~  root, that: 

Sx(D(x)) ~ Sx(D(x)) ¢~, S(D(x)) ,~ (S(D(x)))¢'S(ct) '-~' 

Since the baseline survival curve S(t)is known, this provides a way to determine 

/~(x) for any TPA-referred claim x. The methods described in the paper can now be 
invoked to estimate what the mean payment duration of those claims would have been 
had they not been referred. Again, the details of the calculation can be found in Appendix 
2. The following table summarizes the ffmdings in the ease study (pages 10 and 15 oftbe 
listing): 
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Assumption Mean Duration 

As Referred to TPA 0.737 years 
(actual) 

No Referral 0.826 years 
(hypothetical) 

Note that the application of the logic used to define D(x) v-~ D(x) becomes somewhat 

problematic when crossing a boundary of the time intervals used to define the ~ .  That is 
another reason that, in the study, we chose to partition the TPA-intervention by layer of 
referral lag a = a(x). 

Finally, these mean duration figures can be plugged into the cost models and translated 
into dollar savings attributable to TPA-referral. This case study is included to illustrate a 
non-traditional application of survival analysis to an insurance problem, emphasizing the 
power that manipulating the hazard function can bring to the analysis. The remainder of 
the paper develops a formal context in which this can be done. The focus is on formal 
relationships between the more "arcane" changes in haTard and the more "presentable" 
effect on mean duration. 
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Section II: Basic Terminology and Notation 

Let ~+  denote the set ofnonnegat ive  real numbers. Let h(t) denote a function from 

some subinterval Z _q ~+ to 91 ÷ . The set X is called the support. We assume 

throughout that h(t) is (Lebesgue) integrable on Z and that 0 ¢ ~ is in the closure o f  the 

support. Any such h : ~ - - - ~ } ~ +  can be viewed as a hazard rate function and survival 

analysis associates the following three functions: 
s 

g : ~- . .9 .9{  + where g(t) = Ih(s)ds 
t ~ g(t) 0 

s :  X--~[O,1] w h e r e  S ( t )  = e - ' ( ' )  

f ~ S(O 

f : ~...9,~1~ + where f ( t )  = - ~  = h(t)S(t) 
t ~ / ( t)  

As is customary, we refer to S(t) as the survival function, f (t) as the probability density 
function [PDF] and t as time. We also let T denote the random variable for the 

distribution of  survival times and g = Er(T ) the mean duration. When we axiom h(t) 
with a subscript, superscript, etc., we make the convention that these associated functions 
all follow suit. There are many well-known relationships and interpretations o f  these 
functions---refer to Allison[l  ] for a particularly succinct discussion which also discusses 
the SAS implementation of  the Cox proportional hazard model. 

Provided f is differentiable at t, it is readily determined whether the hazard rate is 
increasing or decreasing at t : 

af 
- -  2 

dh = dt + h 2; h is decreasing at t ¢~, df  < _ f "  
dt S dt S 

In particular, it is a necessary---but by no means sufficient--condit ion that the density be 
decreasing in order for the hazard to be decreasing. 

We are concerned with what  happens when h(t) is changed or "shifted" in some fashion. 
This paper deals particularly with proportional shifts as the Cox model provides a viable 
way to measure that type of  shift (c.f.[2]). More precisely, we are interested in shills of  
the form: 

d /=  d/(a,qo) for a,~p >- 0 where 6(h)  = h,~ is defined as h~ (t) = ~ h(t) t <_ a 
t ~ ( t )  t > a 
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The following are immediate consequences of this definition and our notational 
conventions: 

s a t )  = 

g(t) t < ct 

g(ct) + ¢(g(t)  - g(a))  

= (1 - ¢~)g(a) + q~g'(t) t > a 

~S(t) t < a 
S,( t )  = ( S(a),_~ S( t ) ,  t > ct 

I f ( t )  t "; at 

['LS(a)J f ( t )  t > o r  

We are particularly interested in the effect that such a shift has on mean duration, which 
is formally captured in the function: 

A(h;ot ,  q~):9t  + - )  91 + 
.u t-~ a J (ad~)  

While at first these shifts may seem restrictive, one of the main results of this paper is to 
show that the ability to measure these shifts is sufficient for handling very general 
problems. In facL it will be shown that even when dealing with time-dependent 
interventions one can generally make do with the ability to handle the case ~t = O, in 

which case we make the common identification d/(O,~) = ¢~ of scalar multiplication with 
the scalar itself. Accordingly, we have 

h , ( t )  = ¢ph(t), S , ( t )  = S(t)* and fg ( t )  = cpS(t)*-' f ( t )  for  all q~ > O,t ~ ~. 

Section III illustrates this notation in the case of two of the (infinite support) distributions 
commonly used in survival analysis. However, we choose to deal exclusively with the 
case of  hazard functions with finite support in the remainder of the paper. Section IV 
discusses the additional assumptions, notation and conventions applicable specifically to 
fmite support haTnrd functions and presents some examples. Section V discusses 
decomposing and combining finite support hazards and presents the main result: a 
formula for calculating the effect on mean duration of a shift in the hazard rate function. 
We also provide two appendices that detail the calculations referenced in the paper using 
SAS and, in particular, illustrate how the SAS proportional baTards model procedure 
(PHREG) can be used to do all the heavy lifting. 
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S e c t i o n  III: F a m i l i a r  E x a m p l e s  

In this section we illustrate our notation with some distributions with infinite support 
= (0,oo) which have found common application in survival analysis. The first three are 

selected to present straightforward illustrations of  the notation and concepts and for those 
we only consider the case a = 0 (recall the identification d~(0,q0 = ~) .  We begin with 
the simplest example of  a hazard function: 

Example III.l.  Constant hazard function: Let h(t) =- 1, then: 

h , ( t )=q~  g c ( t ) = ¢  S,( t )=e -~ f , ( t ) = c ~ e  -~ 
*0 

1 
and a straightforward integration by parts yields A(0,~0) =/~¢ S~te-¢dt = 

Example III.2. Increasing hazard function: Let h(t) = t ,  then: 

~ t  2 - - -  2 

h , ( t )=¢ t  g¢(t)= 2 S¢( t )=e 2 f¢ ( t )=¢te  

The motivated reader may readily verify, via another integration by parts and exploiting 
the symmetry of  the normal PDF, that: 

clO _ _  

A(0,~)=/z~, = S~2e 2 dr= ff 
0 

Example III.3. Decreasing hazard function: Let h(t) = 1 ~ '  then: 

h ¢ ( t ) =  g¢(t)=q~ln(l+t)  S ,  ( t )  = (l + t ) ,  f ¢ ( t ) =  ( l + t ) ¢ , ,  

In this case, integration by parts together with l 'Hospital 's  rule gives: 

oo co 

A(O,~) = bt,, j ~t dt = . dt . 1 
= J - - -  h m  - I 

o ( l + t )  ~ '+l  o ( l + t )  ~ t - ~  ~o(1 + t) *- 

in which the right hand side limits both exist for ¢ > 1 . For ¢ = ! the right hand side 

diverges to + 0% whence/~¢ ~ ~t is infinite for ¢ ~ I. This illustrates that a proportional 

increase in the hazard function can reduce an infinite mean duration to a finite number  
and, conversely, that a proportional decrease can make a finite mean duration become 
infinite. 

The next example describes one of  the most popular survival distributions, often defined 
via its PDF: 

Example Ill.4. Weibulll density with parameters a,b > O. In this example, define 
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f (a ,b , 'O = am"b- l  e -a t '  

then (see, e.g. [2] Hogg-Klugman, pp. 231-232) 

S ( t )  -at* b-I = e ; h(t) = abt  ; and I t -  
I 

ba ~ 
This distribution conforms to a proportional hazard model, indeed: 

f ~ ( a , b ; t )  = f ( f aa ,  b;t) ,  

S~,( t )  = e -~at , h ~ ( t )  = f~abt b-I  a n d  /2¢p - 1 I 

b(~) ~ ~,~ 
t 

Letting F(u)F(a;  t) = Is a-le-'ds define the incomplete gamma function (as in [2], p. 
0 

217), we leave to the reader the verification that for the Weibull density: 

A(a,  b; ct, q~) = ~U6Ca,q, ) 

=a lt--~--)[lt--~--;aa ) + e  ~p L,- . t~ ;~<,  ;j 

1 b = 2 this When ct = 0, a = b = 1 this reduces to Example III. ! ; when a = 0, a = 2 '  

reduces to Example I11.2. 

Example III.5. Pareto density with parameters  a ,b  > 0. In this example, define 

f ( a ,  b; t )  = a b  a ( b  + t )  -a-' 
then (see, e.g. [21, pp. 222-223) 

a andfor a > l  / ~ = - -  S ( t )  = , h ( t )  = b + t a - 1 

This distribution conforms to a proportional hazard model, indeed: 

f ¢ ( a , b ; t )  = f (epa,  b;t) ,  

S e ( t ) =  ~--~ ,h~( t )=  t andfor q~a>l, /~e q ~ - I  

We again leave to the reader the verification that for the Pareto denisty: 
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A(a,b;ct, qO =/.~6~,.~) 

-a-1 kb--g-gJCg:-i--~J ~b-7-d~J ~,~-I-U 

When a = 0, a = b = 1 this reduces to Example III.3. 

The last two examples are suggestive of the common approach to performing calculations 
in survival analysis: fu'st, we select a form for the distribution, then we fit parameters to 
the data. Finally, we calculate whatever statistics are needed using formulas specific to 
that distribution (e.g. as found in [2]). This paper suggests the expediency of  a simpler 

more empirical approach to calculating/~s that avoids making any assumptions as to the 
form of the distribution as well as any parameter estimation. Also, we can use the 
method with time-dependent interventions and it is especially easy to do in practice. 
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Section IV: Hazard with Finite Support 

Most survival analysis discussions use distributions whose natural support is the set of 
positive real numbers, as in the previous section. The impetus for this work came from 
insurance, particularly claims analysis. Although actuaries customarily employ the usual 
collection of survival distributions-with their infinite supports-in practical applications 
claim duration is subject to limits. Moreover, the specific structure of  the very far "tail" is 
either intrinsically unknowable, irrelevant, or both. Accordingly, this study focuses on 
the situation in which the data is limited to a finite time interval. 

As described in the case study section, the insurance problem prompting this 
investigation arose in the line of workers compensation insurance. A very small 
percentage of  those claims involve pension benefits that can continue for decades. Even 
the best insurance data bases, however, rarely track a coherent set of losses for more than 
10 annual evaluations. That study concerned the implementation of a new program and 
the available data consisted of a one snapshot evaluation of claims captured into various 
automated systems. The data typically went back only four years and even the most 
matured cohort included a high percentage of open ("right censored") cases. 

In this section we introduce the assumptions and notation for our case of  interest: support 
Z = (0,1]. We make the assumption that h(t) is piecewise continuous. Observe that g(t)  

andS(t) are both continuous on [0,1], the former nondecreasing and the latter 

nonincreasing. Let p = S(I), 0 < p < 1. The distribution T has a point mass of 
probability p at { 1 }. We will make extensive use of the following: 

Proposition IV.l: For any positive integer n," 

1 1 
E(T" )  = nJt"-  S( t )dt .  

0 

Proof" The proof is really just the integration by parts the diligent reader would have 
done a few times already in the previous section: 

u = - S ( t )  d u = f ( t ) d t ;  v = t "  d v = n t " - I d t  
1 1 I 

E(T" )  = I t"  f (t)dt + p = lvdu  + p = uv]lo - Iudv + p 
0 0 0 

I I I 

= - t " S ( t ) ~  + n l t" - IS( t )d t  + p = - p  + n j t " - lS ( t )d t  + p = n l t" - IS( t )d t  
0 0 0 

completing the proof. 

