
Insurance Applications of 
Bivariate Distributions 

David L. Homer, FCAS, MAAA and 
David R. Clark, FCAS, MAAA 

823 



INSURANCE APPLICATIONS OF BIVARIATE 

DISTRIBUTIONS 

DAVID L. HOMER AND DAVID R. CLARK 

Abstract 

A technique is demonstrated for aggregating bivariate claim size 

distributions using a two-dimensional Fast Fourier Transform. 

Three insurance applications are described in detail relating to: 

1) individual risk rating, e) loss and allocated expenses, and 3) 

Dynamic Financial Analysis. 
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INSURANCE APPLICATIONS OF BIVAR1ATE DISTRIBUTIONS 

I. INTRODUCTION 

1.1. The Basic Problem 

When pricing insurance contracts it is useful to estimate not only the aver- 

age insured loss but also the insured loss distribution, Although an initial 

approach may include only an estimate of the mean, risk measures generally 

require an estimate of the distribution. This problem is often solved by mod- 

eling losses as a sum of individual claims. A frequency distribution describes 

the number of claims N, a severity distribution describes the size of each 

claim Xk. The individual claim sizes are usually assumed to be independent 

and identically distributed (iid) as well as independent from the claim counts. 

This model is known as the Collective Risk Model [3]. The aggregate loss 

dollars Z are the sum of the individual claim sizes. 

Z = X I +  ... + XN (1.1) 

The expectation and variance of Z are easily expressed in terms of the fre- 

quency and severity components. 

E(Z)  = E ( X ) E ( N )  (1.2) 

Var(Z)  = V a r ( X ) E ( N )  + E ( X ) 2 Y a r ( g )  (1.3) 

Estimating the aggregate loss distribution requires more work, but there 

are numerous techniques available: simulation, Fast Fourier Transform, con- 

tinuous Fourier Transform [1], recursion [4, 8], and moment matching [5, 9]. 

In this paper, the Fast Fourier Transform (FFT) will be used. The FFT has 

been described in detail by Robertson [7] and Wang [10]. 

1.2. A Problem that Includes Dependencies Between Loss Components 

The collective risk model as outlined above is sufficient to describe most 

insurance policies. One example in which this model is not sufficient arises 

in individual risk rating. A policy may provide Specific Excess coverage 
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INSURANCE APPLICATIONS OF BIVARIATE DISTRIBUTIONS 

above a per-claim retention, and may also provide coverage in excess of an 

aggregate amount for the retained losses. The excess of aggregate cover is 

commonly called a Stop Loss cover. 

The distributions for either the Specific Excess or Stop Loss covers can 

be estimated using the collective risk model. However, it is more difficult 

to estimate the distribution for the sum of the two covers because there is 

a dependence between the pieces. One trivial element of the dependence is 

easily seen--if  there are no retained losses then there are no losses in excess 

of the retention. 

Section 2 provides a more detailed description of this problem. 

1.3. Aggregating with the FFT--A brief Review 

Before introducing the complication of the dependence between two cover- 

ages, we will briefly review the Fast Fourier Transform (FFT) technique for 

evaluating a standard collective risk model. 

In order to compute the aggregate toss distribution using the FFT, the 

.severity distribution is expressed as a probability vector 1 x = (x0, xl, ..., xn). 

Each element xk is the probability of a claim having size ck, where c is a 

scaling constant. 

The distribution of the claim counts N is incorporated with the use of its 

Probability Generating Function (PGF). 

PGF(t)  = E(t  N) (1.4) 

The frequency and severity components are put together using a standard 

FFT technique. Denoting the FFT and its inverse as FFT(x)  and IFFT(x )  

respectively, the probability vector for the aggregate losses is computed as 

z = (zo, zl,..., z~) = IFFT(PGF(FFT(x ) ) ) .  (1.5) 

The PGF is applied elementwise, i.e., with some abuse of notation, 

PGF((to, tl ..... tn)) = (PGf(to),  PGF(tl) ,  ..., PGF(t , )) .  (1.6) 

ix is indexed starting at zero. x0 is the probability of a claim of size zero. 
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INSURANCE APPLICATIONS OF BIVARIATE DISTRIBUTIONS 

The  vector size n mus t  be large enough tha t  the  probabi l i ty  of aggregate 

losses greater  t h a n  cn is negligible. Any probabil i ty  mass for losses greater  

than  cn will wrap around,  i.e., mass for losses greater  t han  cn will be t reated 

as though it  is mass for the  available claim sizes (0, c, 2c, ..., nc). The wrap- 

a round problem is typically avoided by padding the  vector wi th  zeros as 

discussed in Rober tson [7] and Wang [10]. 

1.,~. Building a Bivariate Loss Distribution 

The goal is to  obta in  a bivar ia te  d is t r ibut ion of aggregate retained losses and 

aggregate excess losses. This  will be represented as a probabil i ty  mat r ix  2 

M~ where Mz(j, k) is the  probabil i ty  t ha t  aggregate retained losses are clj 

and aggregate excess losses are c2k. As before, cl and c2 are constant  scale 

factors. 

For a single claim this  ma t r ix  is easily constructed.  Suppose x = (.4, .3, .3) 

and c = 1,000. Then  for a 1,000 deductible,  wi th  Cl = c2 = c = 1,000, [.4oo] 
M x =  .3 .3 0 (1.7) 

0 0 0 

The  mat r ix  Ms fully specifies the  probabil i t ies and dependencies of losses 

in the  retained and excess layers. The  sum across rows (.4,.6,0) produces 

the dis t r ibut ion of the  retained losses; the  sum down the  columns (.7,.3,0) 

produces the  dis t r ibut ion of the  excess losses. 

The  advantage at  this  point  is t ha t  the  same F F T  technique can be used 

to calculate aggregate losses for Mz tha t  we used to calculate aggregate losses 

for x. W i t h  F F T  0 and I F F T  0 now representing the  two dimensional  F F T  

and its inverse, and with PGF 0 as before, we compute  the  aggregate loss 

mat r ix  Mz. 

