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Abstract: 

Traditional survival analysis deals with functions of  one variable, "'time. " This paper 
explains the case o f  multiple and interacting aging metrics by introducing the notion o f  a 
hazard vector fieid This approach is shown to provide a more general framework than 
traditional survival analysis, including the ability to model multi-dimensional censored 
data~ A simple example illustrates how Green's Theorem in the plane applies to evaluate 
and even to theoretically optimize a course of  action~ One evident apph'cation is to the 
evaluation and promulgation of  claim administration protocols. 

Keywords: survival, vector field, ~.-,.,d. grsdiem, line integral 
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Introduction 

Although survival analysis has long recognized the need to account for different causes 
of death or failure, it recognizes only one way of measuring age. Consequently, survival 
f u n c t i o ~ v e n  "select" survival functions--are functions ofone variable, typically 
denoted "t" and interpreted as "time". This paper explains the need to study observed 
lives from multiple perspectives. For example, a vehicle may burn several different types 
of fuel with varying and inter-related consumption patterns. The ability to determine 
whether a particular trip is possible and if so to find an efficient route may be best 
approached as a multi-dimensional problem. That is, it may not always be practical or 
revealing to reduce survival into functions of a single variable. 

This work evolved from studying workers compensation insurance claims data and the 
motivation comes from that context. A quick claim resolution may not achieve a cost- 
effective result for either the insurer or the injured worker. A useful measure of "age" 
for the insurer may be the paid to date benefit cost of the claim while for the claimant the 
most important metric is likely his or her lost income. Traditional survival analysis can 
be helpful here, especially in dealing with open claims, i.e., "right-censored" data (c.f. 
[2], [4]). Simply taking "t" in the sui'vival analysis models to be paid loss can yield 
useful reserve estimates (c.f. [4]). workers compensation claims typically involve both 
medical and wage replacement benefits. Each is expected to follow a distinctive payment 
pattern that need not be independent of the other. Indeed, that inter-relationship may 
prove to be a key cost driver. This paper illustrates how a multi-dimensional survival 
model can reveal those inter-relationships and their cost implications. 

Consider, for instance, an issue from the ongoing debate over claim administration 
protocols. In the workers compensation context, is it better to pursue aggressive medical 
treatment quickly in an effort to minimize time lost from work, or is it more efficient to 
spend those resources another way, such as providing job retraining. Clearly the answer 
may vary tremendously based on the nature of the injury, the age of  the worker, the 
applicable benefit provisions, and a myriad of other considerations. 

The main conceptual result of this paper is that traditional survival analysis can be 
inherently limiting. This is established formally by showing that it is not always possible 
to define a survival function. The first section of the paper presents a generalization of 
the survival function to a function of several variables. Many of the basic formulas of  
survival analysis are readily generalized. The next section discusses censored data and 
shows how this can introduce new complications in the multi-dimensional context. The 
concept of a hazard vector field is defined and shown to provide a more general 
framework than traditional survival analysis. In particular, this framework is capable of  
dealing with multi-dimensional censored data. It is shown that the existence of a survival 
function conforms exactly to the "conservative force field" ofcisssical physics. A simple 
example illustrates how Green's Theorem in the plane applies to comparing and even 
optimizing paths of action, e.g., as in evaluating claim administration protocols. 
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The concepts introduced in this paper may lead to the ability to help identify optimum 
claim handling practices. As noted in the section on further research, much additional 
work is required to test this approach. Some work that uses this approach to study the 
resolution pattern ofworkers compensation back strains shows some promise but is very 
preliminary. The examples presented here are only numeric illustrations; many have no 
practical application and some details are left to the reader. Those wishing additional 
details on the numerical examples or on the application to back strain cases may contact 
the author. 

Section I: Basic Terminology and Notation 

Let ~+ denote the set ofnormegative real numbers and ~ n  denote n-dimensional space. 