Letting a2 denote the variance ofT,  the following two corollaries are apparent: 
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Coro l la ry  IV. l :  
I 

i) 14 = IS(t)dt 
O 

I 

ii) Iz 2 +~r 2 = 2 ~tS(t)dt 
o 

Coro l la ry  IV.2: 
a I 

A(a, ¢,) = i~, = ~ S(t)dt + S(al'-* ~ S(tl" dt 
0 a 

I 

In particular, observe that i~  = [S(t)¢dt.  It is intuitively clear that increasing the 
0 

decreases the mean duration, i.e., that A = P6 is a decreasing function o f  q~. A bit 
more thought  should convince the reader that A = g6 is an increasing function of  a for 

> 1 and decreasing for q~ < 1. Since g(t) is increasing, the following result fo rma l i z~  
this: 

Proposition IV.2: 

OA I 
i) -~a = ( ~ - l ) f ( a ) S ( a ) - $  ~S(t)~ dt 

' 1" ii) ~ g(a) IS(t)¢ dt - lg(t)S(t)$ dt 
L a a J 

Proof: i) From Corollary IV.2, the fundamental theorem of  calculus and the product rule 
for differentiation: 

8A 0 ~ i a ~, 

oa a Lo 1 J 

= S(a)  - S(a)  + (1 - ~)S(a)  -~'/(a)I S(t) ~' dt 
1 

I 

= (q~ - I )S (a ) -c f (a ) lS ( t )¢d t  
a 

fi) Obscrvc that: 
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$6 ( t )  = f s ( t )  ~ . .  t < ol 

[ S ( a )  -* S ( t ) "  t > a 

OS 
m ~  

0 t ~ a  

) 
- s(t)~ (l~(S(a))s(,~) '-~') t ~ 

Noting that our assumptions enable us to differentiate under the integral, and recalling 
that g( t)  = - l n ( S ( t ) ) ,  we find that: 

aA a S~ ( t )d t  = dt = -S (c t ) l - •  S( t )  ~ g ( t ) d t  - g ( a )  S ( t )  ¢' dt 
Oq~ Oq~ o O~ a 

which completes the proof. 

The graph ofA = 126 is a tent with a single "pole" of unit height at the origin, a front wall 
of infinite length and constant height 12 and a back wall of decreasing height: 

A(0,0) = I and Va, q~ _> 0, A(1,q~) = A(a,l) = 12 

12 { ! / ~  ~ ~ . ~ . . . ~ ( 0 ' 0 ' 1 )  z = ~(a,~,) 

Since g(t )  is nondecreasing, we clearly have: 
I | 

- in(p)12 = g(I)12 ~ Ig( t )S( t )dt  and 12 = I t f ( t )d t  + p > p 
o 0 
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The following refines this: 
I 

L e m m a  IV. l :  - ln(p)/J  + p - I~ >- fg(t)S(t)dt 
0 

Proof. Set 

I 

u =g(t)  du =h(t)dt; v= ~S(w)dw dv=S( t )d t  
o 

I t ~1 I t 

~g(t)S(t)dt = g(t) ~oS(W)dWJo - ~h(t) ~S(w)dwdt 
o o o 

l I S ( w )  
< - I n ( p ) / d - ~ f ( t ) S l d w d t  as >l f o r w < t  

0 0 S(t) 
1 

= - I n ( p ) / t  - Sf(t)tdt = - I n ( p ) ~  - ( / t  - p). 
0 

Applying the l emma to the hazard function h a (t) : 

O >  ~A a=O i = _ g ( t ) S ( t ) ~ d t  > / ~ ( 1  + ~p I n ( p ) )  - p "  

which formally confirms how A(a ,~) f la t tens  as ~ -~  oo. On the other hand, observe 

that i f  h(a) > 0 for some a > O, then, 

g ( t ) > O  f o r t > a ~ S ( t ) < l  f o r t > a  
I a 

=:' l i m / ~ e  = i i m  A ( O , o ) =  l im fS(t)~' dt <- Idt = a 

While the effect o f  an increase (decrease) o f  the hazard function clearly has  the opposite 
affect on the mean  duration, the effect on the variance is unclear. Indeed, the reader can 
use Corollary IV.1 to verify that: 

l im t r ¢ =  lim tr_ = 0 

Before we discuss some examples,  we note the following integration formula, in which 
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I 
F(a)F(b)  

B(a ,  b) = Ix°-I (1 - x )  b-I dx = 
0 F ( a  + b) 

functions. 

V a, b > 0 , the usual beta and g a m m a  

Lemma IV.2: For a ,c  > - l , b  > 0 

~t'(I -tb)~ dt = 
0 b 

Proof: Letting x = t b ::> dx = btb-tdt, then 

1 
~ta(l _ t b )c dt = 1 it o-b+, (1 - t~)Cbt (b-') dt 
0 O0 

1 ' (  ' ho-b÷t 
=~tx~; (l-xyax 

1 ' - - - 1  

as claimed. 

We next present some examples.  The first, while especially simple, will play a major role 
in later findings. 

Example IV.1. Constant hazard function, let h(t) m 1, 0 < t < 1. Then, as in Example III.1, 
we have: 

h ~ ( t ) = ¢ ;  g g ( t ) = q ~ ;  S , ( t ) = e - ~ ;  f~,(t)=q~e -~  

and we observe that 

1 
Pv = S~,(1) = e -~' = p~', where p = Pl = - 

e 

More generally, for 0 < a < 1, we find: 
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{~ t e [O,a] 
h 6 (t) = t e [at,l] 

t t a [O,a] 

g a ( t ) =  q~( t -a )+a  t e [ a , I ]  

Sa( t )=  { e -t t ~[O,a] 
pa  e-~,(t-a) t e [a,1] 

1 ct I p a + P t ~ ( l _ p ~ O ( , _ a ) )  
A(ct, q~) = la a = ~Sa(t)dt = ~e-t dt + p a Ie-~'(t-a) dt = 1-  

0 0 a 

1 - p ~  
In particular, we find that A(0,~) = ~9 = . We will make considerable use o f  this 

~a 
example in later sections where we deal with combining hazards and show how to use the 
Cox Proportional Hazard model to approximate any hazard o f  finite support by a step 
function. 

Example IV.2. Increasing hazard function, select p ~ [0,1], and define 

f ( t )  = I - p, t ~ [0,1]; then: 

l ~ p  
S ( t ) =  l - ( l -  p ) t  and h( t )  = 

1 - (1 - p ) t  
This is an example o f  an increasing haTard that is not a proportional hazard model. We 
note that h(t) is defined and continuous on [0,1] for p > 0,  while the ease p = 0 is 

t 
reminiscent o f  the infinite support case via the transformation t ~ ~ .  Finally, we 

t + l  
note that the case p = 1 ~ S(t) -= 1 is o f  little interest, so we require p < 1. 

We leave to the reader the straightforward verification that in this case: 

(1 - p ) a  2 p ' "  (1 - (1 - p)ct)'-" - (1 - (1 - p)ct) 2 
A ( a , ¢ )  = g6 = a 

2 OP + 1Xp - l) 
In particular, 

1 - p ~ l  
/.t~, = (q~+ l)(l - p )  

For the special case p = 0,  the formulas simplify considerably and we have: 
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i 
/~" q~+l and S , ( t ) = ( i - t )  P 

1~,2 + c r  2 = 2 i t ( l _ t ) g d t  = 2F(2)F(q~ + I ) F ( ~  + 3) = 
0 

2=  ~P 
::~ O', (q~+ l)2(~p + 2 ) 

(~ + 2)(~ + 1) 

In this case, 

tr = - - ;  ~ = t r c : ~ t p ~  1, 
12 

and the variance is maximized exactly when ~ = - - ,  giving a specific illustration o f  

the relationship between a proportional shift in the hazard and the variance. 

The next example is a simple way to define a new hazard function from an old one. 

Example IV.3. Reversed hazard function, let h(t) be any hazard function o f  finite support 

and define h(t) = h(1 - t ) ,  then clearly 

(/~)~(t) = t p h ( 1 - t ) =  ( ~ ' ) ( t )  for every (p > 0 

which shows that the reverse o f  a proportional hazard model is also one. Clearly, the 
reverse o f  an increasing (decreasing) hazard function is decreasing (increasing) and 

= h .  Letting u = 1 - t ,  we find that 

I I - t  

~g(s)ds = - lh(u)du = g(I) - g(l - t) ~(t) 
0 I 

p =  p; g(t)  p . ~f dt 

The reverse of  Example IV.I is, o f  course, again Example IV.I. The reverse o f  Example 

IV.2 is a decreasing hazard function with survival function P and mean 
1 - ( l  - p ) ( l  - t )  

p in (p )  

p - 1  

The next example is another simple way to define a new hazard function from an old one. 

Example IV.4. Complement hazard function, let h(t) be any hazard function of  finite 

support such that f ( t )  < !, 0 < t < 1, and define J-(t) = ! - f ( t ) ,  then 
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t ! 

/~(t) = I - I)7"(s)ds = 1 -,~(1 - f ( s ) ) d s  = 1 - t  + (l - S ( t ) )  : 2 - t  - S ( t )  
0 0 

b = 1 - p ;  i , ( t )  = l - / ( t )  
2 - t - S ( t )  

We again clearly have f ( t )  = f ( t )  ; the picture is: 

.?(t) 
Area  = p ] 

Area  = I -p  

Example IV.5: Modi f i ed  Beta densi ty  wi th  p aram e te r s  a, b, c, p . Assume 
a , c  > - i ,  b > O, O <_ p < l and def ine  

b ( 1 -  p ) t  ° ( l - t b ) c  

f ( a , b , c , p ; t ) =  B ( ~ _ l , c  + 1) 

Then, clearly, f ( t )  > 0, when 0 < t < ! and the above lemma implies that 
I 

S f ( a , b , c , p ; t ) d t  = 1 - p 
0 

The binomial theorem enables us to write: 
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a + l  ~ ' -  j f(a'b'c'p;t)=B(~_,c+l),.o ~k f 

When c is an integer, the reduction formula for the Gamma function gives: 

c! b'" c! 

l~I(a~+ bJ + 1 ~ (-Ia+bj+ 1 
j-o~, b ) .o  

from which we find that for c an integer: 
c 

b(l - p ) [ I  (a + bj + 1) 
f (a ,b ,c ,p ; t )=  j--o ~ ( : ~  

• k - - -O 

c 

( 1 -  P ) l - I ( a  + bJ + l) ~ ( ,=o l)kt °+" 

¢ c 

j = k  

which expressesJ(t) and S(t) as polynomials. When ac * 0, f( t)  = 0 ~ t E {0,1}. In fact, 
it is readily verified that f( t)  is positive on (0,1) with a unique maximum at 

I 

t = ~ " [ a | i .  It follows that the hazard function in this example is generally 
~,a+cb) 

["]-shaped. The following picture illustrates this: 
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h(t) 

a=b=l, c = 4 , p = l / ~ ~  

0 t 
The final example is a slight variation of  the previous one. 

Example IV.6: Assume a,c > -1, b > 0, 0 < p < i and define 

f(a,b,c, p;t) = b( l  - p ) ( l  - t ° ( l  - t~) ") 

Again f(t) >_ 0, when 0 _< t < 1 and the above lemma implies that 
I ff(a,b,c,p;t)dt = 1 - p .  In this case, the hazard function is generally U - s h a p e d .  The 
0 

following picture illusU'ates this: 

h(O 

711//~b=l'c=l/g'2~ 

0 t 

In the event that a particular shape of  the hazard function is required, the last two 
examples provide candidates for parameter estimation. The following section argues 
that, for most purposes, a simple step function is preferable, from both the conceptual and 
computational perspectives. 