M~ = IFFT(PGF(FFT(Mx)))  (1.8) 

2Mz indices start from zero. 
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INSURANCE APPLICATIONS OF BIVARIATE DISTRIBUTIONS 

As i n the one-dimensional treatment, the PGF is applied elementwise and the 

matrix Mx must have sufficient padding so that Mz can hold the significant 

mass. Appendix A provides an example of the two-dimensional FFT using 

publicly available software. 

The FFT technique is not the only way to aggregate Mx. Sundt [8] shows 

tha t  M~ can be aggregated using a recursive technique. 

The aggregation of bivariate severity matrices can be applied to other 

problems as well. In what follows three specific examples will be explored. In 

the first, the combined distribution of losses on specific excess and aggregate 

excess is considered. In the second, bivariate loss and ALAE distributions are 

computed, and in the third example, a problem with a simulation technique 

often used in DFA analysis is reviewed and corrected. 

2. PER-OCCURRENCE AND EXCESS-OF-AGGREGATE COVERS IN 

INDIVIDUAL RISK RATING 

The first problem that  we will review is common in individual risk rating. 

A fictional large insured, Dietrichson Drilling, is interested in retaining 

the majority of their "predictable" Workers Compensation losses, and mainly 

seeks to purchase insurance to cover individual large claims. For example, 

they may choose to retain the first $600,000 of each loss occurrence. At the 

same time, they may have a concern that  the number of occurrences could 

also be higher than expected, and therefore seek protection on the total 

dollars of retained loss. 

Our company, Pacific All Risk Insurance Company, has been asked to 

provide coverage on a Per-Occurrence basis of $400,000 excess of $600,000, 

and then also a Stop Loss cover to pay in the event tha t  their total retained 

loss exceeds $3,000,000. The underwriter at Pacific All Risk has proposed 

the structure shown in Table 2.1. 

As the Pacific All Risk actuary, you have selected frequency and severity 

distributions, and have estimated the expected losses for each of these covo 
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INSURANCE APPLICATIONS OF BIVARIATE DISTRIBUTIONS 

T A B L E  2.1 

POLICY STRUCTURE FOR DIETRICHSON DRILLING. 

Named Insured: 
Insurance Company: 

Per-Occurrence Layer: 
Stop Loss Layer: 

Dietrichson Drilling 
Pacific All Risk Insurance Co. 

400,000 xs 600,000 
5,000,000 xs 3,000,000 

Allocated expenses included in the definition of "loss" 

erages. In order to calculate the needed risk load on the program, however, 

you need to estimate the distribution of the sum of the two coverages. 

The company's Fast Fourier Transform (FFT) model allows you to esti- 

mate a distribution for either the Per-Occurrence or the Stop Loss layer with 

no problem, but you recognize tha t  there is likely to be a strong dependence 

between the results of the two covers and you want to reflect this in your 

pricing. 

We will consider a simplified version of this problem. First, we will assume 

that  the loss distribution can be reasonably approximated using only a five- 

point discretized severity distribution. In practice, a curve of more than 

a hundred points would be needed in order to accurately capture the true 

shape. For our example, the simpler distribution shown in Table 2.2 will be 

used. 

Consistent with this loss distribution, our average severity is estimated 

to be $480,000 and the average in the 400,000 xs 600,000 layer is $78,200. 

We have also estimated that  the expected number of claims is 5, with a 

variance of 6; and the frequency will be modeled using a Negative Binomial 

distribution. The overall loss pick is therefore $2,400,000(5 × $480,000). Our 

aggregate model calculates expected losses of $123,529 in the proposed Stop 

Loss layer above $3,000,000. 
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TABLE 2.2 

SEVERITY DISTRIBUTION FOR DIETRICHSON DRILLING 

Probability 
0.00% 

37.80% 
23.50% 
14.6o% 
9.1o% 

15.oo% 

Loss Amount 
0 

200,000 
400,000 
600,000 
800,000 

1,000,000 

Excess Loss 
0 
0 
0 
0 

200,000 
400,000 

Average 480,000 78,200 

The first step in calculating the overall loss distribution is to create a 

bivariate severity distribution of primary and excess losses. This is shown in 

Table 2.3. 

TABLE 2.3 

SINGLE CLAIM PRIMARY ~ EXCESS LOSS BIVARIATE DISTRIBUTION 

Primary Loss Excess of 600,000 
600,000 

0 200,000 400,000 600,000 800,000 1,000,000 
0 

200,000 
400,000 
600,000 
800,000 

1,000,000 
1,200,000 
1,400,000 
1,600,000 
1,800,000 
2,000,000 

0.00% 0 . 0 0 %  0 . 0 0 %  0 . 0 0 %  0.00% 0.00% 
37.80% 0.00% 0 . 0 0 %  0.00% 0.00% 0.00% 
23.50% 0 . 0 0 %  0.00% 0.00% 0.00% 0.00% 
14.60% 9.10% 15.00% 0 . 0 0 %  0.00% 0.00% 

0.00% 0 . 0 0 %  0 . 0 0 %  0.00% O.O0% O.0O% 
0.00% 0.00% 0 . 0 0 %  0.00% 0.00% 0.00% 
0.OO% 0 . 0 0 %  0.O0% O.00% 0 . O 0 %  O.O0% 
0.00% 0 . 0 0 %  0 . 0 0 %  0.00% 0.00% O.00% 
0.00% 0.00% 0 . 0 0 %  0.00% 0.00% 0.00% 
0.00% 0 . 0 0 %  0 . 0 0 %  0.00% 0.00% 0.00% 
o.oo% o.oo% o.oo% o.oo% o.oo% o.oo% 

From Table 2.3, we can observe a strong dependence structure between 
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the primary and excess losses: we can only have an excess loss if the primary 

600,000 retention is hit. 

