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Abstract 

The focus of this paper is on some new developments in the methodologies for enterprise 

risk management (ERM). The paper presents a set of new methods and tools, including 

(i) a universal risk measure tbr both assets and liabilities, (ii) a coherent method of 

determining the aggregate capital requirement for a firm, and (iii) a coherent method of 

allocating the cost of capital to individual business units. The discussed methods can be 

used for asset/loss portfolio optimization, and for quantifying the "'value creation" of 

ERM. The paper also discusses some correlation models and methods for risk 

aggregation. 
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Introduction 

The Casualty Actuarial Society (CAS) is presently promoting research in enterprise risk 

management and capital management. The current Call Paper Program focuses on 

analyzing, integrating, and optimizing the financial and insurance risks held by a 

financial institution or insurance company, so that capital may be efficiently deployed 

and consistently allocated, across the enterprise. 

Recently, the CAS Advisory Committee on Enterprise Risk Management (ERM) 

recommended a conceptual "ERM framework," emphasizing that ERM should not solely 

be employed for defensive purposes, that is, to protect the firm's capital base against the 

"downside" of unexpected losses. ERM should also be employed for proactive purposes, 

that is, to help manage the entire risk portfolio (including both assets and liabilities), 

and, ultimately, to enhance shareholder value. It is believed that the pivotal role of ERM 

in "value creation" will become more evident in the near future. 

The CAS conceptual "ERM framework" outlines a risk-management process that: 

• Analyzes and quantifies risks, by obtaining and calibrating a probability 

distribution of outcomes for each major identified risk; then 

• Integrates these major risks, by combining their outcome distributions, fully 
reflecting their correlations and portfolio effects; then 

• Assesses and prioritizes these risks, by determining the contribution of each major 

identified risk to the firm's aggregate risk profile, and, in terms of their potential 

positive or negative impact to the firm's capital base; and then 

• Optimizes the firm's aggregate risk profile, so that capital may be efficiently 
deployed and consistently allocated, across the global enterprise. 

Outline and Focus of the Paper 

Section 0. The growing pivotal role of ERM in the insurance industry 

Section I. A new universal risk measure for all assets and liabilities 

Section 2. A coherent risk measure of required capital that captures overall loss 

distributions 

Section 3. Allocating risk capital among the business units of the enterprise 

Section 4. Aggregating correlated risks to produce an integrated risk profile of the firm 

Section 5. Optimizing the "portfolio of the firm" to create new shareholder value 
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To meet the emerging ERM needs of the insurance industry, this paper presents a set of 

universal methods and tools that, taken together in a single framework, coherently 

analyzes, manages, integrates, prioritizes, and optimizes the capital requirements and 

risk-return trade-off of the firm. 

In particular this paper presents: 

• a universal risk measure for both assets and liabilities; 

• a coherent method of determining the aggregate capital requirement for a firm; 

• a coherent method of assessing the risk contribution, or the allocated cost of 

capital, of  individual business units, so that RORAC (return on risk-adjusted 

capital) assessments can be made; 

• aggregation methods for combining correlated risks; 

• a proposed method for asset/loss portfolio optimization, and for quantifying the 

"value creation" of ERM. 

Although 1 could have chosen to describe the detailed steps of some real-life ERM 

exercises, I decided to focus on a more urgent problem in that the industry lacks a sound, 

commonly agreed upon, methodology framework. To keep a reasonable scope for this 

paper, I will not detail an ERM exercise for a large financial institution. Instead 1 will 

present some new methodologies in risk measure, capital allocation, and portfolio 

optimization of the firm. 

Please note that the methodologies discussed here are not exhaustive. Indeed, many un- 

mentioned issues deserve separate discussions, to name a few: (1) cost of capital for long- 

tailed liabilities, (2) soft invisible correlation, (3) diversification versus area of expertise, 

and (4) macro- and micro- risk dynamics. With these caveats, this paper hopes to present 

innovations that can be formalized later into a set of ERM best practices, enabling 

insurance companies to prosper and grow in their risk taking. 
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Section 0. The Growing Pivotal Role Of ERM In The Insurance Industry 

In this section I give a brief overview of important issues related to insurance risk 

and capital management, which serves as practical background for the technical 

discussions in later sections. 

Insurance Risk and Capital 

Unlike manufacturing, "insurance" is unique in that "capital" is not "spent" producing 

durable goods or building factories. Instead, capital is used as a cushion against the risk 

that insurance premiums combined with investment income are not sufficient to pay 

future policyholder claims. As a general principle, insurance companies with higher risks 

should carry higher levels of cushion capital. The very nature of insurance thus illustrates 

the universal link between capital and risk. 

It is also because of this direct link, insurance risk managers often refer to "risk" and 

"capital" interchangeably. For example, when industry professionals refer to the 
allocation of  insurance company "capital," they really mean the allocation of "risk 

contributions" from various business units. Insurance company capital is not legally 

divisible, so all of the capital available at any given time supports all insurance policies. 

Theoretically, a single policy with unlimited cover can claim the entire capital base of the 

whole insurance company. 

Historically, regulatory cushion capital was determined by a simple rule-of-thumb, based 

on premium-to-surplus ratios, or reserve-to-surplus ratios. These simple rules-of-thumb 
did not reflect the true economic risk realities of insurance. The National Association of 

Insurance Commissioners has since tried to better link regulatory cushion capital with 

risk by developing a Risk Based Capital (RBC) system. So far, however, the RBC system 

has not been very effective in the property/casualty sector. This calls for advanced 

enterprise risk modeling that better captures the major risks of an insurance company. 

Aggregate Capital Requirement 

The capital requirements of an insurance company should measure the aggregate risk of 

the company risk portfolio, by incorporating asset risks, liability risks, event risks, and 

operational business risks. Enterprise risk modeling must properly incorporate all of  these 
disparate risks in order to present an accurate profile of firm-wide risk. 
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Knowing the capital requirements of the firm is the first step to improved capital 

management. Excess capital, if any, can be transferred from treasury (risk-free) 

instruments, and re-deployed for more productive returns. A shortfall in capital can be 

rebalanced by infusions of fi'esh capital, purchases of reinsurance, or, by trimming risks 

from the company portfolio. 

The Basel Accord I in the banking industry has inspired some insurance regulators to 

promote better practices in capital and risk management. For instance, Allan Brender, a 

Senior Director at the Office of the Superintendent of Financial Institutions Canada 

(OSFI), recently stated that the ultimate goal of insurance regulation is actually to help 

insurers better manage their capital and risk. 

An Integrated View of Insurance Company Risks 

There are at least two different views of the insurance business. 

The Traditional Underwriting View: Insurance is mainly an underwriting operation, 

financing investments that earn low, but stable returns, just like a bank deposit. The 

emphasis is on managing liabilities. Many insurance company executives from the last 

century were from an underwriting background, and they guarded their companies 

against investing in unfamiliar risk vehicles that were outside their familiar turf. 