For any a = (a I ..... a ,  ) • 9 t ' ,  3 ,  = {(x~...., x, ) Ix, > a I , 1 < i < n }; in particular, let 

3 = 30 denote the "positive quadrant." We regard 9~ n as a model for "space-time" in 
which each coordinate represents an aging metric. The most natural case is when n= 1 
and the metric is time. For insurance applications, metrics to keep in mind would be 
cumulative payments or accumulation of  some other quantity associated with claim 
resolution (e.g. xl = time from injury, xz = indemnity paid to date, x3 = medical paid to 
date, x4 = ALAE paid to date, etc.). We regard :3 as all possible "failures" or "deaths", all 
of  whose lives begin at the origin. More generally, ~3° represents the possible future 

(failure) values subsequent to attaining the point a • ~R n. Clearly b e 3a  ¢::' 3b c 3a .  

Begin with a continuous probability density function (PDF) of "failures": 

f :  ~3..--~ ~ + I f = l .  
3 

It is natural to define a survival function as the probability of  subsequent failure: 

3 

Observe tha t fand  S uniquely determine one another; indeed, from the fundamental 
theorem of calculus: 

OnS 
f = (-If 

Ox~...ax,, " 
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For b E ~a, define fo (b) = f ( b ) .  This defines a PDF on ~1 a ill which the origin has been 
s(a) 

shifted to a and which has survival function s a (b) = ~ the conditional probability 
S(a) ' 

assuming survival to a. 

Let X b e  the random variable with P D F f a n d  sample space ~. Because ~ is closed under 
vector addition (it is an additive semigroup), it is natural to consider the expression: 

/z = E ( X )  = Z f ( x ) x  
x ~ J  

as a candidate "expected failure vector". More generally, for a E 3 this suggests that the 
expected failure vector for survival beyond a be expressed as: 

p(a)= Zfa(X)(x-a) 
XE~[. 

This infinite weighted sum, properly interpreted as a limit, can be found (when finite) via 

integration. Let x i : 91 n ~ 91 denote the u s ~  coordinate projection functions and 

{ci = (0,...0,1,0,...0) I 1 ~ i < n} the usual set of  coordinate unit vectors. Continuity and 
linearity imply: 

/J. / P ( a )  = i~ = x ~ ( f a ( x X x - a ) )  ei 
I 

S ( a ) ~ , l k o ,  o 

The following integration result is a straightforward integration by parts: 
oo 

Lemma: For any continuous function g : 91+ ~ 91+, b ~ 91 + with Jg(t)dt < oo 

0 

t - b ) g ( t ) d t  = g ( w ) d w d t  
b b t  

P r o o f  Let  b < c ~ 91+. Then we have: 
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c c  c 

bt b 
C 

t 

du = - g ( t ) d t i  

v = t - b  

d r = d r  

c F c l c c  
= [ u v ] ~ -  ~ v d u :  ( t - b ) f g ( w ) d w  + ~ ( t - b ) g ( t ) d t  

b L t ]b b 
C 

= S(t - b)g( t )  dt 
b 

and the lemma follows by letting c --) oo. 

Define n functions: 

o o  oo  

gl(t) = ~... ~f(t,x2 ..... xn)dx2..dx n 
12 2 Q . 

QO oo 

g n ( t )  = ~... I f (x l  ..... Xn_l,t)dXl..X~n_l 
a I a . _  I 

Invoking the above lemma and rearranging the order of integration (Fubini's Theorem): 

p ( a ) =  t - a i ) g ~ ( t ) d t  e, 

which implies that this candidate for expected survival vector can be determined from 
conditional survival parallel to the coordinate axes. Note that p : ~ -) ~ is a vector field 
and that: 
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It = p(O) = S ( t ¢ i ) d t  ci 
i=lk 0 ) 

Recall that for n=l the hazard function h can be defined as h(t) = f ! t !  or equivalently as 
S(t) 

h= d(In(S(t))) 
- - - - - - - ~ .  While the first definition readily generalizes to define the hazard 

function h=-~  : 3 ~ 9~ + for any n, it is the second that is of greater interest. Given a 

survival function S on ~ the corresponding hazard vector f ield is defined as: 

,7 = r t s  : z ~ z q(x) =-V( ln (S(x) )~  x e 

where v denotes the gradient operator. 