This bivariate severity matrix becomes the input for the FFT model, 

and may be denoted Ms. The matrix of the of the aggregate distribution 

may be denoted Mz and is produced using the two-dimensional Fast Fourier 

Transform calculation: 

Mr = I F F T ( P G F ( F F T ( M ~ ) ) )  

PGF( t )  = (1 .2 -  .2t) -2s 

For the bivariate matrix Ms shown in Table 2.3, the resulting Mz is given in 

Table 2.4. 

An additional step is needed in order to calculate the estimated results 

in the Stop Loss layer above 3,000,000. For that calculation, the rows of 

Table 2.4 for all amounts 3,000,000 or less are summed to compute the prob- 

abilities of no excess-of-aggregate losses. The remaining rows are intact but 

the row labels are reduced by 3,000,000. The result is Table 2.5. 

From Table 2.5 several statistics of interest can be calculated. The ex- 

pected loss to the Stop Loss layer is $123,529 and the probability that the 

Stop Loss is hit is 15.08%. The average loss amount conditional upon the 

Stop Loss being hit is $819,210. 

More dramatic from a risk management perspective is the dependence 

between the Per-Occurrence and Stop Loss covers. The expected loss to the 

Per-Occurrence layer is $391,000 (5 x $78,200), but this increases to $830,334 

when we include only the scenarios in which the Stop Loss is also hit. This 

dependence needs to be considered in the decision to write the contract: on 

average, when the Stop Loss is hit we will also be paying about twice the 

expected amount in the Per-Occurrence layer. 

The two-dimensional matrix above can be used to verify the expected loss 

pricing for either coverage individually. The probabilities associated with 

the Stop Loss program are found by summing across rows; the probabili- 

ties associated with the Per-Occurrence excess layer are found by summing 
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T A B L E  2.4 

AGGREGATE PRIMARY ~ AGGREGATE EXCESS 
DISTRIBUTION 

L o s s  BIVARIATE 

Primary Loss Excess of 600,000 
600,000 

o 200,000 400,000 600,000 800,000 1,00o,ooo 1,2oo,ooo 
o 1.o5% 0 .00% 0.00% 0 .00% 0.00% 0.00% 0.00% 

200,000 1.65% 0 .00% 0 .00% 0 .00% 0.00% 0.00% 0.00% 
400,000 2.38% 0 .00% 0.00% 0 .00% 0.00% 0.00% 0.00% 
600,000 3.09% 0 .40% 0 .66% 0 .00% 0.00% 0.00% 0.00% 
800,000 3.34% 0 .65% 1.o7% 0 .00% 0.00% 0.00% 0.00% 

1,00o,ooo 3.39% 0 .96% 1.58% 0 .00% 0.00% 0.00% 0.00% 
1,200,000 3.22% 1.27% 2.16% 0 .26% 0.21% 0.00% 0.00% 
1,400,000 2.86% 1.40% 2 .44% 0 .44% 0.36% 0.00% 0.00% 
1,600,000 2.43% 1.45% 2.59% 0 .66% 0.54% 0.00% 0.00% 
1,800,000 1.97% 1.40% 2 .57% 0 .90% 0.78% 0.09% 0.05% 
2,000,000 1.54% 1.26% 2 .38% 1.02% 0.92% 0.15% 0.08% 
2,200,000 1.17% 1.09% 2 .12% 1.08% 1.01% 0.24% 0.13% 
2,400,000 0.86% 0 .90% 1.80% 1 .08% 1.05% 0.33% 0.20% 
2,600,000 0.62% 0 .72% 1.47% 1.00% 1.01% 0.38% 0.24% 
2,800,000 0.43% 0 .55% 1.16% 0 .88% 0.93% 0.42% 0.27% 
3,000,000 0.29% 0 .41% 0 .89% 0 .75% 0.82% 0.43% 0.29% 
3,200,000 0.20% 0 .30% 0 .66% 0 .61% 0.70% 0.41% 0.29% 
3,400,000 0.13% 0 .21% 0 .48% 0 .48% 0.57% 0.37% 0.28% 
3,600,000 0.08% 0 .15% 0 .34% 0 .37% 0.45% 0.32% 0.25% 
3,800,000 0.05% 0 .10% 0 .24% 0 .27% 0.35% 0.27% 0.22% 
4,000,000 0.03% 0 .07% 0 .16% 0 .20% 0.26% 0.22% 0.19% 
4,200,000 0.02% 0 .04% 0.11% 0 .14% 0.19% 0.17% 0.15% 
4,400,000 0.01% 0 .03% 0 .07% 0 .10% 0.14% 0.13% 0.12% 
4,600,000 0.01% 0 .02% 0 .05% 0 .07% 0.10% 0.10% 0.09% 
4,800,000 0.00% 0 .01% 0 .03% 0 .04% 0.07% 0.07% 0.07% 
5,000,000 0.00% 0 .01% 0 .02% 0 .03% 0.04% 0.05% 0.05% 
5,200,000 0.00% 0.00% 0.01% 0.02% 0.03% 0.03% 0.04% 
5,400,000 0.00% 0.00% 0.01% 0.01% 0.02% 0.02% 0.03% 
5,600,00O 0.00% 0.00% 0.00% 0.01% 0.01% 0.02% 0.02% 
5,800,000 0.00% 0 .00% 0 .00% 0 .00% 0.01% 0.01% 0.01% 
6,000,000 0.00% 0 .00% 0 .00% 0~00% 0.01% 0.01% .0.01% 
6,200,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 
6,400,00O 0.00% 0 .00% 0 .00% 0 .00% 0.00% 0.00% 0.00% 
0,600,000 0.00% 0 .00% 0.00% 0 .00% 0.00% 0.00% 0.00% 
6,8o0,0oo 0.00% 0 .00% 0 .00% 0 .00% 0.00% 0.00% 0.o0% 
7,000,000 0.00% 0 .00% 0.00% 0 .00% 0.o0% 0.00% 0.00% 
7,200,000 0.00% 0 .00% 0 .00% 0 .00% 0.00% 0.00% 0.00% 
7,400,000 0.00% 0 .00% 0 .00% 0 .00% 0.0o% 0.00% 0.00% 
7,600,000 0.00% 0 .00% 0.00% 0 .00% 0.00% 0.00% 0.00% 
7,800,000 0.00% 0 .00% 0 .00% 0 .00% 0.00% 0.00% 0.00% 
8,000,000 0.00% 0 .00% 0.00% 0 .00% 0.00% 0.00% 0.00% 
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T A B L E  2.5 