A Financial Investment View: Insurance premiums are collected and held before claims 

are paid out. This creates a cash-flow float. This float provides opportunities for investing 

in a wide array of investment risk vehicles. In other words, the underwriting operation is 

essentially a "mutual fund," providing money lbr investment with higher returns. The 

emphasis is on managing assets. 

The "underwriting" and the "'investment" viewpoints reflect the flipsides of managing 

liabilities and assets in the insurance enterprise. It is better to take a more integrated view 

of underwriting and investment risks, where liabilities and assets are calibrated to 

maximize the company overall risk-return trade-off. Warren Buffett is an example of 

taking an integrated view of insurance operations. He has criticized some companies for 

aggressively accumulating investment funds using the underwritten cash-flow float, by 

sacrificing underwriting standards that subsequently resulted in unanticipated big losses. 

As another example of taking an integrated approach, some insurance companies were 

successful in operating high return hedge funds, but with sound risk-management in place 

J See ht~p://www.bis.orgjbcbs/aboutbcbs htm 
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to control the aggregate risk limit. 

State of  Affairs for the P/C Insurance Sector 

In the years just before 2001, it was widely acknowledged that the property/casualty 

industry was over-capitalized. Company management tended to retain massive amounts 

of excess capital, to support company insurance and credit ratings, and to fortify reserves 

to withstand unexpected catastrophes. However, this excess capital was not utilized 

effectively. Instead of seeking better investment opportunities, insurance executives used 

the excess capital to subsidize price cutting in insurance premiums, so as to gain or 

defend market share over competitors. Actuarial indicated premium rates were useless in 

such a cutthroat competitive environment. Years of irresponsible pricing led to huge 

underwriting losses by many insurance companies. 

The events of September 11 were a wake up call to the insurance industry, destroying a 

significant portion of the excess capital. Insurers suddenly found themselves in a 

dangerously weak capital position, and became much more responsible in taking on more 

risks. Insurance companies are now showing a higher appreciation for improved 

measurements of both liability and asset risks. 

On the liability side, Renaissance Re is a catastrophe reinsurer that has achieved 20% 

annual returns on equity over the last decade. Jim Stanard, Chairman and CEO of  

Renaissance Re, is an early pioneer in enterprise risk modeling (see Lowe and Stanard, 

1989). More generally, on the asset side, some insurance companies are taking on new 

kinds of market and credit investments for improved returns. These are welcome 

movements toward a holistic approach to actively manage all liability and asset risks 

within the insurance company. 

Market Perspective versus Company Perspective 

When it comes to measuring risks, the market and the company may have two different 

perspectives. In a market setting, transacted insurance prices are additive. To an 

individual company, however, the cost of taking on twice the amount of a specified risk 

exposure may be more than double, due to increases in portfolio concentration. For a 

company, different portfolio combinations can result in different aggregate risks. 

Within the CAS, a group of prominent researchers are vigorously debating insurance 

capital allocation issues. Most of the differences in opinion can be attributed to the 

apparent incompatibility of market and company perspectives. I would argue that we look 
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at insurance risk capital from both perspectives. Indeed, the interplay between these two 

perspectives lays the future foundation for responsive insurance risk capital management. 

Traditionally, insurance transactions were driven by long-term relationships. Nowadays 

traded and underwritten risks are more and more becoming commodities. Consumers are 

becoming more conscious about shopping for the best price. In a competitive market, it is 

increasingly difficult for individual insurers to differentiate their offerings by pricing 

alone. However, these individual insurers have ample room to improve their enterprise 

risk capital management, and improve their shareholder return, by optimizing those 

liabilities and assets comprising the overall "portfolio of the firm." 

To insurance company shareholders and executives, managing the asset return is 

becoming just as important as managing the liability risk. But more crucially, they realize 

that the risk/return trade-off for the integrated "portfolio of the finn" determines the day- 

to-day valuation of the insurance company. 

The ERM Process 

To succeed, the ERM process needs to be openly mandated, monitored, and managed by 
the executive suite. Insurance companies can contain people who are used to old ways of 

doing things and are skeptical to the ERM exercise. Unless these people are provided 
with imperative "marching orders from above," it can be difficult to get timely 

cooperation from the managers of individual business units. 

The very first phase of ERM involves classifying major risk factors and business 

segments, so that data can be gathered and analyses performed in the most efficient and 

logical manner. Each business unit may have a particular way of obtaining, storing, and 

analyzing risk data. These peculiarities should be documented when the business unit 

data is gathered. 

In the second phase, the ERM process compiles major risk factors, including: 

• Market Risks, like fluctuations in equity portfolio valuation 

• Credit Risks, like bond defaults and reinsurance receivables 

• Interest Rate Risks, like shifts in the yield curve 

• Foreign Exchange Risks, like changes in Euro/US Dollar currency exchange rates 

• Catastrophe Events and Mass Tort Liabilities, like Hurricane losses, asbestos claims 

• Loss Development Uncertainty, like the future unwinding of loss reserve estimates 

• Business and Pricing Risks, like softening or hardening of California WC market 
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• Operational Risks, like captive agent compliance issues. 

The industry is now moving to a standardized system for major risk factors, like those 

listed in the forthcoming IAA Solvency Working Party Report. 

A common set of future economic scenarios, representative of stressed and unstressed 

conditions, should be then applied to these risk factors, across all business units, to 
capture correlations and concentrations of risk that may unduly impact the capital base 

simultaneously. 

The third phase is a qualitative evaluation of the data by the managers of  the individual 

business units. We should not be surprised if the first, raw compilations of data do not 

fully portray the true opportunities or risks of a given business unit. The ERM exercise 

succeeds only if it incorporates the practical knowledge and expertise of the business 

managers. 

The biggest hurdle to ERM adoption by the insurance industry is the lack of a commonly 

accepted ERM methodology. One common mistake by many companies is spending too 

much effort on non-significant risks while ignoring the more important business risk 

dynamics. Another big hurdle is the lack of consistency of competing methods for capital 

risk analysis. Different methods applied to the same data can produce very different 

results. Venter (2002) gives a concise critique of certain quantitative approaches to 

capital allocation. 

To be effective, the ERM methodology needs to do more than just consistently evaluate 

the relative levels of risk and return within the insurance enterprise. The ERM 

methodology must also help risk managers to take specific actions to enhance the bottom- 

line results of the enterprise. 
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Section 1. A New Universa l  R i sk  Measure  For  All  Assets  and Liabi l i t ies  

In this section I propose a framework for measuring financial and insurance risks. 

A two-factor model of risk-adjustment tbr all moments in a distribution and for 

parameter uncertainty provides a "'fair value" for a given risk vehicle. This risk 

vehicle can be an asset or a liability, traded or underwritten, whose outcomes have 

a normal or non-normal distribution. 