For any a ~ ~ ,  a life path o f  a is a continuous function C :[0,1]-~ 3 satisfying: 

C(O) = 0 

c(1) = a 

0 ~ t ~ u ~ 1 ~ C(u)  e 3c ( t )  

The latter condition simply means that the path pmgres~s into the furore. Note that for 

any a e ~3 and life path C of a, we have: 
-~[~ 

~q = - ln(S(C(I)) )+ In(S(C(O))) = - ln(S(a))  ~ S(a)  = e c 
c 

We will, as is often done, occasionally confuse a path C with its image {C(t)}, implicitly 
exploiting independence of the line integral to path parameterization. 

The traditional language of life contingencies refers to hazard as a "force of mortality". 
Of course, "force" is inherently a vector concept and the latter expression relates the 
force of failure r/with the probability of survival S. This has a natural appeal as it relates 
survival to the amount of"work" done traversing a hazardous life path. It gives the term 
"life work" a new twist and suggests an almost Aristotelian concept of life-giving energy. 
The existence of a survival function, as defined here, corresponds to the case when the 
amount of work is independent of the path, analogous to a potential function measuring 
energy loss in classical physics. 

We conclude this section with some simple examples for n=2, in which case we revert to 
the more conventional xy.plane notation. 

Example 1: Let (a, b) e ~ be a vector in the positive quadrant. The exponential survival 
function with parameter vector (ag b) is defined as: 
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S(x,y)=e -ax-by f(x,y)=abS(x,y) h(x,y)=ab 

Note that this models the case of constant expected survival, p(x,y) = (! ,1),  and 

constant hazard field ~x,.v) = (a,b). 

The generalization of  Example ! to n>2 is clear. It is not surprising that the expected 
survival vector is constant exactly when the hazard field is constant. The inverse 
relationship between the two in that event, ft. p = , ,  has an added geometric appeal since 
survival is "global" while hazard is "local" (See [3] for a more systematic discussion of 
the relationship between hazard and expected survival.) 

Example 2: After a constant vector field (Example 1), the next simplest vector field is 

rt(x, y) = c(x, y) for some constant c ~ ~R ÷ . 

For this case. 

_c(x'+Y ~ ) 
S(x,y)=e " 2 /, f(x,y)=c2xyS(x,y), h(x,y)=c2xy 

We leave to the reader the verification that: 

, v T -  

where *(x) = d '  Ie 2 a~ is the standard normal cumulative density function. 
¥ ~ _® 

Example 3: Suppose r ,T,g define another hazard field, survival, and PDF, respectively. 
Then r/+r has survival function the product STand PDF: 

= S(X, y ) g ( x , , ) + T ( x ,  y) f (x ,  y)+ f f ( t ,  y)dt ~g(x,t)dt + I f (x , t )dt  Ig(t, y>dt> O. 
x y y x 

Combining these examples, the "fn'st degree equation" hazard field 

rl(x, y) = (a, b) + c(x, y) 
- + x 2 + Y  2 

When n=l.  a hazard function h(t) is often viewed as belonging to a one-parameter family 

{ch(t) I c ~ ~+} of"proportional b a i r d "  functions ([2] considers the mean survival over 
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such a family). A proportional shift h(t) ~ ch(t), c ~ ~+ in the hazard function 

corresponds to exponentiation of the survival function S(t)  ~ S(t)  c . The next 
example shows that this concept becomes more complicated in higher dimensions. 

Example 4: The function S(x ,y)  = e -(~+Ixy+I) is a survival function with PDF 

f ( x ,  y) = (xy + x+y)S(x, y) and hazard field r/(x, y) = (y + 1, x + 1). Letting T = ~]S, 
we let the reader verify that T is not a survival function, as defined here, since it would 
have PDF: 

.((x + l)(y + 1) 1 e-(X+lXy+l) 4 ~)<0 
for (x,y) sufficiently near the origin. 