AGGREGATE PRIMARY EXCESS & AGGREGATE EXCESS LOSS BIVARIATE 
DISTRIBUTION 

Stop Loss Excess of 600,000 
Loss 

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 
0 30.28% 12.45% 22.89% 8.07~ 7.65% 2.04% 1.26% 

200,000 0.20% 0.30% 0.66% 0.61% 0.70% 0.41% 0.29% 
400,000 0.13% 0.21% 0.48% 0.48% 0.57% 0.37% 0.28% 
600,000 0.08% 0.15% 0.34% 0.37% 0.45% 0.32% 0.25% 
800,000 0.05% 0.10% 0.24% 0.27% 0.35% 0.27% 0.22% 

1,000,000 0.03% 0.07% 0.16% 0.20% 0.26% 0.22% 0.19% 
1,200,000 0.02% 0.04% 0.11% 0.14% 0.19% 0.17% 0.15% 
1,400,000 0.01% 0.03% 0.07% 0.10% 0.14% 0.13% 0.12% 
1,600,000 0.01% 0.02% 0.0,5% 0.07% 0.10% 0.10% 0.09% 
1,800,000 0.00% 0.01% 0.03% 0.04% 0.07% 0.07% 0.07% 
2,000,000 0.00% 0.01% 0.02% 0.03% 0.04% 0.05% 0.05% 
2,200,000 0.00% 0.00% 0.01% 0.02% 0.03% 0.03% 0.04% 
2,400,t)00 0.00% 0.00% 0.01% 0.01% 0.02% 0.02% 0.03% 
2,600,000 0.00% 0 .00% 0.00% 0.01% 0.01% 0.02% 0.02% 
2,800,000 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 
3,000,000 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 
3,200,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 
3,400,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
3,600,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
3,800,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
4,000,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
4,200,000 0.00% 0 .00% 0.00% 0.00% 0.00% 0.00% 0.00% 
4,400,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
4,600,000 0 .00% 0 .00% 0.00% 0.00% 0.00% 0.00% 0.00% 
4,800,000 0 .00% 0 .00% 0.00% 0.00% 0.00% 0.00% 0.00% 
5,000,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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down columns. By summing across rows or down columns, we calculate the 

marginal distributions. 

In order to calculate the distribution of the sum of the two coverages 

combined, we sum the probabilities along each diagonal. Table 2.6 shows 

this calculation. 

TABLE 2.6 

PROBABILITIES FOR AGGREGATE PRIMARY EXCESS PLUS AGGREGATE 
EXCESS LOSS 

Loss & 
ALAE Probability Calculation 

0 30.28% = 30.28% 
200,000 12.64% = 0.20% + 12.45% 
400,000 23.31% = 0.13% + 0.30% + 22.89% 
600,000 9.02% = 0.08% + 0.21% + 0.66% + 8.07% 
800,000 8.94% = 0.05% + 0.15% + 0.48% + 0.61% + 7.65% 

3.  DISTRIBUTION FOR LOSS ONLY SUBJECT TO AGGREGATE LIMIT PLUS 

UNLIMITED ALLOCATED LOSS ADJUSTMENT EXPENSE (ALAE) 

Our insured, Dietrichson Drilling, requests a General Liability policy on a 

traditional guaranteed cost basis. Our company, Pacific All Risk Insurance 

Company, is willing to offer a standard policy form with a $1,000,000 Per- 

Occurrence limit and a $2,000,000 General Policy Aggregate. 

Both the Per-Occurrence limit and the General Aggregate limit apply to 

the indemnity loss only. All defense costs and associated expenses (allocated 

loss adjustment expense - ALAE) are covered in addition to these limits. 

The Pacific All Risk policy is summarized in Table 3.1. The loss distribution 

is approximated in Table 3.2. 
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TABLE 3.1 

POLICY STRUCTURE FOR DIETRICHSON DRILLING. 

Named Insured: 
Insurance Company: 

Per-Occurrence Limit: 
General Aggregate Limit: 

Dietrichson Drilling 
Pacific All Risk Insurance Co. 

1,000,000 
2,000,000 

Allocated expenses paid in addition to loss 

TABLE 3.2 

SEVERITY DISTRIBUTION FOR DIETRICHSON DRILLING 

Probability Loss Amount 
lO.OO% 
45.00% 
9.00% 
9.OO% 
9.00% 

18.00% 

0 
200,000 
400,000 
600,000 
800,000 

1,000,000 

Average ALAE % 
Average 432,000 

37.29% 
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As the Pacific All Risk actuary, you have been asked to estimate the 

aggregate distribution of the sum of the loss and ALAE combined. The first 

step in calculating the overall loss distribution is to assemble the bivariate 

severity distribution of loss and ALAE. This is shown in Table 3.3. 

T A B L E  3.3 

SINGLE CLAIM LOSS • A L A E  BIVARIATE DISTRIBUTION 

Loss ALAE 
Amount  

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 
0 8 .39% 1.47% 0 .13% 0 .01% 0.00% 0.00% 0.00% 

200,000 27.98% 13.29% 3.16% 0.50% 0.06% 0.01% 0.00% 
400,000 4 .15% 3 .21% 1.25% 0 .32% 0.06% 0.01% 0.00% 
600,000 3 .07% 3 .30% 1.77% 0.64% 0.17% 0.04% 0.01% 
800,000 2 .28% 3 .13% 2 .15% 0 .99% 0.34% 0.09% 0.02% 