This section concludes with two results. The first is one more observation on the 
difference/z - / . t~ .  The second revisits how for a finite haTard the survival function is a 

convenient  device for computing moments,  in this case relating it with the moment  
generating function. 
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In Example IV.2, note that 

p+l  p¢+l  - 1  
p-/ . t¢ = 2 (~o + l)(p- I) 

1 l p [  1-p22 +p¢+lq~+l-l]j 

The following generalizes this: 

Proposition IV.3: Assume f( t ) is  continuous on (0,1), then 
V~>0,  0 < a < l ,  3 ( e ( a , 1 )  suchthat 

i _ ( p ] 2  ( p  ],v+,_l] 

f ( ( ) (u - ,u ,~ )  = p, 2 k.P,~ ) ~,~-~ ./ ~ ~o + 1 where Pa = S(a). 

Proof'. 
I a I 

I.t - I.t~ = fS(t) - S a (t)dt = fS(t) - S(t)dt + fS(t) - S(ot)'-" S(t)* dt 
0 0 a 

I 

= f S ( t ) -  p.~-~S(t)*dt 
ct  

Consider first the case ,u =/J,~. Observe that 

S(t)-Pal-*S(t)¢{ <0_0 q~>lcP';l 

It follows, therefore, by continuity and the preceding equation, that /.t = P6 would forge 

S( t ) -  p~l-'S(t)P = 0 Vt • (at,l) 

Now if p = p~, then the right hand side is clearly 0 and the result holds. So consider the 
ease /z = 1.t6, p~ < p.  We then have both: 

p -  p,,'-~'p* = lira {S(t)-  p~'-~'S(t)* }= lim {0} = 0 
t--)l I--.I.l 

I-~, ~,{<0 q~<l 
and P - P a  P >0 q~>l 
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which clearly forces ¢~ = 1. The result again follows since ¢~ = 1 makes the right hand 
side O. 

The upshot is that we may now assume that /z  * #6- Becausefis continuous and does not 

change sign, the generalized intermediate value theorem for integrals ~ ~ (  ~ (a,1) such 
that 

I I 
f ( O ~ S ( t ) - p ~ ' - * S ( t ) ' d t =  f ( S ( t ) - p . t - o S ( t > ' ~ ( t ) d t ,  f ( ( ) > O  

a a 

Noting that dS = - f  (t)dt; t = a ~ S ( t )  = p~; t = I c~ S ( t )  = p .  With the change of 
variable we have: 

f (O( / . t - / . t6 )  = i ( S ( t ) - p a l - C ' S ( t ) v ~ ( t ) d t = P ] ( s - p a l - ' S ' ~ S  
a p 

S 2 I-e) S q~-I ]P° Pa 2 patp+l p 2  pq)+l 
= - - j - - P a  - ~+----"~Jp = 2 -pal-qs qg+l 2 +pal-~° q)+l  

'-(I \P,~ ) = pa  2 " ~ + 
2 ~+1 

which completes the proof. 

I 
Proposition IV.4. M r (x)  = 1 + x Se "S ( t ) d t  

o 

Proof: By definition: 

I 

M r ( x  ) = E(e ~r ) = [. e~t f ( t)dt  + pe  ~ 
0 

Under our assumptions, we can interchange summation with integration, whence: 
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1 

M r ( x )  - p e  ~ = l e ' ~ f ( t ) d t  
0 

t ® [xt~ k 
-- 

*° x k l  k 
= ~ --if, I t  f ( t ) d t  

k:O K: 0 
i q o x k  1 k l 

= I f ( o a t  + z X ~ k f t  - S ( t ) d t  - p ]  
o ~ . ~  k! L o J 

k - I  f l  ..~] 
= i - p + x ~ I t k - ~ S ( t ) c t t  - 

k m ,  K - ~ L o  

0o r I x k - l t  k-I "1 :,-,,+,,z/j f.-"" 
I=IL. 0 qt#l--1)~ j k=l k! 

.,, r 1 k k "1 = X k 
= l + = x / I  x - t -  S ( t ) d t l -  

,:oLo k~ j s'~oT.' 
rl  ® (xt  ~k "] 

= ] + = / I ] E  ~'/--LZ--S(t)dtl - p e  ~ 
Lo*:o k! j 
i 

= 1 + x[ .e~ 'S( t )d t  - pe=. 
0 
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Section V: Combining Finite Support Hazard Functions 

We continue with the notation and assumptions o f  the previous section. Consider first 

the case o f  two hazard functions, h 1 (t) and/11 (t) . If  these represent independent causes 

o f  failure, then their sum h~ + h 2 provides the corresponding hazard function. In this 
ease, we clearly have: 

1 

g = g l  + g 2 ;  S=StS2 ;  f = S t f 2  + f l S 2 ;  / t =  ~Sl(t)S2(t)dt, 
0 

and we can readily generalize this to the case of  compounding together any finite number 
o f  hazards. 

Consider the case o f  adding a constant hazard, i.e., the case h2(t ) --- a > 0.  While this will 
clearly decrease the mean duration to failure, the issue is by how much. From Example 

IV.l ,  we have S2(t ) = e - " ,  and from Proposition IV.4 we find: 

1 t 1 - Mr, ( - a )  
(-a) = 1 - a  fe-°'S,(t)dt = l - a f S , ( t ) S 2 ( t ) d t  =1-a/ . t  ::~ Mr, /.t 

o" 0 ~ a 
While adding hazards is formally very simple, this suggests that the effect o f  the mean 
duration can become complicated in even the simplest contexts. Moreover, the more 
useful and challenging task would be to reverse this process: to decompose a compound 
hazard into mutually independent hazards. Fortunately, our needs are much less 
demanding. 

In this section we detail a very simple and straightforward way to combine hazard 
functions. This provides the framework needed to exploit the Cox Proportional hazard 
model to approximate hazard functions with step functions. The approach also fits in 
well within the context o f  time-dependent interventions. 

Begin with a finite support hazard function h(t) and let {0 = a 0 < a~ <... < a ,  = 1} be a 

partition of  [0,1] into n subintervals. We can readily decomposeh(t)  into n finite support 
hazard functions: 

h,(t)=h(a,_, +t(ct~-a,_,)) O<t <_l,i=l,2,...,n 

Fortunately, this process is readily reversed, i.e. given an ordered set o f n  finite support 

hazard functions {h,(t), i = 1,2,...,n} together with a partition {0 = a 0 < a m < ... < a ,  = I} 
o f  [0,1 ] into n subintervals, we define their gauntlet hazard function on [0,1 ] by 

h(t) = {hl,h 2 ..... hn; 0 = cr 0 < a L < ... < a n = l}(t) = h~ where a~_ 1 < t < ot~ 

We observe that when theh~, i = 1,2,...,n are all constant hazard functions 

(h~(t) m q~ = h, , ,  i = 1,2,...,n from Example IV.l)  their gauntlet hazard function is a step 
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function. Conversely, any hazard step function is the gauntlet of  constant hazard 
functions in an essentially unique way. 

The interpretation is straightforward. As suggested by the name, we can think of  the 
hazards being lined up in sequence, much like a gauntlet. Survival becomes a matter of  
passing successively through the hazards, in sequence. A concern arises when any 

p~ = 0, i < n ,  since failure is assured during the corresponding interval, rendering the rest 
of  the gauntlet essentially moot and introduces a singularity in the hazard function. As 
was noted before, the case p=0 is akin to infinite support hazards. In general, the 

i 
probability of  surviving the i-th interval of  the gauntlet hazard is I - I  p ,  • 

k=l 

From these definitions, combined with our notational conventions, we have: 

" 

g(t )= E ( a  k - c t , _ , ) g k ( l ) + ( a  , -a,_,)g i t - a '  l wherea',_, <_t < a  
k=l 

i-i a~- . . . .  [ t _ G ~ _ l  ",,=, - . . . .  
S(t) = I - [  P~ S , ]  / where  ai_ t _< t < a 

* = l  \ a~ - a i _  I ) 

I n a,  n i - I  , _ t Z i _  I | 
la = lS(t)dt = E IS(t) dt = Z I-I Pk I S i l - - !  dt 

0 i = l a , ,  i = l k = l  a_,  ~,O~i - a i - I  } 

n i - I  a , - - a ,  ~ I 

= Z l-IPk (a, -a i_ l ) lS i (u )  a'-a'-' du 
i= l  k= l  0 

n i - I  a~-a ,_ ,  

= Z l - I  pk - 
i=1 k=l 

It is instructive to note two special cases of  this formula for/z : 

i 
Case 1: Assume the partition is uniform, that is, a t  = - then the formula becomes: 

r/ 
i 

.---:E[I-Ip, ,), 

Case 2: Assume the hazard is constant on all the intervals (step function). Then by 
Example IV. 1, 
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h,-= ~, = ( . , ) o _  .... = 
and the formula becomes 

1 - e ¢'{a'-''-a') 

~,(~,-a,_,) ' 

.=~p. ~ -~,,)(.,)., . . . .  

. . . . . . . . . .  --,, x( l - e "  ....... ' '~  
= X r I e  /~, _ [ ~ , ( ~ _ ~ _ , ) )  

- "  - ~ e  ;~" ......... ( 1 -  e"f ~. ...... "~ ) / 

Finally, when both apply, in the case of a step function with uniform partition, the 
formula simplifies to: 

I t-s ( _ ¢~._L 

# = ~-'~e 1 - e  

i=1 ~ i  

In the example below, we consider how to make use of this, given a set of empirical 
observations. The formulas suggest that it may prove useful to approximate the hazard 
function by a step function. In that regard, notice that the natural choice for q~, ~ h, ( t )  is 
the average value of the hazard function over the ith interval. This, in turn, is readily 
determined from the survival function: 

1 '~' . , j .  g ( c t l ) - g ( o  6 ,)  f h ( , , u ,  . . . .  _ _ l n ( S ( a , _ , ) ) - l n ( S ( ~ , ) )  
J 

O/i -- ~ i - I  a~_ I ~ i  -- a i - I  ~ t  -- O~i-I 

We conclude with a simple example that illustrates how, despite the awkwardness of the 
formulas, the calculations can be quite simple in practice. 

Example V. 1 Let h o (t) -~ 1, for 0 < t < 1 be the constant unit hazard function and 

6 =  8 ( 1 , 2 ) o  8 (-~-,~-)bethecompositeofthetwoshifts .  Consider the harard 

step function defined from: 
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h(t) = (ho),(t) = fl I 0 ~ t  <-~ 

2_<t< 

SAS was used to simulate two survival data sets One and Two, conforming to the hazard 

functions h 0 and h , respectively. The PDFs are readily determined from earlier 
examples and were used to perform the simulations (refer to Appendix l for details). A 
survival function was produced from Two. An excerpt of the output is provided below 
(page l0 of  the listing), 

t s(t) g(t) 
0 1 0 

0.71665 0.33317,/1~3 

~3 0.36770 1.00048~- 1 

1 0 .26359  1.33335~ ~33 

The estimation of the hazard function h(t) from the survival function is: 

t ~ [ 0 , / ] ,  h(t).~ g(l//33)-g(O) / - 0  
/ - 0  -- / --I 

'4 t ~ [ / , 2 ~ 3  ], h(t).~ / = 2  

4 
- - - - 1  

, ~  t N , i i ,  h(,) ~ ~ - :  i 
/ 

The simple average of an upper and a lower Riemann sum of the survival function over 
[0,1 ] (equivalent to the trapezoidal rules since the survival function is monotonically 
decreasing) was used to estimate the mean duration to failure to be 0.56193 (page 16 of 
the listing): 

I~ = iS(t)dt ~ 0.56193 
o 

Compare this with the value determined using the above formula: 
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¢~ = ~3 = I, ~ = 2 : 

/ a=  1 - e  ~ + e  -~ + e  -T~ l - e  -~ 

= 0.562077 

Finally, data set Two observations were flagged and pooled with set One survival data. 
The SAS PHREG procedure was then run on the combined data set with the flagged data 
modeled as a time-dependent intervention applicable to the middle interval. The PHREG 
procedure produced a hazard ratio of 2.000 (page 4 of  the listing) for that intervention, 
illustrating how the Cox proportional hazard model can be used to approximate a hazard 
function by a step function. By the same token, it illustrates how that procedure may 
provide the means to unpack this process. More precisely, the procedure results may 
reveal a change in hazard as (approximated by) a combination of shifts like the ones 

1 2 2 1 
considered here: 8 = 8 ( 3 ' ) o 8 ( ~- ,  ~-)  . From that, the results of this paper 

can be used to translate this into the effect on the mean time to failure. 
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APPENDIX 1 

I ~ S L O G  I 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  ; 

4 OPTIONS MPRINT LS-131 PS~59 NOCENTER; 

5 *OPTIONS OBS - I00; 

6 DATA ZERO; 

7 INPUT Z; 

8 CARDS; 

NOTE: The data set WORK.ZERO has 1 observations and 1 variables. 