Section II: Censored data and Path Dependence 

To make the discussion seem more concrete, let y measure wage replacement benefits 
and x medical benefits awarded on a workers compensation claim. For convenience, 
normalize costs so that the interval [0,2] covers the range of feasible amounts. Consider 
the following table of survival data: 

Survival Data 
y Status 

1 0 Open 
1 1 Closed 
2 2 Closed 

Total 

Count 
378 
393 
229 

1,000 

In this context "failure" means claim closure, as that corresponds to the end of  the life of  
a claim. Cases open when the information is collected are regarded as censored. The 
reported values of x and y represent medical and indemnity paid to date figures at that 
evaluation. For closed cases, the final incurred costs are reported. Consistent with the 
assumed unit of payment, no case survives beyond (2,2). 

Let P~ denote the probability of survival from point a to point b. The task is to determine 

the probability of survival from (0,0) to the point (I,1) = p(l.i) • (o.o)" Note that there are no 

po.o) = p(o,,) _ ,  Since observed closures f rom (0,0) to (1,0) or to (0,1), so we must have • (o,o) • (o,o) - "  

there arc 393 failures at (1,1) among 1000 cases, none censored at (0, l ) ,  we f ind that 

p((u> 1000 = 393 = 0.607 Taking into account the censoring at (1,0), however, implies 
°"~ = 1 ~  

= p(t.o)p0.0 this p(o,0p(u) = 0.607 > 0.368 = "(o.o) • (,.o), that -o.o)P°'u 1000-378-3931000_378 =0.368. Since ,(o.o)-(o.i) 

645 



illustrates how censored data leads to a problem determining a probability of  survival 
SO,I)  from (0,0) to (1,1). 

The component functions of a hazard vector field r/determined from a survival function 
S are readily expressed in terms o r s  and the P D F f  For example when n=2 we have: 

~ x , y )  = ( p ( x , y ) , Q ( x , y ) )  = - V ( h a ( S ( x , y ) )  

"~f(x,v)dv lf(u,y)a,, 

' = S ( x , y )  ' S ( x , y )  

in which the common denominator S(x,y) measures the probability of  survival to (x,y) and 
the numerators the observed "marginal failures" subsequent to (x,y). 

In the ease of  censored data, consider a decomposition: 

f (x ,Y)= fo(x,Y)+ ~(x,Y) 
into censored and uncensored observations. Consistent with how (fight) censored data is 
handled in survival analysis when n=l, it is natural to consider 

,7,(x,y) -- (~(~,y),O.,(x,y)) =l." s~x,y ~ , ~ ~ 

\ 
in which the numerators measure only observed failures. 

Example 5: Begin with: 

1 
S ( x , y )  = 

(x + 1)0, + 1) 

f (x,Y) = ['(x + l~y + l)] 2 = S(x, Y) 2 

'I ' l )  
rl(x,y ) = (P(x,y),Q(x, y)) = -~ (x + 1) 2 (y + 1) ' ( x  + 1)(.y + i) 2 

and decompose ~x,y) as:  
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l + x + y  
f0 ( x , y )  = (x + 1) 3 (3' + 1) 3 

f l  ( x ,y )  = xy 
(x + 1) 3 (y  + 1) 3 

(~fi(x,v)dv ~(u,y)du 
rlI(x'Y)=(PJ(x'Y)'Q'(x'Y))=IY S~x,y) ,x S~x,y) 

k 

( x(2y + 1) (2x + 1)__y ) 
[, 2(x  + 1) 2 (y  + 1) ' 2(x + 1)0 '  + 1) 2 ) 

= OPI OQ~=(~2Y)f(x,y ) 
Oy ox 

It follows that the vector field/71 does not have a potential function and in particular does 

not have the form - V In S I for any survival function S]. This points out the need to 
generalize our definitions, as is done in the next section. 

Section III:  Definition o f  the General ized Survival  Model  

Let F = {C°[  a ~ 3 ;  Co a life path  for  a}, r / :  3 --~ ~ a continuous vector field. 