1,000,000 3 .37% 5 .65% 4 .73% 2 .64% 1.11% 0.37% 0.10% 
1,200,000 0 .00% 0 .00% 0 .00% 0 .00% 0.00% 0.00% 0.00% 
1,400,000 0 .00% 0 .00% 0.00% 0 .00% 0.00% 0.00% 0.00% 
1,600,000 0 .00% 0 .00% 0 .00% 0 .00% 0.00% 0.00% 0.00% 
1,800,000 0 .00% 0 .00% 0 .00% 0.00% 0.00% 0.00% 0.00% 
2,000,0O0 0.0O% 0 .00% 0 .00% 0 .00% 0.00% 0.00% 0.00% 

It may not be obvious at  a quick glance, but there is a strong dependence 

between loss and ALAE in this table; approximately a .500 linear correlation 

coefficient for Dietrichson Drilling. Larger losses are assumed to have larger 

dollars of associated expense, even though the ALAE percent decreases. It 

is also the case tha t  the loss severity curve does not extend beyond the 

1,000,000 Per-Occurrence limit, whereas the ALAE curve does not have an 

explicit cap. By convention, we are including closed-without-pay claims in 

this analysis, at  least to the extent that  they are likely to have contributed 

ALAE. 

This bivariate severity matrix becomes the input for the FFT model, and 

will again be denoted as Ms. The matrix of aggregate distributions, ME, is 

again given by the formula: 
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Mz = IFFT(PGF(FFT(Mx))) 

PGF(t) = (2 - t) -4 

The frequency distribution is assumed to be Negative Binomial, with a mean 

of 4 and a variance of g. 

The final matrix of aggregate distributions is shown in Table 3.4. In order 

TABLE 3.4 

AGGREGATE LOSS & AGGREGATE ALLOCATED LOSS ADJUSTMENT 

EXPENSE .JOINT DISTRIBUTION 

Loss ALAE 
Amount 

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 
0 7.42% 0.23% 0.02% 0.00% 0.00% 0.00% 0.00% 

200,000 4:33% 2.23% 0.59% 0.11% 0.02% 0.00% 0.00% 
400,000 2.22% 2.10% 1.01% 0.33% 0.08% 0.02% 0.00% 
600,000 1.41% 1.82% 1.20% 0.54% 0.18% 0.05% 0.01% 
800,000 1.06% 1.71% 1.40% 0.77% 0.33% 0.11% 0.03% 

1,000,000 1.11% 2.09% 1.98% 1.27% 0.62% 0.25% 0.08% 
1,200,000 0.69% 1.59% 1.84% 1.42% 0.83% 0.39% 0.16% 
1,400,000 0.40% 1.07% 1.45% 1.32% 0.90% 0.50% 0.23% 
1,600,000 0.25% 0.75% 1.15% 1.19% 0.92% 0.57% 0.30% 
1,800,ODO 0.16% 0.56% 0.95% 1.08% 0.93% 0.64% 0.37% 
2,000,000 0.12% 0.44% 0.82% 1.02% 0.96% 0.72% 0.46% 
2,200,000 0.07% 0.30% 0 .6 !% 0.84% 0.87% 0.72% 0.50% 
2,400,000 0.04% 0.19% 0.43% 0.65% 0.73% 0.66% 0.50% 
2,600,000 0.03% 0.13% 0.31% 0.50% 0.60% 0.59% 0.48% 
2,800,000 0.02% 0.09% 0.22% 0.38% 0.50% 0.52% 0.45% 
3,000,000 0.01% 0.06% 0.16% 0.30% 0.41% 0.46% 0.42% 
3,200,000 0.01% 0.04% 0.11% 0.22% 0.32% 0.38% 0.37% 
3,400,000 0.00% 0.02% 0.07% 0.15% 0.24% 0.30% 0.32% 
3,600,000 0.00% 0.01% 0.05% 0.11% 0.18% 0.24% 0.27% 
3,800,000 0.00% 0.01% 0.03% 0.08% 0.13% 0.19% 0.22% 
4,000,000 0.00% 0.01% 0.02% 0.05% 0.10% 0.14% 0.18% 

to cap the loss only exposure at the 2,000,000 General Aggregate, we sum 

the probabilities for losses above 2,000,000 into a single row. The result is 

Table 3.5. Finally, we can create a single distribution from this matrix by 
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TABLE 3.5 

AGGREGATE LOSS CAPPED AT 2,000,000 ~ AGGREGATE ALLOCATED 

LOSS ADJUSTMENT EXPENSE JOINT DISTRIBUTION 

Loss ALAE 
Amount 

0 
200,000 
400,000 
600,000 
800,000 

1,000,000 
1,200,000 
1,400,000 
1,600,000 
1,800,000 
2,000,000 
2,200,000 

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 
7.42% 0.23% 0.02% 0.00% 0.00% 0.00% 0.00% 
4.33% 2.23% 0.59% 0.11% 0.02% 0.00% 0.00% 
2.22% 2.10% 1.01% 0.33% 0.08% 0.02% 0.00% 
1.41% 1.82% 1.20% 0.54% 0.18% 0.05% 0.01% 
1.06% 1.71% 1.40% 0.77% 0.33% 0.11% 0.03% 
1.11% 2.09% 1.98% 1.27% 0.62% 0.25% 0.08% 
0.69% 1.59% 1.84% 1.42% 0.83% 0.39% 0.16% 
0.40% 1.07% 1.45% 1.32% 0.90% 0.50% 0.23% 
0.25% 0.75% 1.15% 1.19% 0.92% 0.57% 0.30% 
0.16% 0.56% 0.95% 1.08% 0.93% 0.64% 0.37% 
0.31% 1.31% 2.88% 4.41% 5.28% 5.31% 4.73% 
0.00% 0.00% 0:00% 0.00% 0.00% 0.00% 0.00% 

TABLE 3.6 

PROBABILITIES FOR LIMITED LOSS PLUS ALAE 

Combined 
Loss+ALAE Probability Calculation 

0 7.42% 
200,000 4.56% 
400,000 4.47% 
600,000 4.09% 
800,000 3.99% 

= 7.42% 
= 4.33% + 0.23% 
= 2.22% + 2.23% +.0.02% 
= 1.41% + 2.10% + 0.59% + 0.00% 
= 1.06% + 1.82% + 1.01% + 0.11% + 0.00% 
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summing along each diagonal to obtain Table 3.6 

It is also instructive to show a graph of the distribution of the com- 

bined loss and ALAE both  before and after the General Aggregate cap. In 

Graph 3.1 we can see tha t  the "tail" of the cumulative distribution is greatly 

reduced by imposing a 2,000,000 General Aggregate. However, we note that  

there is still a non-remote probability of loss even above 3,000,000 due to the 

inclusion of ALAE on an unlimited basis. 