Standard  Deviat ion Method  

Consider a risky asset with a one-period time horizon. Assume that the asset return R has 

a normal distribution. In a competitive market, the Capital Asset Pricing Model (CAPM) 

asserts that 

E[R] = r + )~ e~[R], (eq-l. 1) 

where r is the risk-free interest rate, and the parameter X is the "'market price of risk." In 

asset portfolio management, the parameter k~=(E[RI-r)/c~[R] is called the Sharpe Ratio. 

On the insurance side, the pricing of a liability usually starts with objective loss data, then 

calculates an expected loss (burning cost), and then loads for risk margin and expenses. 

The standard-deviation method (eq-l. 1) has traditionally been used in risk-adjustment for 

losses: 

Fair Premium = (Expected 1,oss) + X (Standard Deviation of Losses), 

where L is a loading multiplier, analogous to the above "market price of risk" for assets. 

Despite its popularity, the standard-deviation loading method fails to reflect the skew of a 

loss distribution. In fact, standard-deviation loading may unwittingly penalize upside 

skew and ignore downside skew. This drawback of standard-deviation loading has 

motivated actuarial researchers to develop various alternatives over the last decade. 

Consider a loss variable X with a general exceedance curve G(x)=Pr{X>x}. The following 

transform is a direct extension of the standard-deviation method of loading: 

G*(x)  = ~ ( ~  '(G(x))+2), (eq-l.2) 

Here q~ represents the standard normal cumulative distribution function, where the 

parameter X extends the concept of "market price of risk" or the Sharpe Ratio. Wang 

(2000, 2001) derived transform (eq-l.2) in the context of reinsurance pricing by layer, 

and showed that (eq-1.2) recovers CAPM lbr pricing underlying assets and replicates the 

results of the Black-Scholes formula for pricing options. The Wang Transform (eq-l.2) 

was inspired by an earlier work of Venter ( 1991 ). 
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Note that (eq-l .2)  can be applied to risks with both positive and negative values. The 

mean  value under the transformed distribution is 
0 + ~  

( X )  = - ]'[1 - g(G(x))]dx + Jg(G(x))dx. E 

For a given loss variable X with objective loss exceedance curve G(x), the Wang 

Transform (eq-l .2) produces a "risk-adjusted" loss exeeedance curve G*(x). The mean 

value E*[X], under distribution G*(x), defines a risk-adjusted "fair value" of  X a t  t ime T, 

which can be further discounted to t ime zero, using the risk-free interest rate. 

One important  property of  the Wang Transform (eq-l .2)  is that normal and lognormal 

distributions are preserved: 

• I f  G has a normal(p.,g 2) distribution, G* is also a normal distribution with la* = 

la+L~ and ~r* = ~. 

• For a loss with a normal distribution, the Wang Transform (eq-l .2)  recovers the 

traditional standard-deviation loading, with the parameter  K being the constant 

multiplier. 

• If  G has a lognormal(la,cr 2) distribution such that In(X) - normal(Ix,g2), G* is 

another lognormal distribution with ia* = p.+Kg and ~* = g. 

For any computer-generated distribution, the Wang Transform (eq-l .2)  is fairly easy to 

compute numerically. Many software packages have both qb and ~-1 as built-in 

functions. In Microsoft  Excel, qb(y) can be evaluated by NORMSDIST(y)  and ~-I (y)  can 

be evaluated by NORMSINV(y) .  

Unified Treatment of Assets and Liabilities 

A liability with loss variable X can be viewed as a negative asset with gain variable Y = 

-X, and vice versa. Mathematically,  a liability with a "market  price of  risk" L, can be 

treated as a negative asset whose market price of  risk is -2 .  That  is, the "market price of  

risk" will have the same value but opposite signs, depending upon whether  a risk vehicle 

is treated as an asset or liability. For an asset with gain variable X, the Wang Transform 

(eq-1.2) has an equivalent representation: 

F * (x) = qb[~-t ( F ( x ) )  + 2,] (eq-l .3)  

where F(x) = l - G ( x )  is the cumulative distribution function (cdf) of  X. 

The following operations are equivalent: 
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1. Apply transform (eq-l.2) with ~. to the exceedance curve G(x) of the loss variable X, 

2. Apply transform (eq-1.2) with - ~  to the exceedance curve G(y) of the gain variable 

Y= -X. and 

3. Apply transform (eq-1.3) with ~. to the cdfFfy)=l -G(y)  of the gain variable Y= -X. 

These equivalences ensure that the same price is obtained for both sides of  a risk 

transaction. 

Stock prices are often modeled by lognormal distributions, which implies that stock 

returns are modeled by normal distributions. Equivalent results can be obtained by 

applying the Wang Transform (eq-l.3) either to the stock price distribution, or, 

altematively, to the stock return distribution. 

A Variation of the Wang Transform 

For normal distributions, the Wang Transform (eq-l.3) represents a location-shift while 

preserving the volatility. As a variation of the (eq-l.3), we can simultaneously apply a 

location-shift and a volatility-multiplier: 

F*(x) : ~b .  ~-' (F(x))+ 2]. (eq- 1.4) 

When F(x) has a normal(Ja, a 2) distribution, (eq-l.4) represents an adjustment of the 

volatility by ~*=c/b, and a shift in the mean by p.*=la+~.m For most applications we 

would like to have 0<b<l,  so that g*=cr/b is greater than cr (in other words, the volatility 

is inflated). In an unpublished result, Major and Venter (1999) first fitted model (eq-l.4) 

to a set of observed CAT-layer prices. Butsic (1999) applied both a location-shift and a 

volatility-multiplier to a lognormal CAT-loss distribution. 

Adjustment for Parameter Uncertainty 

So far we have assumed that probability distributions for risks under consideration are 

known without ambiguity. Unfortunately, this is seldom the case in real-life risk 

modeling. Parameter uncertainty is part of reality in risk modeling. Even with the best 

data and technologies available today, there are parameter uncertainties in the modeling 

of insurance losses (see Kreps, 1997; Major, 1999). 

Consider the classic sampling theory in statistics. Assume that we have m independent 

observations from a given population with a normal(la,cr 2) distribution. Note that kt and cr 

are not directly observable, we can at best estimate la and cr by the sample mean ~ and 

sample standard deviation ~ .  As a result, when we make probability assessments 
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regarding a future outcome, we effectively need to use a student-t distribution with k = 

m-2 degrees-of-freedom, 

The Student-t distribution with k degrees-of-freedom has a density 

--~-~'1 [ t2 _]- (0.Sk + 1) 
f ( t;k)  = c , '  1 + T /  , --oo<t<oo 

where 

~ F ( ( k + l ) / 2 )  
Ck = F(k / 2) 

In terms of density at zero we have f (0 ;  k) = c k • ~(0), where ~(0) is the standard normal 

density at x=0. Student-t has a lower density than standard normal at zero. As the 

degrees-of-freedom k increases, the factor c k increases and approaches one: 

k 3 4 5 6 7 8 9 

ck 0.921 0.940 0.952 0.959 0.965 0.969 0.973 

The Student-t distribution can be generalized to having fractional degrees-of-freedom. 