The corresponding generalized survival function S : F ~ 91 + is determined from 

S ( C . )  = e c. 

The pair r/, S is referred to as a generalized survival model on 5.  

Observe that if  q,s  and z,T are generalized survival models, then so is a r l + b y , S a T  b , for 

any a,b e ~1 +. In particular, this generalized survival formulation captures situations that 
cannot be modeled with PDF's ,  from both this formal arithmetic perspective and as 
regards the ability to relate survival with choice of  life path. 

O f  course, even for n= l ,  any continuous function h :91 + ~ .91 ÷ can formally define a 

-ih(w)a~ 
survival function as S(t) = e o but setting f(t) = h(t)S(t) need not yield a 

continuous PDF, as considered here. Indeed, S f (t) dt = 1 - p w h e r e  P = lira S ( t )  can 
o t-~0 

be greater than 0. In that case it is easy to augtmmtf(t) by a point  mass o fp robab i l i t yp  
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to achieve a mixed PDF based model. For n>l,  the relationship between path 
dependence and the existence of a PDF based model lies somewhat deeper. 

Also, for n=l ,  the haTard is interpreted as the instantaneous rate of  failure. Consider now 
the case n=2. Following standard convention, express the hazard field as 
rl(x,y) = (P(x ,y) ,Q(x,y))and assume also that P and Q are continuously differentiable. 
Note that for any t>O, any life path of(a+t,b) passing through (a,b) has the form 

C + D, where C is a life path of (a,b) and D, (s) = (a + s, b), 0 < s < t .  It follows that the 
conditional probability of survival from (a,b) to (a+t, b) is uniquely determined as: 

L 

e-2 ~ _ S (C  + D)  _ A t )  
S(63 

The mean rate of failurea(t) per horizontal unit along D, is also independent of the 
choice of  C : 

(s(c)-l.)S<C) 1 
a ( t )  = ~, s(-c) ) l-p(t) 

t t 

using the fact that the curve D, is parameterized by arc length. 

We are interested in the instantaneous horizontal rate of failure at (a,b), which is just the 
limit: 

a = l i m  a(t) = - l i m  p(t)- p ( O )  = dp 
t-,O t--*O t - 0 dt It=0 

On the other hand: 

-40  
p( t )  = e o, 

(a+t,b) 
- l n p ( / )  = ~rl= S P ( a + x , b ) d x + Q ( a + x , b ) d y  

19, ( a,b ) 

t 
-- fp ( ,~  + s , b ) ~  

0 

since dy=0 along D,. First differentiating by t and then letting t --> 0 : 

k ( _ * / :  e<o +,,b) , , :  
p(t)  ~, at j 

We conclude that: 

P(a,b)=instantaneous rate of  failure per horizontal age unit at (a,b) 
Q(a,b)--instantaneous rate of failure per vertical age unit at (a,b). 

This is readily generalized to higher dimensions and provides a means to calculate the 

component functions of the haTm'd vector field. Clearly the hazard vector field 
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determines a generalized survival function. This discussion shows the converse: a 

generalized survival function determines conditional probability, whence failure rates 
parallel to the coordinate axes, which in turn determine a hazard vector field. 

For any n and a ¢ 3 ,  define the curve Da,i. t (s) = a + s6i, 0 < s ~ t, I < i < n . The 
above discussion on failure rate noted that conditional survival parallel to a coordinate 
axis is independent of choice of path and the discussion in Section I then suggests the 
following definition for the expected survival vector 

p ( a ) =  ~ '~ /S  e ...... d t l c  i for  a ~ 3 
) 

When n=2 and q(x, y) = (P(x, y), Q(x, y)) the reader can readily verify that 
t f 

p(a,b)=(~e-~oP(a+s,b)ds ~-~Q(a,b+s)ds 
at, Je ° dt)  

o o 
t i 

-[P(s,b)ds ~ -~Q(a,s)ds 
= (  je  ; dt, Je z dr) 

a b 

Note that for c>a: 

i f I 

e d t=  d t+ Ie • dt 
a a c 

e r 

C 

i 

C 

f i 

a C 

~ (c, b)+ p(c ,  b) ~ ~(a,b)+p(a,b) 

and by symmetry, for d>b: 