10 

11 DATA ONE;SET ZERO; 

12 KEEP T CLOSED SHOCK; 

13 RETAIN COUNT; 

14 IF N - I; 

15 CLOSED - I; 

16 SHOCK - 0; 

1 7  COUNT - 0; 

18 DO I - I TO 1000; 

19 T - 1/1000; 

20 DO J - 1 TO ROUND(50*EXP(-T),I); 

21 COUNT ÷ I;0UTPUT;END;END; 

22 T - 1;P = EXP{-1); 

23 CLOSED = 0; 

24 DO J - 1 TO (P/(1-P))*COUNT; 

25 OUTPUT;END; 

NOTE: The data set WORK.ONE has 49980 observations and 3 variables. 

26 DATA TWO;SET ZERO; 

27 KEEP T CLOSED SHOCK; 

28 RETAIN COUNT; 

29 IF N = I; 

30 CLOSED - I; 

31 SHOCK ~ 1 ; 
32 COUNT R 0; 

33 DO I i 1 TO 333; 

34 T- 1/1000; 

35 DO J - I TO ROL~TD(50*EXP(-T),I); 

36 COUNT + I;OUTPUT;END;END; 

37 DO I - 334 TO 666; 

38 T - 1/1000; 
39 DO J = 1 TO RODND(100*EXP(-2*T + 1/3),1); 

40 COUNT + 1;OUTPUT;END;END; 

41 DO I - 667 TO I000; 

42 T = 1/1000; 

43 DO J = 1 TO ROUND(50*EXP(-T - 1/3),1); 

44 COUNT + 1;OUTPUT;END;END; 

45 T = l;P - EXP(-4/3); 

46 CLOSED - 0; 

47 DO J = I TO (P/(l-P) ) *COUNT; 

48 OUTPUT;END; 

NOTE: The data set WORK.TWO has 49956 observations and 3 variables. 
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49 
SO 

DATA THREE; SET ONE TWO; 
TITLE 'PHREG PAPER:TEST'; 

NOTE: The data set WORK.THREE has 99936 observations and 3 variables. 

51 PROC PHREG SIMPLE DATA=THREE; 

52 MODEL T'CLOSED(0)- SHOCK /CORRB COVB; 

R~YfE: The PROCEDURE PHREG printed pages I-2. 

53 

54 

55 

56 

57 

S8 

59 

60 

61 

62 

63 

64 

65 

66 

67 
68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 
79 

80 

81 

82 

83 

84 

85 

$6 

87 

88 

89 

90 

91 

92 

93 

PROC PHR~ SIMPLE DATA=I~[REE; 

MODEL T.CLOSED(0)= TSHOCK /CORRB COVB; 

IF 2/3 >- T > 1/3 T ~  TSHOCK - SHOCK;ELSE TSHOCK = 0; 

%MACRO MEANDUR; 

PROC PHREG SIMPLE DATA=ZDATA; 
MODEL T.CLOSED(0}= /CORRB COVB; 
BASELINE OUT=B~E SURVIVAL=S; 

DATA BASE;SET BASE END . EOF; 

IF _N_ = 1 THEN DO;T - 0;S - 1;OUTPUT;END; 

IF T • 1 TEEN OUTPUT; 

IF EOF OR T >= 1 THEN DO;T = 1;OUTPUT;END; 

PROC SORT NODUP DATA = BASE; BY T; 

DATA SUBBASE;SET BASE; 

IF ABS(T - 0) < .01 OR 

ABS(T - 1/3) • .01 OR 
ABS(T - 2/3) < .01 OR 

ABS(T - 1) < .01; 

G = -LOG(S) ; 

PROC PRINT DATA=SUBBASE; 

DATA MEAN;SET BASE END=EOF;KEEP UPPER T~)WER MEAN; 

KEEP UPPER LOWER MEAN; 

RETAIN UPPER LOWER OLD_S OLD_T; 

IF _N = 1 THEN DO; 

OLD_T = 0 ; 

UPPER ~ 0; 

LONER = 0 ;  
OLD_S = i; 
END; 

D = T - OLDT; 

IF D > 0 THEN DO; 

UPPER + D*OLD_S; 

LOWER + D'S; 

END; 

OLD_T - T; 

OLD_S = S; 
IF EOF THEN DO; 

MEAN = (UPPER + LOWER)/2;OUTPUT; 

END; 

PROC PRINT DATA = MEAN; 

%MEND MEANDUR; 

DATA ZDATA;SET ONE; 

NOTE: The PROCEDURE PHREG printed pages 3-4. 

IRYFE: The PROCEDDRE PHREG used 3001K. 

94 

95 
TITLE 'PHREG PAPER:TEST BASE ONE'; 

%MEANDUR; 

mOTE: T he  d a t a  s e t  WORK.ZDATA h a s  4 9 9 8 0  o b s e r v a t i o n s  a n d  3 v a r i a b l e s .  

606 



MPRINT(MEANDUR): PROC PHREG SIMPLE DATA-ZDATA; 
MPRINT(MEANDUR): MODEL T'CLOSED(0)- /CORRB COVB; 

MPRINT(MEANDUR): BASELINE OUT=BASE SURVIVAL-S; 

NOTE: There are no explanatory variables in the MODEL statement. 

NOTE: The data set WORE.BASE has 1001 observations and 2 variables. 

NOTE: The PROCEDURE PHREG printed page 5. 

MPRINT(MEANDUR): DATA BASE; 

MPRINT(MEANDUR) : SET BASE END - EOF; 

MPRINT(MEANDUR) : IF N = 1 THEN DO; 

MPRINT(MEANDUR) : T = 0; 

MPRINT(MEANDUR) : S = I; 

MPRINT (MEANDUR) : OUTPUT; 

MPRINT (MEANDUR) : END; 

MPRINT(MEANDUR) : IF T < 1 THEN OUTPUT; 

MPRINT(M~UR) : IF EOF OR T >= 1 THEN DO; 

MPRINT (MEANDUR) : T = 1; 

MPRINT (MEANDUR) : OUTPUT; 

MPRINT (MEANDUR) : END; 

NOTE: The data set WORK.BASE has 1002 observations and 2 variables. 

MPRINT(MEANDUR): PROC SORT NODUP DATA = BASE: 

MPRINT(MEANDUR): BY T; 

NOTE: 1 duplicate observations were deleted. 

NOTE: The data set WORK.BASE has 1001 observations and 2 variables. 
MPRINT(MEANDUR): DATA SUBBASE; 

MPRINT(MEANDUR): SET BASE; 

MPRINT(MEANDUR): IF ABS(T - 0) < .01 OR ABS(T - 1/3) < .01 OR ASS(T - 2/3) < 
01 OR ABS(T - I) < .01; 

MPRINT(MEANDUR): G = -LOG(S); 

NOTE: The data set WORK.SUBBASE has 60 observations and 3 variables. 

MPRINT(MEANDUR): PROC PRINT DATA=SUBBASE; 

NOTE: The PROCEDURE PRINT printed pages 6-7. 

MPRINT(MEANDUR} : DATA MEAN; 

MPRINT(MEANDUR) : SET BASE END=EOF; 

MPRINT(MEANDUR) : KEEP UPPER LOWER MEAN; 

MPRINT(MEANDUR) : RETAIN UPPER LOWER 0LD_S OLDT; 

MPRINT(MEANDUR) : IF N = 1 THEN DO; 

MPRINT(MEANDUR) : OLD T - 0; 

MPRINT(MEANDUR) : UPPER = 0; 

MPRINT(MEANDUR) : LOWER = 0; 

MPRINT(MEANDUR) : OLD S m 1; 

MPRINT (MEANDUR) : END; 

MPRINT[MEANDUR) : D = T - OLD_T; 

MPRINT(MEANDUR) : IF D > 0 THEN DO; 

MPRINT(MF2%NDUR) : UPPER + D*OLD_S; 
MPRINT(MEANDUR) : LOWER + D'S; 

MPRINT (MEANDUR) : END; 

MPRINT(MEANDUR) : OLD_T = T; 

MPRINT(MEANDUR) : OLD S = S; 

MPRINT(MEANDUR) : IF EOF THEN DO; 

MPRINT (MEANDUR) : MEAN - (UPPER + LOWER)/2 ; 

MPRINT (MEANDUR) : OUTPUT; 
MPRINT (MEANDUR) : END; 
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NOTI~: The data set WORK.MEAN has 1 observations and 3 variables. 

MPRINT(MEANDUR): PROC PRINT DATA - MEAN; 

NOTE: The PROCEDURE PRINT printed page 8. 

96 DATA ZDATA;SET TWO; 

97 TITLE 'PHREG PAPER:TEST BASE TWO'; 

98 %MEANDUR; 

NOTE: The data set WORK.ZDATA has 49956 observations and 3 variables. 

MPRINT(MEANDUR}: PROC PHREG SIMPLE DATA-ZDATA; 

MPRINT(MEANDUR): MODEL T'CLOSED(0)- /CORRB COVB; 

MPRINT(MEANDUR}: BASELINE OUT-BASE SURVIVAL-S; 

NOTE: There are no explanatory variables in the MODEL statement. 

NOTE: The data set WORK.BASE has 1001 observations and 2 variables. 
NOTE: The PROCEDURE PHREG printed page 9. 

MPRINT(MEANDUR): DATA B~E; 

MPRINT(MEANDUR} : SET BASE END ffi EOF; 

MPRINT(MEANDUR) : IF N - 1 THEN DO; 

MPRINT(MEANDUR) : T ffi 0; 

MPRINT(MEANDUR) : S ~ 1; 

MPRINT ( MEANDUR ) : OUTPUT; 

MPRINT (MEANDUR) : END; 

MPRINT(MEANDLTR) : IF T < 1 THEN OUTPUT; 

MPRINT(MEANDUR) : IF EOF OR T >ffi 1 THEN DO; 

MPRINT(MEANDUR) : T - 1; 

MPRINT (MEANDUR) : OUTPUT; 

MPRINT (MEANDUR) : E N D ;  

NOTE: The data set 
MPRINT(MEANDUR): 

MPRINT(MEANDUR): 

WORK.BASE has 1002 observations and 2 vari3bles. 
PROC SORT NODUP DATA ffi BASE; 

BY T; 

NOTE: HOST sort chosen, but SAS sort recommended. 

NOTE: I duplicate observations were deleted. 

NOTE: The data set WORK.BASE has 1001 observations and 2 variables. 
MPRINT(MEANDUR) : DATA SUBBASE; 

MPRINT(MEANDUR) : SET BASE; 

MPRINT(MEANDUR) : IF ABS(T - 0) < .01 OR ABS(T - 1/3} < .01 OR ABS(T - 2/3) < 

01 OR ABS(T - 1) < .01; 

MPRINT(MEANDUR) : G ffi -LOG(S) ; 

NOTE:  The data set WORK.SUBBASE has 60 observations and 3 variables. 