Following the statistical sampling theory that uses a Student-t distribution in place of a 

normal distribution, I suggest the following technique of adjusting for parameter 

uncertainty: 

F" (x) = O(O-' (F(x))) (eq-1.5) 

where Q has a Student-t distribution with degrees-of-freedom k. 

Note that (eq-l.5) is an extension of the classic sampling theory, since there is no 

restriction imposed on the underlying distribution F(x). 

It may be argued that the adjustment (eq-l.5) represents a more objective view of the 

risk's probability distribution, instead of a form of profit loading. Empirical evidence 

suggests that market prices do often contain an adjustment for parameter uncertainty. 

A Two-Factor Model 

Let G(x) be a best-estimate probability distribution, before adjustment for parameter 
uncertainty. The combination of parameter uncertainty adjustment in (eq-l.5) and pure 
risk adjustment using the Wang Transform in (eq-l.2) yields the following two-factor 

model: 
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G * (y) = Q(c~-~(G(y)) + 2) (eq-1.6) 

where Q has a Student-t distribution with k degrees-of-freedom. 

The two-factor model (eq-l.6) can also be written in terms of  adjustments of local 

volatilities: 

F*(x)=~*-'(F(x))+ 2]=~b.*-I(P[x))+ 2] (eq-l.7) 

where the multiplier b depends on the value ofF(x), rather than being a constant. 

As shown in Figure 1.1, the implied b-values in (eq-1.7) depend on the value ofF(x). In 

the middle range of a risk probability distribution, the implied b-values are closer to one, 

indicating a relatively smaller "volatility adjustment." 

At the extreme tails of a risk probability distribution, the implied b-values deviate further 

below one, showing an increasing adjustment at the extreme tails. The extreme tails may 

represent many different pricing situations: deep out-of-the-money options, low- 

frequency but high-severity catastrophe losses, or, markets where risk vehicles are 

illiquid, benchmark data sparse, negotiations difficult, and the cost of keeping capital 

reserves is high. 

If we choose Q as a Student-t without rescaling in the two-factor model (eq-l.7), the 

degrees-of-freedom will affect the simultaneous estimation of the Sharpe Ratio Z. To 

overcome this drawback, we can choose Q in (eq-l.7) being a rescaled Student-t 

distribution that matches the standard normal density at x=0. This rescaled Student-t 

distribution has a density function: 

1 
/ 

k- c~ j 
q(t;k)= ~ x .  1 + ~  

An advantage of using rescaled Student-t is to ensure a more robust estimate of the 

Sharpe Ratio Z. This can be useful to a fund manager comparing the Sharpe Ratio of risk 

vehicles from different asset classes. 

Symmetry versus Asymmetry 

Insurance risks are characterized by having skewed distributions. As Lane (2000) stated: 

"Any appraisal of the risks contained in insurance or reinsurance covers must take 

into account the fact that the statistical distribution of profit and loss outcomes 

may be severely skewed. Conventional risk measurement (i.e. the standard 
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deviation) deals with random outcomes that are symmetric in nature. Price 

volatility is usually viewed as symmetric. Event or outcome risk (a characteristic 

of insurance) is not. How is the asymmetry to be captured? What are the 

components of  event risk and how they factor into price?" 

Although the distributions ~ and Q are symmetric themselves, the one-factor Wang 

Transform (eq-1.3.) and the two-factor model (eq-1.7) automatically reflect the skew in 

the input distribution G(x). This ability to reflect the skew is an advantage over the 

standard deviation loading. 

As an example, consider two bets X and Y with the following gain/loss probability 

distributions. 

The bet X has a probability distribution of gain/loss: 

x -1 O 1 19 

f(x) 0.29 0.6 0.1 0.01 

The bet Y has a probability distribution of gain/loss: 

y -19 -1 0 1 

f(y) 0.01 0.1 0.6 0.29 

Both X and Y have the same mean=0 and variance=4. While X has an upside skew, Y has 

a downside skew. 

Apply the Wang Transform (eq-l.3) with L=0.4, to get fair values of E*[X]= 

-0.33 and E*[Y]= -0.52. Note that E*[X] -E*[Y]= 0.19. As shown in the table 

below, for small values of lambda (say < 0.4), the one-factor Wang Transform 

(eq-l.3) differentiates slightly the upside skew from the downside skew. 

However, as the lambda value increases, this differentiating power increases 

"exponentially." 

Lambda 

Value 
0.20 
0.40 
0.80 
0.80 
1.00 

One-factor One-factor Difference 

E*[X] E*[Y] E*[X]- E*[Y] 
-0.18 -0.23 0.05 
-0.33 -0.52 0.19 
-0.45 -0.90 0.45 
-0.56 -1.39 0.83 
-0.65 -2.01 1.36 
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-0.82 -4.27 3.44 

-0.93 -7.47 6.55 

-0.97 -11.14 

2. Apply a Student-t adjustment (eq-l.5) for parameter uncertainty with degrees-of- 

freedom k=-6, to get fair values E*[X]= 0.36 and E*[Y]= -0.36. The Student-t 

adjustment (eq-l.6) clearly reflects the direction of the skew. We have E*[X] 

-E*[Y]= 0.72. As shown in the table below, the differentiating power decreases 

as the degrees-of-freedom increase. 

Degrees of 

Freedom 
Student-t i Student-t 

E*[X] i E*[Y] 
0.56 i -0.56 
0.44 

6 0.36 
7 0.31 

0.27 
0.23 

I -0.44 
i -0.36 l 
! -0.31 

i -0.27 
i -0.23 
~, -0.14 

Difference 

E*[X] - E*[ Y] 

1.12 

0.88 

0.72 

0.62 

0.54 

0.46 

15 0.14 0.28 

20 0.10 ~: -0.10 0.20 
2 

3. Apply the two-factor model (eq-l.7) with ~,=0.4 and k=-6, to get fair values of 

E*[X]= -0.05 and E*[)]= -0.95. We have E*[X] -E*[Y]= 0.90, approximately 

equal to the combined differences, by separately using (eq-l.3) with )~=0.4, and 

using (eq-1.5) with 6 degrees-of-freedom. 

Risk Premiums for Higher  Moments 

In classic CAPM where asset returns are assumed to follow multivariate normal 

distributions, the "market price of risk," L=(E[R]-r)/~[R], represents the excess return 

per unit of volatility. 

The classic CAPM has gone through important enhancements in modem finance and 

insurance research. In addition to risk premium associated with volatility, there is strong 

evidence of risk premium for higher moments (and for parameter uncertainty). This 

evidence has spurred extensions of classic CAPM, to include higher moments. In their 

recent paper, Kozik and Larson (2001) give a formal account of an n-moment CAPM. 