G R A P H  3.1 

CUMULATIVE DISTRIBUTION FUNCTIONS FOR CAPPED AND UNCAPPED 
LOSS & A L A E  
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4. DYNAMIC FINANCIAL ANALYSIS 

As the actuary for Pacific All Risk, you have now completed your pricing 

work for individual insurance contracts. As a reward for your hard work, 

you have been rotated to the actuarial team that runs the company's Dy- 

namic Financial Analysis (DFA) model, called Pacific Enterprise Risk Model 

(PERM). 

The goal of the PERM team is to model the distribution of results for 

Pacific All Risk Insurance Company as a whole. Included in this analy- 

sis is sensitivity testing for interest rates and various complex reinsurance 

structures. The PERM is a giant simulation model, which needs to be pa- 

rameterized for the business actually written. 

A simplification made in the PERM is that the model separately simulates 

an aggregate value for all "small" losses and then simulates individual "large" 

losses. A truncation point of 1,000,000 has been selected for segregating large 

from small losses. 

An early version of the PERM made the assumption that the small and 

large losses are independent. That is, the small and large losses were simu- 

lated separately and then the results were summed. However, this indepen- 

dence assumption was found to be false, resulting in understated variability 

and unrealistically low probabilities in the tail of the combined distribution. 

In fact, the aggregate distributions of the small and large losses are gen- 

erally not independent. If a single frequency distribution is used to generate 

the overall number of losses N, then the covariance 3 can be written explicity. 

Where, 

Coy(S ,  L )  = Pl~s(1 - p)I~L(a~N -- IJN) 

S -- aggregate small losses 

L -- aggregate large losses 

SSundt shows a more general formula in [8]. 

(4.1) 
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Ps = mean small claim size, 

PL = mean large claim size, 

p = probability tha t  a given claim is small, 

a 2 = variance of the claim counts, and 

#N = mean of the claim counts. 

The sign of the covariance term is driven by the claim count distribution. 

For the commonly used Negative Binomial this is positive; for the Poisson it 

is zero 4. Equation 4.1 is derived in Appendix B. 

In order to model the losses for Pacific All Risk, we begin by approximat- 

ing the total  loss distribution with a few discrete points (Table 4.1). As in 

the previous examples, a five-point distribution is used here, but  would need 

to be expanded to a greater number of points in a more realistic application. 

T A B L E  4.1 

SEVERITY DISTRIBUTION 

Probability Loss Amount 
0.00% 

43.80% 
24.60% 
13.80% 

7.80% 
10.00% 

Average 431,200 

0 
200,000 
400,000 
600,000 
800,000 

1,000,000 

This single severity curve is then reconfigured into Table 4.2 a bivariate 

matrix Mx. The first column defines the severity of the "small" loss distri- 

bution. The first row is a single point containing the probability of a "large" 

41n the case of the Poisson it can be shown that the large and small claims are actually 
independent. 
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loss. 

This format is a bit different than the previous examples, since the vertical 

and horizontal axes are in different units: the vertical in dollars and the 

horizontal in counts. This illustrates the flexibility in the FFT technique to 

allow for different scale factors for the two dimensions. 

SIN( 

TABLE 4.2 

~LE CLAIM SMALL LOSS ~ LARGE COUNTS JOINT DISTRIBUTION 

Small 
Loss 

0 
200,000 
400,000 
600,000 
800,000 

1,000,000 
1,200,000 
1,400,000 
1,600,000 
1,800,000 
2,000,000 

Large Loss Counts 

0 1 2 3 4 5 
0.00% 10.00% 0.00% 0.00% 0.00% 0.00% 

43.80% 0.00% 0.00% 0.00% 0.00% 0.00% 
24.60% 0.00% 0.00% 0.00% 0.00% 0.00% 
13.80% 0.00% 0.0O% 0.OO% 0.00% 0.0O% 

7.80% 0.00% 0.00% 0.00% 0.OO% 0.00% 
0.00% 0.OO% 0.00% 0.00% 0.00% 0.00% 
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
O.00% O.O0% 0.00% 0.00% 0.00% 0.00% 
0.00% 0.O0% 0.O0% 0.00% 0.00% 0.00% 
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
0.00% 0.oo% 0.oo% 0.00% 0.00% 0.oo% 

For a frequency distribution, we use a Negative Binomial with mean 10 

and variance 20. For an actual insurance company, the overall frequency is 

likely to be much higher but we continue with this simplified assumption for 

clarity. The aggregate distribution matrix Mr is again given by the expres- 

sion: 

Mz = IFFT(PGF(FFT(Mx))) 

PGF(t) = (2 - t) -~° 

The resulting aggregate distribution matrix Mz is in Table 4.3. Like the 
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TABLE 4.3 

AGGREGATE CLAIM SMALL LOSS ~ LARGE COUNTS BIVARIATE 
DISTRIBUTION 

Small Large Loss Counts 
Loss 

0 1 2 3 4 5 6 
0 0.10% 0.05% 0.01% 0.00% 0.00% 0.00% 0.00% 

200,000 0.21% 0.12% 0.04% 0.01% 0.00% 0.00% 0.00% 
400,000 0.38% 0.22% 0.07% 0.02% 0.00% 0.00% 0.00% 
600,000 0.58% 0.36% 0.12% 0.03% 0.01% 0.00% 0.00% 
800,000 0.82% 0.53% 0.18% 0~05% 0.01% 0.00% 0.00% 