MPRINT(MEANDUR) : PROC PRINT DATA=SUBBASE; 

NOTE : The PROCEDURE 

MPRINT (MEANDUR) : 

MPRINT (MEANDUR) : 

MPRINT (MEANDUR) : 

MPRINT (MEANDLTR) : 

MPRINT (MEANDUR) : 

MPRINT (MEANDUR) : 

M P R I N T  ( M I ~ T D U R )  : 
MPRINT ( IH[E~rDUR) : 

MPRINT (MEANDUR) : 

MPRINT (MEANDUR) : 

/(PRINT (MEANDUR) : 

PRINT printed pages 10-11. 

DATA MEAN; 

SET BASE ENDsEOF; 

KEEP UPPER LOWER MEAN; 

RETAIN UPPER LOWER 0LD_S OLD_T; 
IF N ffi 1 THEN DO; 

0LD_T = 0; 
UPPER ffi 0; 

LOWER - 0; 

OLD_S - 1; 

END; 

D = T - OLD3, 
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MPRINT(MEANDUR): 

MPRINT(MF2%NDUR): 

MPRINT(MEANDUR): 

MPRINT(M]F~qNDL*R}: 

MPRINT(MEANDUR): 

MPRINT(MEANDUR): 

MPRINT(MF-~%NDUR): 

MPRINT (MEANDUR) : 

MPRINT {MEANDUR} : 

MPRINT (MEANDUR) : 

IF D > 0 THEN DO; 

UPPER + D*OLD_S; 

LOWER + D-S; 

END; 

OLD_T - T; 

OLD S - S; 

IF EOF THEN DO; 

MEAN - (UPPER + LOWER)/2; 

OUTPUT; 

END; 

NOTE: The data set WORK.MEAN has 1 observations and 3 variables. 

MPRINT(MEANDUR): PROC PRINT DATA = MEAN; 

NOTE: The PROCEDURE PRINT printed page 12. 

99 
1 0 0  
1 0 1  

DATA ZDATA;SET THREE; 

TITLE 'PHREG PA/~ER:TEST BASE TEREE'; 

%MEANDUR; 

NOTE: The data set WORK.ZDATA has 99936 observations and 3 variables. 

MPRINT(MF~UR): PROC PEREG SIMPLE DATA=ZDATA; 

MPRINT(MEANDUR): MODEL T'CLOSED(0)- /CORRB COVB; 

MPRINT(MEANDUR): BASELINE OUT=BASE SURVIVAL-S; 

NOTE: There are no explanatory variables in the MODEL statement. 

NOTE: The data set WORK.BASE has 1001 observations and 2 variables. 

NOTE: The PROCEDURE PHREG printed page 13. 

MPRINT(MEANDUR) : DATA BASE; 

MPRINT(MEANDUR) : SET BASE END = EOF; 
MPRINT(MEANDUR) : IF N - 1 THEN DO; 

MPRINT(MEANDUR) : T - 0; 

MPRINT(MEANDUR) : S - I; 
MPRINT (ME~/~TDUR) : OUTPUT; 

MPRINT (MEANDUR) : END; 

MPRINT(MEANDUR) : IF T • 1 THEN OUTPUT; 

MPRINT(MEANDUR) : IF EOF OR T >= 1 TEEN DO; 

MPRINT(MEANDUR) : T = 1; 

MPRINT (MEANDUR) : OUTPUT; 
MPRINT (MEANDUR) : END; 

NOTE: The data set WORK.BASE has 1002 observations and 2 variables. 

MPRINT(MEANDUR) : PROC SORT NODUP DATA - BASE; 

MPRINT(MEANDUR) : BY T; 

NOTE: 1 duplicate observations were deleted. 

NOTE: The data set WORK.BASE has 1001 observations and 2 variables. 

MPRINT (MEA//DUR) : DATA SUBBASE; 

NPRINT(MEANDUR) : SET BASE; 

MPRINT(MEANDUR) : IF ABS(T - 0) < .01 OR ABS(T - 1/3) < .01 OR ABS(T - 2/3) • 

01 OR ABS(T - 1) < .01; 
MPRINT(MEANDUR) : O - -LOG(S) ; 
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NOTE: The data set WORK.SUBBASE has 60 observations and 3 variables. 

MPRINT(MEANDUR): PROC PRINT DATA=SUBBASE; 

NOTE: The PROCEDURE PRINT printed pages 14-15. 
MPRINT(MEANDUR): DATA MEAN; 

NPRINT(MEANDUR) : SET BASE END=EOF; 

NPRINT(MEANDUR) : KEEP UPPER LOWER MEAN; 

MPRINT(MEANDUR) : KEEP UPPER LOWER MEAN; 

MPRINT(MEANDUR) : RETAIN UPPER LOWER OLD_S OLD_T; 
MPRINT(MEANDUR) : IF N = 1 THEN DO; 

MPRINT(MEANDUR) : OLD T = 0; 

NPRINT(MEANDUR) : UPPER = 0; 

MPRINT(MEANDUR) : LOWER = 0; 

MPRINT(MEANDUR) : OLD S = 1; 

MPRINT (MEANDUR) : END. 

MPRINT(MEANDUR) : D = T - OLD_T; 

MPRINT{MEANDUR) : IF D > 0 THEN DO; 

MPRINT{MEANDUR) : UPPER + D*OLD_S; 
MPRINT(MEANDUR) : LOWER + D'S; 

MPRINT (MEANDUR) : END; 

MPRINT(MEANDUR) : OLD T - T; 

MPRINT(MEANDUR) : OLD S = S; 

MPRINT(MEANDUR) : IP EOF THEN DO; 

MPRINT(MEANDUR) : MEAN = (UPPER + LOWER)/2; 
MPRINT (MEANDUR) : OUTPUT; 

MPRINT (MEANDUR } : END; 

NOTE: The data set WORK.MEAN has I observations and 3 variables. 

MPRINT(MEANDUR) : PROC PRINT DATA = MEAN; 

MOTE: The PROCEDURE PRINT printed page 16. 
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LIBTING 

PHREG P~I~ER:TEST 

The PHREG Procedure 

Data Set: WORK.THREE 
Dependent Variable: T 
Censoring Variable: CLOSED 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

page 1 

Percent 
Total Event Censored Censored 

99936 68382 31554 31.57 

Simple Statistics for Explanatory Variables 

Total Sample 

Standard 
Variable N Mean Deviation 

SHOCK 99936 0.49988 0.50000 

Minimum 

0 

Maximum 

1.00000 
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PHREG PAPER:TEST 

The PHREG Procedure 

Criterion 

-2 LOG L 
Score 
Wald 

page 2 

Testing Global Null Hypothesis: BETA=0 

Without With 
Covariates Covariates Model Chi-Square 

1510536.08 1509248.84 1287.233 with 1 DF (p=0.0001} 
1290.337 with 1 DF (p=0.0001} 
1282.328 with 1 DF (p=0.0001} 

Analysis of Maximum Likelihood Estimates 

Variable DF 

SHOCK 1 

Estimated Covariance Matrix 

SHOCK 

SHOCK 0.0000591043 

Estimated Correlation Matrix 

SHOCK 

SHOCK 1.000000000 

Parameter Standard Wald Pr • 

Estimate Error Chi-Square Chi-Square 

0.275302 0.00769 1282 0.0001 

Risk 
Ratio 

1.317 
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PHREG PAPER:TEST page 3 

The PHREG Procedure 

Data Set: WORK.THREE 
Dependent Variable: T 
Censoring Variable: CLOSED 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

99936 68382 31554 31.57 

Simple Statistics for Explanatory Variables 

Total Sample 

Standard 
Variable N Mean Deviation Minimum Maximum 

TSHOCK 99936 0.17425 0.37933 0 1.00000 

WARNING: Simple statistics listed for the time-dependent explanatory variables 
have limited value. 
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PHREG PAPER:TEST page 4 

The PHREG Procedure 

Testing Global Null Hypothesis: BETA=0 

Without with 
Criterion Covariates Covariates Model Chi-Souare 

-2 LOG L 
Score 
Nald 

1510536.08 1507331.64 3204.433 with 1 DF (p-0.0001) 
3197.243 with 1 DF (p=0.0001) 
3073.086 with 1 DF (p=0.0001) 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr • 

Variable DF Estimate Error Chi-Square Chi-Square 

TSHOCK 1 0.693074 0°01250 3073 0.0001 

Estimated Covariance Matrix 

TSHOCK 

TSHOCK 0.0001563092 

Estimated Correlation Matrix 

TSHOCK 

TSHOCK 1.000000000 

PHREG PAPER:TEST page 5 

The PHREG Procedure 

Data Set: WORK.ZDATA 
Dependent Variable: T 
Censoring Variable: CLOSED 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

49980 31594 18386 36.79 

NOTE: There are no explanatory varlables in thl8 model. 

-2 LOG L - 657271.7 

Risk 
Ratio 

2 . 0 0 0  

614 



PHREG PAPER: TEST BASE ONE 

oBs T S G 

1 0 .000  1.00000 0.00000  
2 0.001 0.99900 0.00100 
3 0 .002 0.99800 0.00200  
4 0.003 0.99700 0.00301 
5 0.004 0.99600 0.00401 

6 0.005 0.99500 0.00501 
7 0.006 0.99600 0.00602 

0 0.007 0.59300 0.00703 
9 0 .008 0.99200 0 .00804 

I0 0.009 0.99100 0.00904 
11 0.324 0.72327 0.32397 
12 0.325 0.72255 0.32697 
13 0.326 0.72183 0.32597 
14 0.327 0.72111 0.32697 
15 0.328 0.72039 0.32797 
16 0,329 0.71967 0.32897 
17 0.330 0.71895 0.32997 
18 0.331 0.71823 0.33097 
19 0.332 0.71751 0.33197 
20 0.333 0.71679 0.33298 
21 0.334 0.71607 0.33398 
22 0,335 0.71535 0.33499 

23 0,336 0,71463 0.33600 
24 0.337 0.71391 0.33700 

25 0.338 0,71319 0.33801 
26 0.339 0.71247 0.33902 
27 0.340 0.71174 0.34004 
28 0.341 0.71102 0.34105 
28 0.342 0.71030 0.34206 
30 0.363 0.70960 0.34305 
31 0.657 0.51845 0.65692 
32 0.658 0.51793 0.65792 
33 0.659 0.51761 0.65893 
34 0.660 0.51689 0.65993 
35 0.661 0.51637 0.66094 
36 0.662 0.51585 0.66195 
37 0.663 0.51533 0.66256 
38 0.664 0.51481 0.66397 
39 0.665 0.51429 0.66498 

40 0.665 0.51377 0.66599 
41 0.667 0.51325 0.66700 
42 0.668 0.51273 0.66802 
63 0.669 0.51220 0.66903 
44 0.670 0.51168 0.67005 
45 0.671 0.51116 0.67106 
46 0.672 0.51064 0.67208 
47 0.673 0.51012 0.67310 
60 0.674 0.50962 0.67408 
69 0.675 0.50912 0.67505 
50 0.676 0.50862 0.67605 
51 0.991 0.37117 0.99110 
52 0.992 0.37079 0.99212 
53 0.993 0.37041 0.99315 
54 0 . 9 9 4  0.37003 0.59410 
55 0.995 0.36967 0.99515 
56 0.996 0.36931 0.99612 
57 0.997 0.36895 0.99710 
58 0 . 9 9 8  0.36859 0.99808 

59 0 . 9 9 9  0.36823 0.95905 
60 1.000 0.36787 1.00003 

pages 6-7 
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PHREG PAPER: TEST BASE ONE 

OBS UPPER LOWER 

1 0.63244 0.63180 

MEAN 

0.63212 

page 8 

PHREG PAPER: TEST BASE TWO page 9 

The PHREG Procedure 

Data Set: WORK.ZDATA 
Dependent Variable: T 
Censoring Variable: CLOSED 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

49956 36788 13168 26.36 
NOTE: There are no explanatory variables in this model. 