The authors offer insightful discussions on the risk premium for higher moments, 

pointing out that a three-moment CAPM significantly improves the fit of empirical 
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financial data; however, there is little marginal gain by including higher moments beyond 

the third moment. 

Obviously, the risk premium for higher moments has direct implications in pricing 

property catastrophe insurance, high excess-of-loss insurance layers, credit default risk, 

and deep-out-of-the-money options. From a risk management point of view, the cost of 

cushion capital increases with gearing and parameter uncertainty, as though they were 

extreme tail events. 

The one-factor Wang Transform (eq-1.3), which can be viewed as an analog to the two- 

moment CAPM, does not produce sufficient risk adjustment at the extreme tails of the 

risk probability distribution. 

The Student-t adjustment (eq-l.5) captures two opposing forces that often distort 

investors' rational behavior, namely greed and fear. Although investors may fear 
unexpected large losses, they desire unexpected large gains. As a result the tail 

probabilities are often inflated at both tails, with the magnitude of  distortion increasing at 

the extremes. This distributional adjustment at both tails increases the kurtosis of the 

underlying distribution. The mean value of the transformed distribution under (eq-l.5) 

reflects the skew (asymmetry) of the underlying loss distribution. 

The two-factor model (eq-l.7), however, as a combination of (eq-l.3) and (eq-l.5), 

provides risk premium adjustments not only for the second moment, but also for higher 

moments, and for parameter uncertainty. 

The two-factor Wang Transform provides good fit to CAT-bond transaction data and 

corporate credit yield spreads (see Wang, 2002a). The parameter ~. is directly linked to 

the Sharpe Ratio, a familiar concept to fund managers. With this universal pricing 

formula, investors can compare the risk/return trade-off of  risk vehicles drawn from 

virtually any class of assets or liabilities. 
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Section 2. A Coherent Risk Measure Of Required Capital 

That Captures Overall Loss Distributions 

In this section I propose a risk measure for measuring the capital requirements of 

the firm that goes beyond coherence. The popular VaR and the coherent Tail-VaR 

measures ignore information from a large part of the loss distribution. I propose a 

new coherent risk-measure that utilizes information from the entire loss 

distribution. 

VaR as a Quantile Measure 

Capital requirement risk-measures are used to decide the required levels of  capital for a 

given risk portfolio, based on downside risk potential. A popular risk-measure for capital 

requirements in the banking industry is the Value-at-Risk (VaR), based on a percentile 

concept. 

Consider a risk portfolio (e.g., investment portfolio, trading book, insurance portfolio) in 

a specified time-period (e.g., 10-day, one-year). Assume that the projected end-of-period 

aggregate loss (or shortfall)X has a probability distribution F(x). 

The Value-at-Risk is an amount of money such that the portfolio loss will be less than 

that amount with a specified probability ct (e.g., ct=99%): 

VaR(ct) = Min {x I F(x) >_ ct}. 

If the capital is set at VaR(ct), the probability of  ruin will be no greater than 1-c~. For 

computer-generated discrete distributions, it is possible that Pr{X>VaR(ct)} < 1- or. 

VaR, as a risk-measure, is only concerned with the frequency of  shortfall, but not the size 

of shortfall. For instance, doubling the largest loss may not impact the VaR at all. From 

the perspective of company executives, the quantile "VaR" at the enterprise level may be 

a meaningful risk-measure, as the primary concern is the occurrence of shortfall. 

However, as a risk measure lbr capital requirement, VaR has limitations since it ignores 

the size of shortfall and it may exhibit inconsistencies when used tbr comparing risk 

portfolios. 

TaiI-VaR as a Coherent Risk-Measure 

From a regulatory perspective, Professors Artzner, Delbaen, Eber, and Heath (1999) 
advocated a set of consistency rules for a risk-measure. 
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1. Subadditivity: For all random losses Xand Y, o(X+Y) _< p(X)+ p(Y). 

2. Monotonicity: If X<  Yfor each outcome, then p(X) < p(Y). 

3. Positive Homogeneity: For positive constant b, p(bX) = bp(X). 
4. Translation Invariance: For constant c, p(X+c) = p(X) + c. 

They demonstrated that VaR does not satisfy these consistency rules. From a risk- 

management perspective, a consistent evaluation of  the risks for business units and 

alternative strategies would require a coherent risk-measure other than VaR. 

Artzner et al. (1999) proposed an alternative risk measure, called a "Conditional Tail 

Expectation" (CTE), also called the Tail-VaR. Letting ot be a prescribed security level, 

Tail-VaR has the following expression (see Hardy, 2001 ): 

CTE(a) = VaR(a)-~ Pr{X > VaR(a)} E[X - V a R ( a )  ] X > VaR(a)]. 
1 - a  

This lengthy expression is due to the complication that for computer-generated discrete 

distributions we may have Pr{X >VaR(ct)} < 1-  ct. 

Tail-VaR reflects not only the frequency of shortfall, but also the expected value of 
shortfall. Tail-VaR is coherent, which makes it a superior risk-measure than VaR. 

Recently there is a surge of interest in coherent risk-measures, evidenced in numerous 

discussions in academic journals and at professional conventions (see Yang and Siu, 

2001; Meyers, 2001; among others). The Office of the Superintendent of Financial 
Institutions in Canada has put in regulation for the use of  CTE(0.95) to determine the 

capital requirement for segregated fund risks. 

The Tail-VaR, although being coherent, reflects only losses exceeding the quantile 

"VaR", and consequently lacks incentive for mitigating losses below the quantile "VaR". 

Moreover, Tail-VaR does not properly adjust for extreme low-frequency and high- 

severity losses, since it only accounts for the expected shortfall. 

An Alternative Measure for Capital Requirement 

Coherent risk-measure is by no means unique. The Wang Transform (eq-3) also satisfies 

the consistency rules of Artzner et al (1999). As an alternative to Tail-VaR, I propose a 
coherent risk-measure for capital requirements. 
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Definition 2.1 For a loss (shortfall) variable X with distribution F, we define a 

new risk-measure for  capital requirements as follows: 

1. For a pre-selected security level ct, let L = O-J(ct). 

2. Apply the Wang Transform: F*(x) = ~[o- l (F(x) )  -A]. 

3. Set the capital requirement to be the expected value under F*: 

WT(ct) = E* [X]. 

For normal distributions, WT(ct) is identical to VaR(ct), the 100c~-th percentile. For 

distributions other than normal, WT(ct) may correspond to a percentile higher or lower 

than et, depending on the shape of the distribution. 

When loss X has a log-normal distribution with In(X) ~ Normal(p.,er2), the WT-measure 

has a simple formula: 

WT(ct) = exp(I.t+~.~+cr2/2) with ~. = ~-l(ot). 