1,000,000 1.07% 0.71% 0.26% 0.07% 0.01% ~ 0.00% 0.00% 
1,200,000 1.31% 0.91% 0.34% 0.09% 0.02% 0.00% 0.00% 
1,400,000 1.54% 1.11% 0.43% 0.12% 0.03% 0.00% 0.00% 
1,600,000 1.74% 1.30% 0.52% 0.15% 0.03% 0.01% 0.00% 
1,800,000 1.90% 1.46% 0.60% 0.18% 0.04% 0.01% 0.00% 
2,000,000 2.02% 1.60% 0.68% 0.20% 0.05% 0.01% 0.00% 
2,200,000 2.09% 1.71% 0.75% 0.23% 0.06% 0.01% 0.00% 
2,400,000 2.12% 1.78% 0.80% 0.25% 0.06% 0.01% 0.00% 
2,600,000 2.11% 1.82% 0.84% 0.27% 0.07% 0.02% 0.00% 
2,800,000 2.06% 1.83% 0.86% 0.29% 0.08% 0.02% 0.00% 
3,000,000 1.98% 1.81% 0.87% 0.30% 0.08% 0.02% 0.00% 
3,200,000 1.88% 1.75% 0.87% 0.30% 0.08% 0.02% 0.00% 
3,400,000 1.76% 1.68% 0.85% 0.30% 0.09% 0.02% 0.00% 
3,600,000 1.62% 1.59% 0.82% 0.30% 0.09% 0.02% 0.00% 
3,800,000 1.48% 1.49% 0.79% 0.29% 0.09% 0.02% 0.00% 
4,000,000 1.34% 1.38% 0.74% 0.28% 0.08% 0.02% 0.00% 
4,200,000 1.20% 1.26% 0.70% 0.27% 0.08% 0.02% 0.00% 
4,400,000 1.06% 1.14% 0.64% 0.25% 0.08% 0.02% 0.00% 
4,600,000 0.94% 1.03% 0.59% 0.24% 0.08% 0.02% 0.00% 
4,800,000 0.82% 0.91% 0.54% 0.22% 0.07% 0.02% 0.00% 
5,000,000 0.71% 0.81% 0.48% 0.20% 0.07% 0.02% 0.00% 
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original bivariate severity, this matrix has units in dollars for the "small" 

losses, and counts for the "large" losses. The marginal distribution for the 

aggregate small losses is found by summing the probabilities in each row. 

The simulation procedure first simulates an aggregate amount for the 

"small" losses, and then finds a conditional frequency distribution for the 

"large" loss counts. The conditional large loss frequency distributions are 

created by rescaling each row of M, to total  100%. This is shown in Table 4.4. 

The conditional matrix shown in Table 4.4 is also instructive in itself, be- 

cause it clearly shows the dependence between large and small losses. Simply 

put, an increase in frequency means more losses in both the large and small 

categories. 

The final simulation procedure for the PERM is then: 

• Simulate the aggregate dollars of small losses out of its marginal dis- 

tribution. 

* Simulate the number of large losses from the corresponding conditional 

frequency distribution. 

* Simulate a severity amount for each of the large losses. 

This procedure allows us to efficiently simulate losses without the need 

to individually simulate every small loss, and at the same time preserves the 

dependence structure between the large and small losses. 
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TABLE 4.4 

CONDITIONAL DISTRIBUTIONS OF LARGE COUNTS GIVEN AGGREGATE 
SMALL LOSSES 

Small 
Loss 

0 
200,000 
400,000 
600,000 
800,000 

1,000,000 
1,200,000 
1,400,000 
1,600,000 
1,800,000 
2,000,000 
2,200,000 
2,400,000 
2,600,000 
2,800,000 
3,000,000 
3,200,000 
3,400,000 
3,600,000 
3,800,000 
4,000,000 
4,200,000 
4,400,000 
4,600,000 
4,800,000 
5,000,000 

Large Loss Counts 

0 1 2 3 4 5 6 
59.87% 29.94% 8.23% 1.65% 0.27% 0.04% 0.00% 
56.88% 31.28% 9.39% 2.03% 0.36% 0.05% 0.01% 
54.91% 32.07% 10.18% 2.33% 0.43% 0.07% 0.01% 
53.26% 32.68% 10.87% 2.60% 0.50% 0.08% 0.01% 
51.80% 33.17% 11.49% 2.85% 0.57% 0.10% 0.01% 
50.37% 33.62% 12.11% 3.12% 0.64% 0.11% 0.02% 
49.03% 34.01% 12.70% 3.39% 0.72% 0.13% 0.02% 
47.77% 34.34% 13.26% 3.65% 0.80% 0.15% 0.02% 
46,55% 34.63% 13.81% 3.92% 0.89% 0.17% 0.03% 
45.38% 34.87% 14.34% 4.19% 0.97% 0.19% 0.03% 
44,26% 35.09% 14.86% 4.47% 1.07% 0.22% 0.04% 
43.17% 35.26% 15.37% 4.74% 1.16% 0.24% 0.04% 
42.12% 35.41% 15.86% 5.02% 1.26% 0.27% 0.05% 
41.10% 35.53% 16.34% 5.31% 1.37% 0.30% 0.06% 
40,11% 35.62% 16.80% 5.59% 1.47% 0.33% 0.06% 
39.16% 35.69% 17.25% 5.88% 1.58% 0.36% 0.07% 
38.22% 35.73% 17.69% 6.17% 1.70% 0.39% 0.08% 
37.32% 35.75% 18.12% 6.46% 1.82% 0.43% 0.09% 
36.44% 35.75% 18.54% 6.75% 1.94% 0.47% 0.10% 
35.58% 35.73% 18.94% 7.05% 2.07% 0.51% 0.11% 
34.74% 35.69% 19.33% 7.34% 2.19% 0.55% 0.12% 
33.93% 35.63% 19.71% 7.64% 2.33% 0.59% 0.13% 
33.14% 35.56% 20.08% 7.94% 2.46% 0.64% 0.14% 
32.37% 35.47% 20.44% 8.24% 2.61% 0.69% 0.16% 
31.61% 35.36% 20.78% 8.54% 2.75% 0.74% 0.17% 
30.88% 35.25% 21.12% 8.83% 2.90% 0.79% 0.19% 
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5.  CONCLUSION 

Aggregating a bivariate severity distribution is a useful technique. Two sever- 

ity components are separately aggregated while preserving their dependence 

structure. This technique can be applied when pricing a policy with a per 

claim retention and a Stop Loss on the aggregate retention. It can also be 

applied more generally. The two random variables can be different items 

such as dollars and counts. 