-2 LOG L - 757604.6 
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P H R E G  

OBS 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2O 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3O 
31 
32 
33 
34 
35 
36 
37  
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
4 0  
49 
50 
51 
52 
53 
64 
5 5  
56 
97 
5 8  
59 
60 

P A P E R  : 

T 
0 . 0 0 0  
0 . 0 0 1  
0 . 0 0 2  
0 . 0 0 3  
0 . 0 0 4  
0 . 0 0 5  
0 . 0 0 6  
0 . 0 0 7  
0,008 
0 . 0 0 9  
0 . 3 2 4  
0 . 3 2 S  
0 . 3 2 6  
0 . 3 2 7  
0 . 3 2 8  
0 . 3 2 9  
0 . 3 3 0  
0 . 3 3 1  
0 . 3 3 2  
0 . 3 3 3  
0 . 3 3 4  
0 . 3 3 5  
0 . 3 3 6  
0 . 3 3 7  
0 . 3 3 8  
0 . 3 3 9  
0.340 
0.341 
0.342 
0.343 
0.657 
0.658 
0.659 
0.660 
0.661 
0.662 
0.663 
0.664 
0.665 
0.666 
0.667 
0 . 6 6 8  
0 . 6 6 9  
0 . 6 7 0  
0.671 
0.672 
0.673 
0,674 
0.675 
0 . 6 7 6  
0.991 
0 . 9 9 2  
0 . 9 9 3  
0 . 9 9 4  
0 . 9 9 5  
0 . 9 9 6  
0.997 
0 . 9 9 8  
0 . 9 9 9  
1 . 0 0 0  

TEST BASE 

S 
1 . 0 0 0 0 0  
0 . 9 9 9 0 0  
0 . 9 9 8 0 0  
0 . 9 9 7 0 0  
0 . 9 9 6 0 0  
0 . 9 9 5 0 0  
0 . 9 9 3 9 9  
0 . 9 9 2 9 9  
0 . 9 9 1 9 9  
0.99099 
0.72314 
0 . 7 2 2 4 2  
0,72170 
0 . 7 2 0 9 7  
0 . 7 2 0 2 5  
0.71953 
0 . 7 1 8 8 1  
0.71809 
0.71737 
0,71665 
0.71521 
0 , 7 1 3 7 9  
0.71237 
0.71095 
0.70952 
0.70810 
0.70668 
0.70526 
0.70386 
0.70246 
0.37473 
0.37399 
0.37325 
0.37251 
0.37177 
0.37103 
0.37029 
0.36955 
0.36880 
0.36806 
0.36770 
0.36734 
0,36698 
0.36662 
0.36626 
0.36690 
0,36554 
0.36518 
0.36482 
0.36446 
0.26593 
0.26567 
0.26541 
0.26515 
0.26489 
0.26463 
0.26437 
0.26411 
0.26385 
0.26359 

TWO 

G 
0 . 0 0 0 0 0  
0 . 0 0 1 0 0  
0 . 0 0 2 0 0  
0 . 0 0 3 0 1  
0 . 0 0 4 0 1  
0 . 0 0 5 0 2  
0 . 0 0 6 0 2  
0 . 0 0 7 0 3  
0 . 0 0 8 0 4  
0 . 0 0 9 0 5  
0 . 3 2 4 1 6  
0.32515 
0.32615 
0,32715 
0 . 3 2 8 1 5  
0.32915 
0.33015 
0.33116 
0.33216 
0.33317 
0.33518 
0.33717 
0.33916 
0.34116 
0.34316 
0.34517 
0.34717 
0.34919 
0.35110 
0.35317 
0 . 9 8 1 5 5  
0 . 9 8 3 5 3  
0 , 9 8 5 5 1  
0 . 9 8 7 5 0  
0 . 9 8 9 4 9  
0 . 9 9 1 4 8  
0 . 9 9 3 4 8  
0 . 9 9 5 4 0  
0.99749 
0.99950 
1.00048 
1.00146 
1 , 0 0 2 4 4  
1.00342 
1.00441 
1.00539 
1.00637 
1.00736 
1.00835 
1.00934 
1.32451 
1.32549 
1.32647 
1.32765 
1.32043 
1.32941 
1 . 3 3 0 4 0  
1.33138 
1 . 3 3 2 3 7  
1 . 3 3 3 3 5  

p a g e s  1 0 - 1 1  
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PHREG PAPER: TEST BASETWO 

OBS UPPER LOWER 

1 0.56229 0.56156 

MEAN 

0. 56193 

page 12 

PHREG PAPER: TEST BASE THREE page 13 

The PHREG Procedure 

Data Set: WORK.ZDATA 
Dependent Variable: T 
Censoring Variable: CLOSED 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 

Total Event Censored Censored 

99936 68382 31554 31.57 

NOTE: There are no explanatory variables in this model. 

-2 LOG L - 1510536 
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PI~REG PAPER: TEST BASE THREE 

OBS T 8 G 
1 0 . 0 0 0  1 . 0 0 0 0 0  0 . 0 0 0 0 0  
2 0 . 0 0 1  0 . 9 9 9 0 0  0 . 0 0 1 0 0  
3 0 .  002 0.  99800 0 .  00200  
4 0 . 0 0 3  0 . 9 9 7 0 0  0 . 0 0 3 0 1  
5 0 . 0 0 4  0 . 9 9 6 0 0  0 . 0 0 4 0 1  
6 0 . 0 0 S  0 . 9 9 5 0 0  0 . 0 0 5 0 2  
7 0 .  006 0 .  99400  0 .  00602 
8 0 . 0 0 7  0 . 9 9 3 0 0  0 . 0 0 7 0 3  
9 0 . 0 0 8  0 . 9 9 1 9 9  0 . 0 0 8 0 4  

10 0 . 0 0 9  0 . 9 9 0 9 9  0 . 0 0 9 0 5  
11 0 , 3 2 4  0 . 7 2 3 2 0  0 . 3 2 4 0 7  
12 0 .  325 0 .  72248 0 .  32506  
13 0 . 3 2 6  0 . 7 2 1 7 6  0 . 3 2 6 0 6  
14 0.327 0.72106 0.32706 
15 0.328 0.72032 0.32806 
16 0.329 0.71960 0.32906 
17 0 . 3 3 0  0 . 7 1 8 8 8  0 . 3 3 0 0 6  
18 0.331 0.71816 0.33106 
19 0.332 0,71746 0.33207 
20 0.333 0.71672 0.33307 
21 0 . 3 3 4  0.71564 0.33450 
22 0.335 0.71457 0.33608 
23 0,336 0 . 71350 0.  33758 
24 0 . 3 3 7  0 . 7 1 2 4 3  0 . 3 3 9 0 8  
25 0 . 3 3 8  0 . 7 1 1 3 6  0 . 3 4 0 5 8  
26 0 . 3 3 9  0 . 7 1 0 2 8  0 . 3 4 2 0 9  
27  0 . 3 4 0  0 . 7 0 9 2 1  0 . 3 4 3 8 0  
28 0 . 3 4 1  0 . 7 0 8 1 4  0 , 3 4 5 1 1  
29 0.342 0,70708 0.34661 
30 0 . 3 4 3  0 . 7 0 6 0 3  0 . 3 4 8 0 9  
31 0.657 0.44661 0 . 8 0 6 0 8  
3~ 0 . 6 5 8  0 . 4 4 5 9 8  0 . 0 0 7 4 9  
33 0 . 6 5 9  0 . 6 4 5 3 5  0 . 8 0 8 9 1  
34 0.660 0.84471 0.81032 
35 0.661 0.44400 0.81174 
36 0.662 0.44345 0.81316 
37 0.663 0.44202 0.81458 
30 0.664 0.44219 0,81601 
39 0.665 0.44156 0.81744 
40 0.666 0.44093 0.81806 
41 0.667 0 . 6 4 0 4 9  0.81986 
42 0 . 6 6 8  0 . 4 4 0 0 5  0 . 8 2 0 8 6  
43 0 . 6 6 9  0 . 4 3 9 6 1  0 . 8 2 1 8 6  
44 0 . 6 7 0  0~43917  0 . 8 2 2 8 7  
45 0 . 6 7 1  0 . 4 3 8 7 3  0 . 8 2 3 8 7  
46 0 . 6 7 2  0 , 4 3 8 2 9  0 . 8 2 6 8 7  
47 0 . 6 7 3  0 . 4 3 7 8 5  0 . 8 2 5 8 8  
48 0.674 0.43742 0.82886 
89 0,675 0.43699 0.02705 
60 0.676 0.43686 0 . 0 2 8 8 3  
81 0 . 9 9 1  0 . 3 1 8 5 6  1 . 1 4 3 9 3  
52 0.992 0.31824 1.14494 
53 0.993 0.31792 1.14594 
56 0 , 9 9 4  0.31760 1.14695 
55 0.995 0.31729 1.14793 
56 0 . 9 9 6  0.31698 1.14891 
S 7 0 . 9 9 7  0.31667 1.14909 
$8 0 , 9 9 8  0 . 3 1 6 3 6  1 . 1 5 0 8 7  
$9  0 . 9 9 9  0 . 3 1 6 0 5  1 . 1 5 1 8 5  
60 1 . 0 0 0  0 . 3 1 5 7 4  1 . 1 5 2 8 3  

PHREG PAPER: TEST BASE THREE 

OBS UPPER LOWER 

1 0 . 5 9 7 3 7  0 . 5 9 6 6 9  

M E A N  

0 .  5 9 7 0 3  

p a g e s  1 4 - 1 5  

p a g e  1 6  
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APPENDIX 2 

8ASLOG, 

350 ****************************************************************** 
351 ***BEGIN CODE FOR CASE STUDY **CT******************************** 

352 %MACRO VLIST; 

353 EMPL2 

354 AY93-AY94 

355 MF01 EC01 

356 NOI SPR NOI CUT 

357 %MEND VLIST; 

NOTE: The data set WORK.ONE has 12512 observations and I00 variables. 

358 DATA ONE;SET ONE; 

359 KEEP T CLOSED01 TPA LAG2TPA %VLIST ; 

MPRINT(VLIST): EMPL2 AY93-AY94 MF01 EC01 NOI_SPR NOICUT 

360 *CREATE BASELINE SURVIVAL FUNCTION FOR VANISHING COVARIATES'; 

361 *TPA IS NON TIME-DEPENDENT REFERRAL VARIABLE'; 

362 TITLE 'PROPORTIONAL HAZARD MODEL FOR BASELINE'; 

NOTE: The data set WORK.ONE has 12512 observations and 11 variables. 

363 PROC SORT DATAwONE;BY TPA; 

NOTE: The data set WORK.ONE has 12512 observations and 11 variables. 

364 DATA INRISK; 

365 INPUT %VLIST TPA; 
MPRINT(VLIST): EMPL2 AY93-AY94 MF01 EC01 NOI SPR NOI CUT 

366 CAR/)S; 

NOTE: The data set WORK.INRISK has 1 observations and 8 variables. 

368 t 
369 PROC PHREG SIMPLE DATA=ONE; 

370 MODEL T'CLOSED01(0)- %VLIST TPA; 

MPRINT(VLIST): EMPL2 AY93-AY94 MF01 EC01 NOI SPR NOI CUT 

371 

NOTE: The 
NOTE: The 

372 

NOTE: The 

373 

NOTE: The 

374 

375 

376 

377 

NOTE: The 

378 

379 

BASELINE COVARIATES=INRISK OUT:EASE SURVIVAL=S / NOMEAN; 

data set WORK.BASE has 958 observations and 10 variables. 