The WT(e0 for the log-normal distribution corresponds to the percentile O(L+cr/2), which 

is higher than a. 

The following examples show that WT(ct) improves differentiation at the extreme tails, 

and provides the right incentives for  risk management. 

Example 2.1. Consider two hypothetical portfolios with the following loss 

distributions. 

Table 2.1. Loss Distributions for Portfolio A & Portfolio B 

Portfolio A 
Loss x Prob f(x) 

$0 O. 600 
$1 0.395 
$5 0.005 

Portfolio B 
Loss x Prob f(x) 

$0 0.600 
$1 0.398 

$11 0.002 

Table 2.2. Risk-Measures With ct=0.99. 

Portfolio CTE(0.99) WT(0.99) 

A $3.00 $2.59 

B $3.00 $3.89 

62  



At the security level ct=0.99, given that a shortfall occurs, Portfolios A and B 

have the same expected shortfall. However, the maximal shortfall for Portfolio B 

($11) is more than double that for portfolio A ($5). For most prudent individuals, 

Portfolio B constitutes a higher risk. Tail-VaR fails to recognize the differences 

between A and B. By contrast, WT(0.99) gives a higher capital requirement for 

Portfolio B ($3.89) than for Portfolio A ($2.59). 

Example 2.2. Consider a risk portfolio with ten equally likely scenarios with loss 

amounts $1, $2 . . . . .  $10, respectively. Assume that all loss-scenarios can be 

eliminated though active risk management, except that the worst-case $10 loss 

cannot be mitigated at all. Suppose a risk-manager is weighing the cost of active 

mitigation of  risk against the benefit of capital relief. Tail-VaR would not 

encourage the active mitigation of  risk, because there is no capital relief for 

removing losses below the worst-case loss. However, by removing all losses 

below $10, WT(0.99) drops from $9.71 to $8.52, showing a $1.19 capital relief. 

WT(0.95) drops from $9.12 to $6.42, showing a $2.70 capital relief. 

RORAC Calculations 

It is common practice for risk-managers to calculate the retum on risk-adjusted capital 

(RORAC) for a given standalone portfolio. For such an exercise, our new risk-measure 

can be used in calculating the expression denominator, that is, for calculating the RAC, or 

risk-adjusted capital. 

Comment on the Threshold 

Regardless of the choice of risk measure, say, VaR(o0, TailVaR(ct), or WT(ct), the value 

of the parameter a has significant implications to the financial performance of the 

enterprise. From the regulatory perspective, it may create market inefficiencies when 

selecting too low or too high a value of  cc The optimal value for ct may well depend on 

alternative investment opportunities in other industries. Kreps (1998) explores similar 

ideas in the context of reinsurance pricing. The optimal value of ct is an important subject 

that deserves further research. 
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Section 3. Allocating Risk Capital 
Among the Business Units of the Enterprise 

In this section I propose a framework for measuring risk and allocating capital 

among the business units of the company, based on exponential tilting. 

Variance-Based Risk Measure 

From a company's portfolio perspective, doubling a risk exposure may more than double 

the risk contribution to the aggregate "portfolio of the firm," due to increased risk 

concentration. Traditionally the aggregate risk concentration is better measured by 

"variance" rather than "'standard deviation." 

Because "variance" is based on the second moment, it also suffers the drawback of 

"standard deviation" in failing to differentiate upside skew from downside skew. This 

drawback of the "'variance" measure, however, can also be overcome by a probability 

transform: 

f * (x) = f (x )exp(2x)  (eq-3.1) 
E[exp(AX)] ' 

which is called the Esscher Transform (see Gerber and Shiu, 1994). 

When X has a Normal(la,o 2) distribution, the Esscher Transform gives another normal 

distribution with/a*=p+kcr 2. and ~*=~. Thus, for normally distributed risks, the Esscher 

premium recovers the variance-loading method: 

H~.~,,,~[X; 2] = E[X] + 2.  Var[X]. 

In other words, the Esscher Transform extends variance-based risk-adjustment to risks 

with non-normal distributions. This is analogous to how the one-factor Wang Transform 

(eq-1.3) extends standard-deviation loading to risks with non-normal distributions. 

States of the World 

Let ~ represent a collection of possible states of the world. Each state of the world 

contains multivariate risk factors or events that could potentially happen in a specified 

time period. For instance, the collection of events that have had happened in 2001 can be 

viewed as a realized state of the world. In the U.S. insurance market, some major events 

happened in 2001 included the terror attacks of September 1 I, the collapse of Enron, 

increasing mold claims in Texas, and a lower domestic interest-rate environment. 
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Different business units, or lines of business, within an insurance company were 

impacted differently by these events. 

Exponential Tilting 

Consider a risk X and a reference portfolio with aggregate risk Z. Here the reference 

portfolio may be a company portfolio, industry portfolio, or the financial impact of a 

selected risk factor. We define an exponential tilting of X induced by Z: 

X * (co) = X(co) exp(AZ(to)) , for every possible state to in f2. 
E[exp(AZ(o)))] 

We denote 

H ~ [ X ,  Z] - E [ X  . exp(2Z)] (eq-3.2) 
E[exp(2Z)] 

Remark: The theoretical foundation for "exponential tilting" is rooted in an equilibrium- 

pricing model of Buhlmann (1980, 1984). He considered an optimal risk exchange model 

where each participant aims to maximize his/her expected utility. Buhlmann showed that 

in the equilibrium the price for risk X has the same expression as (eq-3.2). 

Example 3.1: When X and Z have a bivariate normal distribution with correlation 

coefficient Px.z, the transformed variable X* also has a normal distribution with 

la~, =/1 x + 2px.zCrxCrz and cr x = cr x . 

Esscher Transform from Company Portfolio Perspective 

For the aggregate risk of the reference portfolio, the exponential tilting gives 

H A [Z, Z] = E [ Z .  exp(RZ)] 
E[exp(3,Z)] 

This is exactly the Esscher premium, an extension of variance-based risk adjustment. 

Systematic Risk for a Given Reference Portfolio 

Let Z be the aggregate risk for a reference portfolio. Assume that risk X can be 

decomposed into two parts 

X = X~.s + X,,o,,, 

where 

• Xsys (being co-monotone with Z) represents the systematic portion of X, and 
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• X.o. (being uncorrelated with Z) represents the idiosyncrasy or non-systematic 

portion. 

• By definition, Xsys and X.o. are uncorrelated. 

Note that the notion of "systematic risk" has a relative meaning, depending upon the 

reference portfolio Z. 

It can be easily verified that 

H~ [X, Z] = E[X,,,,,, ] + E [ X ~ .  exp(AZ)] (eq-3.3) 
E[exp(AZ)] 

In other words, exponential tilting induced by Z only adjusts for the non-diversifiable risk 

with respect to Z. 