(c, d)  + p ( c , d )  ~ 3(c,b)+p(c,b) c g(a,b)+p(a,b) 
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The corresponding result for n=l is a special case of tin2 and the case n>2 is a 
straightforward induction using the case rm2. In general, we have: 

b ~ 3 a ~ b + p ( b )  ~ 3a+p(a) 

This is intuitively what one would expect and has implications to the task of determining 
a hazard vector field approximating empirical data (c.f. [3]). 

Again, the section concludes with an example: 

Example 6: Consider the vector field 

~(x ,y )  = 

and consider the following line segment paths: 

C, from (0,0) to (1,0) 

C 2 from (0,0) to (0,1) 

C 3 from (I,0) to (1,1) 

c ,  from (o,1) to (l,l) 

C, from (0,0) to (1,1) 

Observe that, with the usual notational conventions, C~ + C 3 ,C 2 + 6"4 and C s can be 
taken as life paths for the point (1,1). For example, 

0,o) 2 
~c,~= J Y__a~+x~a~ y=0,~=0 

(o,o) 2 

I 

=~0a~+x2(0)=0 ~ S ( C l ) = l  
0 

The reader can readily verify the following observations: 

S(C 2) = 1 

S(Ct + C3 ) = 1 ~ 0.368 
e 

S(C2 + C4 ) = S(C5 ) = ~ 1  ~ 0.607, 

which may explain the rather odd choices for the survival data in the previous section. 
Note also that 
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Clearly, a hazard vector field 1(x, y) = (P(x. y), Q(x, y)) and the corresponding expected 

survival vector field q(x, y) should be “inversely related” in some sense. In this 
example, as in Example 1, their component functions are found to be multiplicative 
inverses of each other. The interested reader can verify that this is characteristic of the 

c.asewhenr=+ ap do=O(c.f. [3]). 

Section IV: An Application of Green’s Theorem in the Plane 

Again consider the case w2 and let (a, b) E 3 be a point in the positive quadrant with 
life paths C and D. We are interested in comparing S(C) with S(D). The case of most 
interest is when (a,!~) is the “first” point beyond the origin at which the life paths meet 
and so assume tinther that C lies beneath D in the rectangle [0, a] x [0, b] . The picture 
is: 

We are interested in comparing the probabilities of failumkurvival over the two paths. 
As in the previous section, express the hazard field as rl(x,y) = (P(x,y),Q(x,y)) and assume 
P and Q are continuously differentiable. Under these conditions, C-D is a closed curve 
enclosing a simply comucted region R. Green’s themem, a topic coverod in most 
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advanced calculus courses, relates the line integral over the boundary with an integral 
over the enclosed region. In this ease, it states that: 

ff OQ op 47= = 
C D C-D 

OQ OP 
Letting r(x, y) 

Ox Oy 
that: 

In particular, 

-sometimes called the "rotation" of r/ at (x,y)---it follows 

S ( D )  = e a S ( C )  where  a = Sfr 
R 

r ( x , y )  ~ 0 on R ~ S (D)  >_ S (C)  

r ( x , y )  < 0 on R ~ S (D)  < S (C)  
with strict inequality holding when r does not vanish on R. Clearly, the function r(x,y) is 
key to the task of identifying paths of least or greatest resistance, i.e., optimum paths for 
failure or survival. 

Example 6 (Continued): Here r(x, y) = 2 x -  y and as before the focus stays on survival 

to the point (a,b) = (1,1). All life paths are contained within the unit square where the sign 

of r is depicted below: 

(Ouo) 

+ 

(U) 
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The picture suggests considering the life path defined as: 

I (t,2t) 
G(t) = 

0 I t 5 ; 

(t,l) + I t s 1 

The reader can readily verifydirectly or using Green-that: 

,4” = 6 a S(C6) = e-; = .659 
4 

Consider a deformation of C6 H C6 downward that would invade the region for which 

r>O. Taking C;6 = C, C, = D in the above, we find that S(C6) > S(C6). On the other 

hand, any deformation of C6 H C6 upward would invade the region for which HO. 