In this paper we aggregate the bivariate distribution using the FFT, but 

it is possible to do this with the continuous Fourier Transform or simulation. 

Sundt [8] shows that  this can be done with recursive techniques. It may 

sometimes be preferable to utilize a mix of techniques. 

This technique can be extended to n dimensions by developing a multi- 

variate distribution Mx. With the claim count PGF and an n-dimensional 

FFT, the aggregate multivariate array Mz is obtained as, 

Mz = IFFT(PGF(FFT(M~,))).  
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APPENDIX A SAMPLE TWO DIMENSIONAL FAST FOURIER TRANSFORM 
USING R 

It is convenient to compute FFT's using preprogrammed software. An excel- 

" lent piece of software that includes FFT functions is based on the S language 

and is publicly available for free. It is called "R" [2]. Versions of R for vari- 

ous operating systems can be found by following 'http://cran.r-project.org/'. 

R is copyrighted software made publicly available under the GNU General 

Public License which is available at 'http://www.guu.org/copyleft/gpl.html'. 
The FFT function is also available in commercial software packages, e.g., 

MATLAB and S-Plus. 

A listing from a session with R shows how easy it is to compute two 

dimensional FFTs. Lines typed by the user begin with ">". The inverse of a 

mat r ix  14 is obta ined with " f f t  (14, T ) /n , "  where n is the  number  of elements 

in the  matr ix .  

> ms<-matrix(c( .4,0,0, .3, .3,0,0,0,0) ,3,3,byrow=T) 

> ms 

[ ,1 ]  [ ,2 ]  [ ,3 ]  

[1 , ]  0 

[2 , ]  0 

[3,] 0 

0.4 0.0 

0.3 0.3 

0.0 0.0 

> f<-fft (ms) 

>f 

[ ,  1] [ ,  2] [ ,  3] 

[ t , ]  1. O+O.O000000i O. 55-0. 2598076i O. 55+0.2598076i 

[2 , ]  O. 1-0. 5196152i O. 10+0. O000000i O. 55-0.2598076i 

[3 , ]  0.1+0.5196t52i  0.55+0.2598076i O.tO+O.O000000i 

> f * f  

[ ,  ~] [ ,  2] [ ,  3] 

C1,] 1.00+0.0000000i 0.235-0.2857884i 0.235+0.2857884i 

[2 , ]  -0.26-0.1039230i  O. OlO+O. O000000i O. 235-0.2857884i 
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[ 3 , ]  -0.26+0.10392301 0.235+0.28578841 0.010+0.0000000i 

> m a < - f f t ( f * f , T ) / 9  

> m a  

C, 13 [, 23 C, 33 

[1,]  0.16+0i 1.652685e-18+0i 2.301894e-17+0i 

C2,] 0.24+0i 2.400000e-01+0i 2.467162e-17+0i 

[ 3 , ]  0.09+0i  1.800000e-01+0i 9.000000e-02+0i 

For those wishing to program their own algorithms see [6]. Note that 

when the object to be transformed consists only of real numbers, there are 

symmetries that can be used to decrease the amount of computing required. 

849 



INSURANCE APPLICATIONS OF BIVARIATE DISTRIBUTIONS 

APPENDIX B CORRELATION OF LARGE AND SMALL LOSSES 

Consider the Collective Risk Model with aggregate losses represented by the 

sum of individual claims 

Z = X1 + ... + X~¢. 

The Xi are independent and identically distributed (iid) random variables 

denoting claim sizes. Claim counts are denoted by the random variable N 

which is independent from each Xi- It is further assumed that  the first 

moment of Xi is finite and that  the second moment of N is finite. 

Let T denote the threshold for distinguishing between small claims and 

large claims, i.e., Xi is small if Xi _< T. Define a small loss indicator, Ii = 1 

for Xi _< T, and 0 otherwise. Then we have small aggregate losses 

Zs  = X l l l  + ... + X N I N  

and large aggregate losses 

ZL = Xa(1 - 11) + ... + XN(1 - lu ) .  

Let p be the probability that  Xi  < T. Denote the conditional means for small 

and large claim sizes with 

las = E[X,]X,  < T] 

UL = E[X,  IX~ > r I. 

Denote the claim count mean and variance with 

a~ = Var[N] 

UN = E[N]. 

P r o p o s i t i o n  

Cov[Zs,  ZL] = p/~S(1 -- p)/aL(a~ -- ,aN). (S.1) 
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N N 

= E [ ( ~  X,I , ) (Z  X,(~ - I,))] 
i ~ l  i =1  

N N 

= E N E x [ ( ~ X , 1 , ) ( Y ~ X , ( 1  - I,))] 
j=i j=i 

= E N E x [ ( ~ , X , 1 , X j ( 1  - l j ) )  + ( ~ , X , I ,  X j ( 1  - lj))] 
i=j j# i  

= E u [ N ( N  - 1 ) E x [ X I ] E x [ X ( 1  - I)]], since Ii(1 - Ij)  = 0 for i = j 

= E u [ N ( N - 1 ) U S p U L ( 1 - p ) ]  

= ( E ( N  2) - PN)USP#L(1 -- p). 

E[ZL]E[Zs] = (Ulv#sP)(pl~#L(1 - p))  -= #~pSPPL(1  - p). 

These yield the result since, 

C o v i Z s ,  ZL] = E[ZsZL]  - E[Zs]E[ZL].  
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