PROCEDURE PHREG printed pages 1-2. 

DATA BASE;SET BASE;KEEP T S;IF T > 0; 

data set WORK.BASE has 957 observations and 2 variables. 

PROC SORT DATA = BASE; BY T; 

data set WORK.BASE has 957 observations and 2 variables. 

DATA BASE;SET BASE END = EOF; 

IF N - 1 THEN DO;T = 0;S = I;OUTPUT;F~; 

IF T < 1 THEN OUTPUT; 

IF EOF OR T >= 1 THEN DO;T w 1;OUTPUT;END; 

data set WORK.BASE has 959 observations and 2 variables. 

PROC SORT NODUP DATA - BASE; BY T; 

*CAPTURE BASELINE SURVIVAL FUNCTION ON [0,1] TO ARRAY TABLE'; 

NOTE: The data set WORK.BASE has 958 observations and 2 variables. 
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380 DATA BASE;SET BASE END-EOF; 

381 ARRAY MATT(I) TI-TI000; 

382 ARRAY MATS(I},SI-S1000; 

383 KEEP TI-TI000 SI-S1000; 

384 RETAIN TI-TI000 SI-SI000; 

385 I = MIN(_N_,1000); 

386 MATT m T; 

387 MATS = S; 

388 IF EOF THEN DO; 

389 DO I = N + 1 TO I000; 

390 MATT = I; 

391 MATS = 0; 

392 END; 

393 OUTPUT; 

394 END; 

395 *RUN PROPOTIONAL HAZARD MODEL'; 

396 *TXPA X=I,2,3 ARE TIME-DEPENDENT REFERRAL VARIABLES'; 
397 TITLE 'PROPORTIONAL HAZARD MODEL WITH TIME DEPENDENT REFERRAL'; 

NOTE: The data set WORK.BASE has 1 observations and 2000 variables. 

398 PROC PHREG SIMPLE DATA-ONE OUTEST=PARMS; 

399 MODEL T*CLOSED01(0)m %VLIST 

MPRINT(VLIST): EMPL2 AY93-AY94 MF01 EC01 NOI_SPR NOI_CUT 

400 

401 

402 

403 

404 

405 

406 
407 

NOTE: The 

NOTE: The 

TITPA T2TPA T3TPA; 

IF TPA=I & T >= LAG2TPA THEN TTPA~I;ELSE TTPA = 0; 

IF 1/6 • T THEN TITPA-TTPA;ELSE TITPA = 0; 

IF I/3 • T >= 1/6 THEN T2TPA=TTPA;ELSE T2TPA'= 0; 

IF T >- 1/3 THEN T3TPA=TTPA;ELSE T3TPA = 0; 

*DETERMINE PHImREFERRAL RISK RATIO BY TLAYER; 

TITLE 'HAZARD RATIO PHI BY TIME LAYER'; 

DATA PAP/MS;SET PARMS; 

data set WORK.PARMS has 1 observations and 14 variables. 

PROCEDURE PHREG printed pages 3-4. 

408 
409 

410 

411 

KEEP TLAYER PHI; 
TLAYER - 1;PHI = EXP(TITPA);OUTPUT; 

TLAYER - 2;PHI = EXP(T2TPA);OUTPUT; 

TLAYER m 3;PHI = EXP(T3TPA);OUTPUT; 

NOTE: The data set WORK.PAP/MS has 3 observations and 2 variables. 

412 PROC PRINT DATA ffi PARMS; 

NOTE: The PROCEDURE PRINT printed page 5. 

413 DATA ONE;SET ONE; 
414 IF 1/6 • T THEN TLAYER = I; 

415 ELSE 

416 IF 1/3 • T >- 1/6 THEN TLAYER - 2; 

417 ELSE 

418 TLAYER - 3; 

NOTE: The data set WORK.ONE has 12512 observations and 12 variables. 

419 PROC SORT DATAzONE ;BY TLAYER; 

NOTE: The data set WORK.ONE has 12512 observations and 12 variables. 

420 PROC SORT DATA-PARMS;BY TLAYER; 
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NOTE: The data set WORK.PARMS has 3 observations and 2 variables. 

421 DATA ONE;MERGE ONE(IN-INO} PARMS(IN-INP);BY TLAYER; 

422 IF INO & INP; 

NOTE: The data set WORK.ONE has 12512 observations and 13 variables. 

423 PROC SORT DATA~ONE; BY TPA; 

424 *USE PHI AND BASELINE SURVIVAL ARRAY TO ADJUST T; 

NOTE: The data set WORK.ONE has 12512 observations and 13 variables. 

425 

426 

427 

428 

429 

430 

431 

432 

433 

434 

435 

436 

437 

438 

439 

440 

441 

442 

443 

444 

445 

446 

447 

448 

449 

450 

451 

452 

453 

454 

455 

456 

457 

458 

459 

460 

461 

462 

463 

464 

465 

466 

DATA ONE;SET ONE; 

RETAIN TI-TI000 SI-SI000; 

ARRAY MATT(I) TI - TI000; 

ARRAY MATS(I) $1 - SI000; 

DROP T1-T1000 $1-$1000; 

IF N -1 THEN SET BASE; 

IF (TPA - 1) & (T < 1) THEN DO; 

ALPHA ~ LAG2TPA; 

LOOKUP - 0;I = i; 

DO WHILE(LOOKUP = 0); 

LHT - MATT;LHS i MATS ; 

I + I;RHT s MATT;RHS - MATS; 

IF LHT <= ALPHA <. RHT THEN DO; 

S_ALPHA - LHS + ( (ALPHA - LHT) / (RHT - LHT) ) * (RHS - LHS) ; 

LOOKUP ffi i; 

END; 

END ; 

LOOKUP = 0;I = I; 

DO WHILE(LOOKUP - 0); 

LHT = MATT;LHS - MATS; 

I + I;RHT - MATT;RHS ~ MATS; 

IF LHT <= T <= RHT THEN DO; 

S_T = LHS + ((T - LHT)/(RHT - LHT))*(RHS - LHS); 

LOOKUP = 1 ; 

END; 

END; 

S ADJT = (S_T**PHI} * {SALPHA** (1-PHI)) ; 

LOOKUP = 0;I - I; 

DO WHILE(LOOKUP - 0); 

LHT - MATT;LHS - MATS; 

I + I;RHT - MATT;RHS - MATS; 

IF LHS >= S_ADJT >= RHS THEN DO; 

ADJT . RHT + ((S_ADJT - RHS)/(LHS - RHS))*(LHT - RHT); 

LOOKUP = I; 

END; 

END; 

END; 

ELSE DO; 

ADJT = T; 

END; 

• USE PHREG TO MAKE SURVIVAL FUNCTION AT MEANS FOR ACTUAL DURATION T; 

TITLE 'ACTUAL MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS'; 

NOTE: The data set WORK.ONE has 12512 observations and 24 variables. 

467 PROC PHREG SIMPLE DATA-ONE;BY TPA; 

468 MODEL T-CLOSED01 (0}- %VLIST; 

MPEINT(VLIST) : EMPL2 AY93-AY94 MF01 EC01 NOI_SPR NOI_CUT 

469 BASELINE OUT-BASE SURVIVAL-S; 
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NOTE: The data set WORK.BASE has 1325 observations and 10 variables. 

NOTE: The PROCEDURE PHREG printed pages 6-9. 

470 

471 

472 

473 

474 

475 

476 

477 

478 

479 

480 

481 

482 

483 

484 

485 

486 

DATA MEAN;SET BASE;BY TPA;KEEP TPA UPPER LOWER MEAN; 

RETAIN UPPER LOWER OLD T OLD_S; 

IF FIRST.TPA THEN DO; 

UPPER = 0 ; 

LOWER = 0; 

OLD T = 0; 

OLD S = 1; 

END; 

IF OLD T < 

UPPER + 

LOWER + 

END; 

OLD T = 

OLD S = 

IF 

T THEN DO; 

(T - OLD_T)*OLD_S; 

(T - OLD_T)*S; 

T; 

S; 

LAST.TPA THEN DO; 

MEAN = (UPPER + LOWER)/2;OUTPUT; 

END; 

NOTE: The data set WORK.MEAN has 2 observations and 4 variables. 

487 DATA MEAN;SET MEAN;*CONVERT TO YEARS; 

488 UPPER = 3*UPPER; 

489 LOWER = 3*LOWER; 

490 MEAN = 3*MEAN; 

NOTE: The data set WORK.MEAN has 2 observations and 4 variables. 

491 PROC PRINT DATA = MEAN; 
492 *USE PHREG TO MAKE SURVIVAL FUNCTION AT MEANS FOR ADJUSTED DURATION; 

NOTE: The PROCEDURE PRINT printed page I0. 

493 PROC PHREG SIMPLE DATA=ONE;BY TPA; 

494 MODEL ADJT*CLOSED01(0)= %VLIST; 
MPRINT(gqSIST): EMPL2 AY93-AY94 MFOI EC01 NOI_SPR NOI_CUT 

495 BASELINE OUT=BASE SURVIVAL=S; 
496 TITLE 'ADJUSTED MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS'; 

NOTE: The data set WORK.BASE has 2311 observations and i0 variables. 

NOTE: The PROCEDURE PHBEG printed pages 11-14. 

497 

498 

499 

DATA BASE; 
SET BASE;*RENAME ADJT TO BE SIMPLY T AS ABOVE; 

T = ADJT; 

NOTE: The data set WORK.BASE has 2311 observations and II variables. 

500 DATA MEAN;SET BASE;~Y TPA;KEEP TPA UPPER LOWER MEAN; 

501 RETAIN UPPER LOWER OLD T OLD_S; 

502 IF FIRST.TPA THEN DO; 

503 UPPER = 0; 

504 LOWER = 0; 

505 OLD T = 0; 

506 OLD S = 1; 

507 END; 

508 IF OLD T < T THEN DO; 

509 UPPER + (T - OLD_T)*OLD_S; 
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510 LOWER + (T - OLD_T)*S; 

511 END; 

512 OLD T s T; 

513 OLD_S - S; 

514 IF LAST.TPA THEN DO; 

515 MEAN - (UPPER + LOWER)/2;OUTPUT; 

516 END; 

NOTE: The data set WORK.MEAN has 2 observations and 4 variables. 

517 DATA MEAN;SET MEAN;*CONVERT TO YEARS; 

518 UPPER = 3*UPPER; 

519 LOWER ~ 3*LOWER; 

520 MEAN = 3*ME~; 

NOTE: The data set WORK.MEAN has 2 observations and 4 variables. 