The following result can be found in Wang (2002b). 

Theorem 3.1: Let the reference portfolio be the market portfolio. Under the 

assumption that 

• Risk ~ is co-monotone with the aggregate risk Z, 

• The aggregate risk Z has a normal distribution with standard deviation 

c(Z), 

the exponential tilting (eq-3.2) is equivalent to the one-factor Wang Transform: 

F * (x) = ~ [ ~  -~ (F(x))  + A~ ], where L0=~,c(Z) represents the market price per 

unit of risk. 

Conceptually, when we enlarge a company portfolio so that it approaches the market 

portfolio, we can reasonably expect that the risk measure based on the company portfolio 

perspective should converge to that of market perspective. We have seen that 

"exponential tilting" facilitates such a natural transition; it produces the Esscher 

Transform for the company portfolio perspective, and produces the Wang Transform for 

the market perspective. 

We shall show that exponential tilting lends itself to a coherent allocation of risk 

contributions of various business units. 

lntra-Company Allocation of the Cost of Capital 

Consider a company with n individual business units. In making strategic evaluations, 

firms often need to allocate the total cost of capital to different business units, or among 
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lines o f  business. For such an allocation exercise, the correlation structure between 

various business units, or among lines o f  business, becomes critically important. 

For every possible state 03 in if2, let Xl(03), X2(03) . . . . .  X , ( o )  represent the losses to n 

individual business units. The aggregate loss to the company is: 

Z(03) = X~(03) + X2(co) + . . .  + X.(03). 
The correlations between {Xj(03), X2(03) . . . . .  3(,((o)} are completely specified by their 

dependence of  various states o f  the world. To describe such a correlation structure, we 

can use a representative sample o f  multivariate values based on historical data, and/or 

scenario-based simulations (see Section 4). 

Assume that the aggregate capital requirement C~gg~ has been given for the whole 

company. For instance, it can be based on a coherent risk measure such as WT(0.95), as 

in section 2. 

We can solve out a number )~ such that 

C ~g r = H a [Z, Z]  - E [ Z ] .  (eq-3.4) 

We propose the following allocation o f  cost o f  capital to individual business unit j Q'= 1, 

2, . . . ,  n): 

C j = H ~ [ X  j , Z ] -  E [ X j ] .  (eq-3.5) 

Obviously this allocation method is additive: C.~¢r = ~ C j .  
j=l 

Theorem 3.2. Assume that Xl(03), X2(03) . . . . .  X,(co) have a multivariate normal 

distribution with a covariance matrix: 

2 I 
P l 2 0 " l  0"2 0" 2 . . .  p 2 , , ? 2 0 " n  / 

/ : ! i : 
2 

P ]  n 0"I O'n P2 n 0"20"n " " " O'n ) 

The allocation method is equivalent to the covariance method with 
n n 

C,,gg, = 2o ' , ,~  = 2 E p o o ' , o "  j , and Cj  = 2 E p o c r ,  cf j , f o r j = l ,  2 . . . . .  n. 
i , ]= l  i=1 

Remark: 
1. Under multivariate normal assumptions, the allocation method as outlined in (eq- 

3.4) & (eq-3.5) is exactly the same as the covariance method. 
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2. For other than multivariate normal distributions, the allocation method (eq-3.4) & 

(eq-3.5) is superior to the covariance method in that it better reflects tail 

correlation and skew/kurtosis in the individual risk distributions. 

Market Implied Cost of Capital 

From the market perspective, a formula-based benchmark price E* IX2] for insurance risk 

Xj implies the following economic capital for X2: 

7t(X s) - (E*[Xs] - EIXj])/TEROE, 

where TEROE is the target excess return on equity, over the risk-free rate r. Market 

benchmark pricing implies an aggregate capital requirement of rt(Z) = n(Xl)+. . .  + n(Xn). 

Recall that (~'~g,er represents the aggregate capital requirement based on the company's 

own risk portfolio. It is useful to compare ('~gg, with rt(Z), and Cj with rt(Xj), respectively. 

The relative sizes between (',e,er and rt(Z), ( )  and n(Xj), reveals the extent of company 

diversification, relative to an "'average" industry portfolio. 
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Section 4. Aggregating Correlated Risks to Produce 
An Integrated Risk Profile of The Firm 

The correlation structure between risks can significantly impact the aggregate 

portfolio risk, as well as the allocations of risk capital to business units. Here I 

discuss some useful correlation models. 

Extreme Correlation 

In many real-life situations, extreme correlation is often higher than what the linear 

correlation coefficient indicates. For instance, the terror attacks of September 11 resulted 

in big losses in many lines of business, including life insurance, property insurance, 

aviation insurance, and workers compensation. The collapse of Enron resulted in sudden 

increases in surety bond premium rates, which in turn forced the retailer K-Mart Stores to 

file for bankruptcy protection. 

Normal Copula Is Sometimes Inadequate For Capital Allocation 

One of the most popular correlation models is the normal copula, because (i) the 

correlation structure can be completely specified by a correlation matrix; and (ii) there 

are readily available simulation routines and software. Unfortunately, the normal copula 

does not give sufficient extreme correlations. Embrechts et al (1999) showed that a 

normal copula shows asymptotically zero-correlation at the extreme tails. An alternative, 

the student-t copula shows higher correlation at the tails. Mango and Sandor (2002) have 

cautioned against using the normal copula in capital allocation exercises. Venter (2001) 

analyzed various copulas using simulated catastrophe loss data. 

The known drawbacks of the normal copula encourages the use of a statistical copula that 

properly incorporates a higher correlation at the extreme tails. This statistical copula can 

be empirically constructed from historical data, or modified with a set of stress tests 

embodied in scenarios. 

Empirical Copula 

There are numerous parametric copula models (see Frees and Valdz, 1998). Although a 

parametric copula can be fit to empirical multivariate data, the estimation of copula 

parameters often depends on the model choice of marginal distributions. 
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I propose using a type of empirical copula that is not affected by the choice of  marginal 

distributions. When limited by historical multivariate data, we can supplement this 

empirical copula by scenario-based simulations. 

Consider a sample of simultaneous observations {x,~, y.,}, re=l, 2 . . . . .  M, of two 

variables X and Y. 

Rank the values ofx,,, m=l,  2 . . . . .  M. in an ascending order. For each x,, we assign a sub- 

interval, I(x,,), situated within [0,1]. 

The lower boundary of the interval I(x,.) is 

Number of observations strictly less than x,, 

M 

The upper boundary of the interval I(x,,) is 

Number of observations strictly greater than x~ 

M 

For each x,,, re=l, 2, ..., M, we define ,/,, as the mid-point of the interval I(x,~), Note that 

repetitive values of x~, will result in repetitive values of u,,. 

We do the same for the values of y,,, m=l,  2 . . . .  , ,44. Let v,, be the mid-point of the 

interval Ify,,). 