Taking C6 = D, C6 = C in the above, we find that s(C6) > S(?6 ). It follows that the life 
path c6 provides the maximum probability of survival to (1,l). A similar argument 
shows that the life path C, + c3 provides the minimum probability of survival to (1,l). 
Finally, consider, as in Section II, the interpretation when values of x and,y represent 
medical and indemnity benefits paid to date. Subject to this hazard function, the path 
Cl + C3 (which corresponds to the “sports medicine” approach of first focusing all 
resources to medical care) maximizes the probability of claim resolution at (1,l). 

It is apparent from the example that optimal paths can be expected to trace along 
solutions to r(x,y)=O and the boundary of the rectangle. Observe that in the interpretation 
of Example 6, time was not included among the coordinates. Instead, time was relegated 
to the role of parameter of life paths. That is appropriate provided the focus is more on 
costs than on their specific timing. If, for example, it is desired to estimate expected time 
to failure, it would make sense to include time among the coordinates and look 
particularly at the expected survival vector component in that direction. Similarly, if the 
timing of payments is at issue, such as with claim administration protocols, it is natural to 
explicitly include time as a coordinate in the model. Given the way data is collected, 
time stamped payment information is the most natural source for capturing a life path and 
time is the most natural parameter. 

Green’s theorem comes neatly into play when considering alternative paths for getting to 
the same place, i.e., when resources are already allocated and it is a question of 
optimizing their effect on claim resolution. Logically prior to this, of course, is the issue 
of allocating resources, as illustrated in yet another revisit to the example: 
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ExJmple 6 (Continued): Suppose we have fixed resources p > 0and we consider the 

portion a ~ [0,1] to be speni on medical. Clearly this involves considering life paths to the 

linex + y = ft.  So let C,,.p denote the linear life path from (0,0) to (afl,(I - a )p ) .  We 

leave to the reader the verification that: 

y(/2, f l )  = #T] = (Of--O~3)/~ 3 

c.,, 6 

any fl > 0, y(a, p) has a relative maximum at a = J 1  and so allocating It follows that for 

that portion of every dollar to medical would follow along the straight path 

?+,Ii 
that maximizes the probability of resolving the claim. 

There is also the converse issue, suppose you are confronted with a claim that requires a 
certain amount of work to close, how can you minimize the cost outlay? This related 
allocation problem is illustrated in our final revisit to the example: 

Example 6 (Concluded): Suppose we have a fixed amount of work ]7 > 0 needed to 
close a claim and we wish to find a life path that requires the least possible total 
payment x + y.  We simplify the problem and only consider straight-line solutions and let 

at denote the slope. Let C° denote the linear life path from (0,0) to (a, aa) .  The reader 
can verify that our constraint translates into: 

(,+2 y°, 

and that the outlay a + a~ais minimized when a = ~ -  1. We find that in the most cost- 

• effective solution, the (constant) portion spent on medical = ~ is independent of the 

fixed amount of work fl required to close the claim. 

We conclude this section with a formulation of Green's theorem suitable for comparing 

survival along any two life paths C and D of (a, b) e ~3. For any x ~ [0, a] let 

/;x = {(x, t) l t ~ [0, b]} be the vertical line segment above x. Our assumptions imply that: 

L x 17 O = {(x, t) I t ¢ [d l(x), d 2(x)] } 

Lx NC = {(x,t) l t ~ [q(x),c2(x)]} 
And we may define: 

- i  d2(x)<cl(x) 
~(x,y)= + c2(x)<dl(x) 

otherwise 
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Pictorially, 8 is 1 when C lies below D and - i  when D lies below C, in effect flagging 
the two possible orientations the life paths can traverse around the region R they enclose. 
All life paths to (a,O lie in the closed rectangle [0, a] × [0, b] and the path: 