521 PROC PRINT DATA - MEAN; 

NOTE: The PROCEDURE PRINT printed page 15. 
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SAB LISTI~* 

PROPORTIONAL HAZARD MODEL FOR BASELINE 
The PHREG Procedure 

Data Set: WORK.ONE 
Dependent Variable: T 
Censoring Variable: CLOSED01 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

page 1 

Total 

12512 

Summary of the Number of 
Event and Censored Values 

Percent 
Event Censored Censored 

9961 2551 20.39 

Simple Statistics for Explanatory Variables 

Total Sample 

Standard 
Variable N Mean Deviation 

EMPL2 12512 0.10526 0.30690 
AY93 12512 0.33840 0.47318 
AY94 12512 0.33048 0.47041 
MF01 12512 0.57297 0.49467 
EC01 12512 0.56138 0.49624 
NOI_SPR 12512 0.68782 0.46340 
NOI_CUT 12512 0.24680 0.43117 
TPA 12512 0.17927 0.38359 

Minimum 

0 
0 
0 
0 
0 
0 
0 
0 

Maximum 

1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1.00000 
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1.00000 
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PROPORTIONAL HAZARD MODEL FOR BASELINE page 2 

The PHREG Procedure 

Testing Global Null Hypothesis: BETA=0 

Without With 

Criterion Covariates Covariates Model Chi-Square 

-2 LOG L 

Score 

Wald 

171122.136 170068.900 1053.235 with 6 DF (p=0.0001) 

1052.856 with 8 DF (p=0.0001) 

1034.622 with 8 DF (p=0.0001) 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr • 

Variable DF Estimate Error Chi-Square Chi-Square 

EMPL2 1 -0.275576 0.03598 58.67093 0.0001 

AY93 1 0.347298 0.02421 205.72217 0.0001 

AY94 1 0.591461 0.03204 340.80216 0.0001 

MF01 1 -0.208174 0.02216 88.26442 0.0001 

EC01 1 0.245834 0.02227 121.89395 0.0001 

NOI SPR 1 0.140682 0.04307 10.66704 0.0011 

NOICUT 1 0.186939 0.04580 16.65742 0.0001 

TPA 1 0.134552 0.03398 35.68328 0.0001 

Risk 

Ratio 

0.759 

1.415 

1.807 

0.812 

1.279 

1. 151 

1.206 

1. 144 
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HAZARD RATIO PHI BY TIME LAYER page 3 

The PHREG Procedure 

Data Set: WORK.ONE 
Dependent Variable: T 
Censoring Variable: CLOSED01 

Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

12512 9961 2551 20.39 

Simple Statistics for Explanatory Variables 

Total Sample 

Standard 
Variable N Mean Deviation Minimum 

EMPL2 12512 0.10526 0.30690 0 
AY93 12512 0.33840 0.47318 0 
AY94 12512 0.33048 0.47041 0 
MF01 12512 0.57297 0.49467 0 
EC01 12512 0.56138 0.49624 0 
NOI SPR 12512 0.68782 0.46340 0 
NOI CUT 12512 0.24680 0.43117 0 
TITPA 12512 0.09407 0.29194 0 
T2TPA 12512 0.06554 0.24748 0 
T3TPA 12512 0.01966 0.13884 0 

WARNING: Simple statistics listed for the time-dependent explanatory 

h a v e  l i m i t e d  v a l u e .  

Maximum 

1 . 0 0 0 0 0  
1.00000 
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1.00000 
1.00000 
1.00000 
1.00000 

variables 
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HAZARD RATIO PHI BY TIME LAYER page 4 

The PHREG Procedure 

Testing Global Null Hypothesis: BETA=0 

Without With 
Criterion Covariates Covariates Model Chi-Square 

-2 LOG L 

Score 
Wald 

171122.136 170012.885 1109.251 with i0 DF (p=0.0001) 
1125.216 with i0 DF (p=0.0001) 
1101.663 with I0 DF (p-0.0001) 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald 
Variable DF Estimate Error Chi-Square 

Pr > 
Chi-Square 

EMPL2 1 -0.276409 0.03598 
AY93 1 0.343170 0.02424 
AY94 1 0.535551 0.03216 
MF01 1 -0.207791 0.02216 
EC01 1 0.245800 0.02227 
NOI SPR 1 0.143863 0.04308 
NOI_CUT 1 0.189546 0.04581 
TITPA 1 0.353487 0.04301 
T2TPA 1 0.184415 0.05265 
T3TPA 1 0.114674 0.10755 

Risk 
Ratio 

59.00264 0.0001 0.759 
200.35078 0.0001 1.409 
277.34071 0.0001 1.708 
87.95253 0.0001 0.812 

121.79944 0.0001 1.279 
11.15294 0.0008 1.155 
17.11765 0.0001 1.209 
67.54561 0.0001 1.424 
12.26748 0.0005 1.203 
1.13683 0.2863 1.122 

HAZARD RATIO PHI BY TIME LAYER 

OES TLAYER PHI 

1 1 1.42402 
2 2 1.20251 
3 3 1.12151 

page 5 
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ACTUAL MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS page 6 

TPA-0 

The PHREG Procedure 

Data Set: WORK.ONE 
Dependent Variable: T 
Censoring Variable: CLOSED01 
Censoring Value(s): O 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

10269 8544 1725 16.80 

Simple Statistics for Explanatory Variables 

Total Sample 

Variable N Mean 

Standard 
Deviation Minimum 

EMPL2 10269 0.11014 
AY93 10269 0.38631 
AY94 10269 0.21180 
MF01 10269 0.57162 
EC01 10269 0.56062 
NOI SPR 10269 0.68410 
NOI CUT 10269 0.25280 

0.31308 0 
0.48693 0 
0.40861 0 
0.49487 0 
0.49634 0 
0.46490 0 
0.43464 0 

Maximum 

1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
l. OOOO0 
1.00000 
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ACTUR~L MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS 

TPA-0 

~ne PHREG Procedure 

Criterion 

-2 LOG L 
Score 
Wald 

page 7 

Testing Global Null Hypothesis: BETA=0 

Without With 
CovariateB Covariates Model Chi-Square 

143854.615 143106.464 748.151 with 7 DF (p-0.0001} 
743.549 with 7 DF (p=0.0001) 
733.247 with 7 DF (p=0.0001) 

Variable 

EMPL2 
AY93 
AY94 
MF01 
ECOI 
~ o x  s p R  
NOICIYr 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr • Risk 
DF Estimate Error Chi-Square Chi-Square Ratio 

1 -0.289695 0.03776 58.86290 0.0001 0.748 
1 0.341809 0.02451 194.49158 0.0001 1.407 
1 0.573640 0.03373 289.16531 0.0001 1.775 
1 -0.195073 0.02391 66.55687 0.0001 0.823 
1 0.230103 0.02395 92.26850 0.0001 1.259 
1 0.149435 0.04673 10.22562 0.0014 1.161 
1 0.211587 0.04956 18.22332 0.0001 1.236 
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ACTUAL MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS page 8 

TPA~ 1 

The PHREG Procedure 

Data Set: WORK.ONE 
Dependent Variable: T 
Censoring Variable: CLOSED01 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

2243 1417 826 36.83 

Simple Statistics for Explanatory Variables 

Total Sample 

Variable N Mean 
Standard 

Deviation 

EMPL2 2243 0.08292 
AY93 2243 0.11904 
AY94 2243 0.87383 
MF01 2243 0.57914 
EC01 2243 0.56487 
NOI SPR 2243 0.70486 
NOI CUT 2243 0.21935 

0.27583 
0.32390 
0.33212 
0.49381 
0.49588 
0.45621 
0.41390 

Minimum Maximum 

1.00000 
1.00000 
1,00000 
1.00000 
1.00000 
1.00000 
1.00000 

631 



ACTUAL MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS 

TPA-1 

The PHREG Procedure 

Criterion 

-2 LOG L 

Score 
Wald 

page 9 

Testing Global Null Hypothesis: BETA=0 

Without With 

Covariates Covariates Model Chi-Square 

19580.571 19429.633 150.938 with 7 DF (p=0.0001) 

138.667 with 7 DF (p=0.0001) 
131.971 with 7 DF (p=0.0001} 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald 

Variable DF Estimate Error Chi-Square 

EMPL2 1 -0.033574 0.11954 0.07888 

AY93 1 1.451228 0.38774 14.00880 

AY94 1 1.734945 0.38948 19.84265 

MF01 1 -0.281972 0.05898 22.85722 
EC01 1 0.342128 0.06101 31.44825 

NOI_SPR 1 0.091231 9.11133 0.67149 

NOI_CUT 1 0.033698 0.12062 0.07805 

Pr • 

Chi-Square 

0.7788 

0 . 0 0 0 2  
0.0001 
0.0001 

0.0001 

0.4125 

0.7800 

ACTUAL MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS 

OBS TPA UPPER LOWER MEAN 

1 0 1.02820 1.02542 1.02681 

2 1 0.74414 0.73050 0.73732 

page 10 

Risk 

Ratio 

0. 967 

4.268 

5.669 
0.754 

1.408 

I . 096 

1.034 
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ADJUSTED MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS page II 
TPA-0 

The PHREG Procedure 

Data Set: WORK.ONE 
Dependent Variable: ADJT 
Censoring Variable: CLOSED01 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

10269 8544 1728 16.80 

Simple Statistics for Explanatory Variables 

Total Sample 

Variable N Mean 
Standard 

Deviation Minimum 

EMPL2 10269 0.11014 0.31308 
AY93 10269 0.38631 0.48693 
AY94 10269 0.21180 0.40861 
MF01 10269 0.57162 0.49487 

EC01 10269 0.56062 0.49634 
NOI SPR 10269 0.68410 0.46490 
NOI_CUT 10269 0.25280 0.43464 

Maximum 

! . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . O O O 0 0  
1 . 0 0 0 0 0  
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TPA-0 

The PHREG Procedure 

Criterion 

-2 LOG L 

Score 
Wald 

page 12 

Testing Global Null Hypothesis: BETA=0 

Without With 

Covariates Covariates Model Chi-Square 

143854.615 143106.464 748.151 with 7 DF (p=0.0001) 

743.549 with 7 DF (p=0.0001) 
733.247 with 7 DF (p=0.0001) 

Variable 

EMPL2 

AY93 

AY94 

MF01 

EC01 

NOI SPR 

N0I CUT 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr > 

DF Estimate Error Chi-Square Chi-Square 

1 -0.289695 0.03776 58.86290 0.0001 

1 0.341809 0.02451 194.49158 0.0001 

1 0.573640 0.03373 289.16531 0.0001 

1 -0.195073 0.02391 66.55687 0.0001 

1 0.230103 0.02395 92.26850 0.0001 

1 0.149435 0.04673 10.22562 0.0014 

1 0.211587 0.04956 18.22332 0.0001 

Risk 

Ratio 

0.748 

1.407 
1.775 

0.823 

1.259 

1.161 

1.236 
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TPA-I 

The PHREG Procedure 

Data Set: WORK.0NE 
Dependent Variable: ADJT 
Censoring Variable: CLOSED01 
Censoring Value(s): 0 
Ties Handling: BRESLOW 

Total 

2243 

Summary of the Number of 
Event and Censored Values 

Percent 
Event Censored Censored 

1417 826 36.83 

Simpie Statistics for Explanatory Variables 

Total Sample 

Standard 
Variable N Mean Deviation 

EMPL2 2243 0.08292 0.27583 
AY93 2243 0.11904 0.32390 
AY94 2243 0.87383 0.33212 
MF01 2243 0.57914 0.49381 
EC01 2243 0.56487 0.49588 
NOI_SPR 2243 0.70486 0.45621 
NOI_CUT 2243 0.21935 0.41390 

Minimum Maximum 

1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
1 . 0 0 0 0 0  
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TPAJl 

The PHREG Procedure 

Testing Global Null Hypothesis: BETA=0 

Without With 

Criterion Covariates Covariates Model Chi-Square 

-2 LOG L 
Score 
Wald 

19564.220 19414.420 149.800 with 7 DF (p=0.0001) 
137.480 with 7 DF (p=0.0001) 
130.785 with 7 DF (p=0.0001) 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr > 
Variable DF Estimate Error Chi-Square Chi-Square 

EMPL2 1 -0.027966 9.11955 0.05472 0.8150 
AY93 1 1,456546 0.38758 14.12275 0.0002 
AY94 1 1,738075 0.38932 19.93071 0.0001 
MF01 1 -0.281598 0.05895 22.81847 0.0001 
EC01 1 0.339608 0.06097 31.02579 0.0001 
NOI_SPR 1 0.089939 0.11134 0.65252 0.4192 
NO~_CUT 1 0,033703 0.12061 0.07808 0.7799 

Risk 
Ratio 

0.972 

4.291 
5.686 
0.755 
1.404 
1.094 
1.034 

ADJUSTED MEAN DURATION FROM SURVIVAL FUNCTION AT MEANS 

OBS TPA UPPER LOWER MEAN 

1 0 1.02820 1.02542 1.02681 
2 1 0.83222 0.81883 0.82552 
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