We call the sample discrete distribution {u,,, v~,}, m=l, 2, ..., M, an empirical copula 

induced by the sample {x , , ,  y , , } ,  r e = l .  2 . . . . .  M .  

A simple instance of  this empirical copula is implied in multivariate traded prices for 

multiple stocks or stock indices. Multivariate insurance data, however, is much less 

abundant. We must rely heavily on scenario-based simulations to generate the appropriate 

multivariate data. 

Use Empirical Copula in Modeling and Combining Correlated Risks 

Consider two risks Wj and W2 with marginal distributions, F/ and F,, respectively. To 

simulate a bivariate sample of Wl and W, with their correlation structure as specified by 

the empirical copula {u~,, Vm}, m=l,  2 . . . . .  M,  the following method can be employed: 
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{wl(m)=Fl-I(u.,), w2(m)=FZl(u,,)},  m=l ,2  . . . . .  M, 

with each pair having a probability of 1/M. 

Using this simulation method, we cart easily generate a sample of the aggregate risk: 

W=Wx+ W2. 

This aggregation method can be easily generalized to combining "n" risks. 

Multivariate Normal Variance Mixture 

Consider multivariate standard normal variables (ZI, Z2, .... Z,) with correlation 

coefficients Pij = corr(Zi, Zj), Let B be a non-negative random variable. We define 

(X/, )(2, .... Xn) = (BZI, BZ2 ..... BZn). 
Intuitively, this is a stochastic volatility model (that is, the variance itself is random). We 

say that (X1,)(2 .... .  X,) have a multivariate normal mixture distribution. 

Normal variance mixtures preserve the linear correlation coefficients of the multivariate 

normal distribution: 
Corr(X~, ~ ) = Corr(Zi, ~). 

Example 4.1. Let the multiplier B have a lognormal distribution with mean=l and CV=3,. 

Example 4.2. Let B = ~]C where C has a Chi-square distribution with k degrees-of- 

freedom. Then (X/,)(2, .... X,) have a multivariate student-t distribution with k degrees- 

of-freedom. Frey et al (2001) compared the impacts on VaR calculations using student-t 

copula versus normal copula. 
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Section 5. Optimizing The "Portfolio O f  The Firm" 
To Create New Shareholder Value 

This section applies the two-factor Wang Transform to portfolio optimization, and 

to quantifying the value creation associated with portfolio strategies. This can be 

viewed as an extension of the Markowiz mean-variance framework. 

The Sharpe Ratio and Mean-Variance Optimization 

Let R be the return in the forthcoming time period on an asset portfolio. Let the 

benchmark portfolio be the risk-free rate r at the same time horizon. The Sharpe Ratio, as 

a measure of reward-to-variability ratio, is defined as 

3 .  - E [ R ]  - r 

~[R] 

which also corresponds to the concept of the "market price of risk." 

After its initial publication by economist William Sharpe in 1966, the Sharpe Ratio soon 

became a popular way for fund managers to calculate excess return for a given level of 

risk. As a simple rule of thumb, the higher the Sharpe ratio, the better the prospect of 

return, relative to a level of risk. Given some constraints of risk-tolerance set by the 

portfolio managers, an optimal portfolio can be constructed so as to maximize the 

prospective Sharpe Ratio for the aggregate portfolio. 

In financial economics, the optimal asset portfolios lie on an efficient frontier, under the 

Markowiz mean-variance framework. For normally distributed risks, maximizing the 

Sharpe Ratio is consistent with the Efficient Frontier under the Markowiz framework. 

The lambda parameter in the Wang Translbrm (eq-3) extends the Sharpe Ratio concept to 

assets/losses with non-normal distributions. With further incorporation of parameter 

uncertainty and higher moments, the two-factor Wang Transform enables an extension of 

the Markowiz mean-variance framework. 

Portfolio Fair Economic Value 

Consider a risk portfolio with a fixed time horizon, [0, T]. Suppose that we have 

projected a probability distribution, F(x), of the aggregate profit/loss X(T) at the end of 

the period for the whole portfolio. 
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With market benchmark parameters for the Sharpe Ratio ~. and the Student-t degrees-of- 

freedom, we apply the two-factor Wang Transform 

F * (x) = Q[d)-' (F(x)) + A]. (eq-5.1) 

We define fair economic value (EconVal) for the portfolio as the mean value under the 

transformed distribution, with further risk-free discounting for the fixed time horizon to 

present value as needed: 

EconVal= exp(-rT) E*[X(T)]. (eq-5.2) 

In real life most firms are operating under some sort of constraints (budgeting, capital 

requirement, and cash-flow liquidity). Insurance companies operate under stringent 

capital requirements imposed upon by regulators and rating agencies. A firm with 

excessive risk-taking may jeopardize its long-term viability, and incur substantial 

transaction costs when under financial stress. 

Optimization Method #1 

We can state our optimization problem as maximizing the expected value of the risk- 
adjusted returns under certain operating constraints. Maximizing expected profit without 
constraint would lead firms to engage in speculative investments with the highest risk- 

adjusted expected returns. One operating constraint is the probability of ruin within a 

given threshold. Another example of  operating constraint is requiring the company to 

remain at a "AA" credit or insurance rating by the end of the given period. 

The portfolio optimization process can then be formalized as maximizing the fair 

economic value in (eq-5.2) subject to some given operating constraints. 

Based on the ERM analysis, a company may make strategic changes to its risk portfolio. 

The value creation can be simply quantified as 

ValCr = EconVal(Ending Portfolio) - EconVal (Initial Portfolio). 

Optimization Method #2 

Let X be the profit/loss distribution for the risk portfolio. Let the economic capital be 

determined by a pre-selected risk-measure, say, WT(ct), for ct=0.99, as in section 2. We 

can calculate the return on economic capital as: 
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R = X~  WT(ot). (eq-5.3) 

We apply a two-factor Wang Transform in (eq-5.1) to the probability distribution of  R, 

and calculate the Risk-Adjusted Return On Capital (RAROC) as its expected value. 

Thus we can perform portfolio optimization by maximizing the R A R O C  under some 

operating constraints. By maximizing the RAROC in this way, on an enterprise-wide 

basis, ERM can lead to optimal decisions and shareholder value creation. 

Conclusions 

In this paper we have presented a set of  methods and tools for measuring risks and 

allocating the cost of capital. These tools are inter-connecting parts of a common 

framework for enterprise risk capital management. A sound methodology framework lays 
the foundation for building a knowledge-based risk management system. To use these 

tools correctly in ERM practices, it is critical to first develop good risk metrics that 

captures the real risk dynamics of individual business units, and their inter-relations. Of 

course, many other issues remain to be addressed in future research. Stay tuned. 
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Figure 1.1 Implied b-values using Student-t distribution 
(Here "def' refers to degrees-of-freedom) 
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