~(t) _1 I 
- ,  ~ t < 1 ( 2 a ( t - _ ) , b )  -~ _ 

is the "top" top life path. Let 

Rm = simply connected region enclosed by C-C 

R 2 = simply connected region enclosed by D-C 

R=(R, UR2)-(R, NR2) 
By Green's theorem: 

C- D C-C D-C: R, R, R 

S(D) = eaS(C) where a = ~Sr 
R 

This provides a general comparison formula that is amenable to numeric evaluation. In 
practice, though, a simple chart of the sign of r(x,y) over the applicable rectangle is the 
best starting point. The key, therefore, to identifying optimal paths is a representation of 
r/that yields a sufficiently accurate picture ofr. 

Section V: Further  Research 

The question remains how to determine a hazard field from empirical data. One simple 
approach is to restrict the domain of the function to regions over which the hJ,7~rd vector 
is assumed constant and then approximate it by estimating the coordinate failure rates. 
For this, traditional survival analysis methods suffice. SAS, for example, is well suited 
since its survival analysis procedures can be performed over cells of data and its time 
variable can be set to measure changes parallel to the coordinate variables (see [1]). 
General curve fitting techniques can then be used to paste the pieces together. Clearly a 
more systematic approach, especially a computer algorithm, would be useful. An 
alternative is to first estimate the'expected survival vector field p --which is more 
straightforward in concept--and then "invert" that field in some fashion to derive the 
hazard vector field r/(this is considered in [3]). 

A generalized survival model can be used to assign a case reserve "vector". Unlike 
traditional reserve formulas, the vector would account for the interaction of component 
cost liabilities. Properly formulated, it would provide integrated benchmarks for both the 
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prospective duration and various dollar costs of a claim. Note that the definition of 
expected survival vector field presented here is strictly prospective. It would be 
interesting to see whether the theory can yield a "tangent reserve vector" (or higher 
derivative vectors) defined on life paths and sensitive to the prior history of the claim. 

It would also be interesting and potentially very valuable to determine whether an insurer 
has any tendency to follow paths of"greatest or least resistance" in resolving cases. The 
ability to identify optimum paths might eventually yield valuable information on 
protocols for case management. Example 6 is indicative of how to exploit Green's 
Theorem in such an investigation, not to mention first semester calculus. 

Example 4 illustrates that the concept of a proportional hazard relationship becomes more 
complicated in higher dimensions. Indeed, the concept itself can be blown up n2-fold 
from scalar to matrix multiplication. Further research is needed to determine what 
concepts work best. The Cox proportional hazard model (see [1]) is the standard tool for 
relating explanatory variables ("eovariates") with the hazard function. Because each 
component along a life path implies essentially the same failure sequence, the Cox model 
will typically associate the same covariate proportional shift irrespective of which 
coordinate xi is chosen as the time t variable. Alternatively, a parameter for the life path 
could be used as time t. As a result, the Cox model can be used in this context but only 
with the understanding that the proportional effect is assumed to be uniform over all 
values of all components. By the same token, so-called "time dependent" interventions 
can also be analyzed using the Cox model provided the intervention is consistently 
defined among the n components. This should not be a problem with time-stamped data 
where time is used to parameterize the life paths. 

Of particular value would be a generalization of the Cox model approach that avoids such 
strong "inter-dimensional" assumptions on constant proportionality. The ideal solution 
would be the ability to model covariate impact on the hazard vector field via pre or post 
multiplication by a constant matrix. Presumably, determining the "best" such matrix 
would involve constructing appropriate maximum likelihood functions. The discussion 
in Section 111, however, suggests that this may not be straightforward. 

Sometimes all of ~ may exceed the "natural" sample space for a particular problem. A 
subset (e.g. manifold as in [5]) might be more appropriate and the "Stokes type" theorems 
may prove useful in that context, analogous to the use of Green's theorem in the simple 
example discussed here. Applications of "advanced calculus" have traditionally been the 
purview of physicists and engineers, not actuaries. Use of multivariate survival models 
may help level that playing field. 
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